Loop calculations with graphical functions

Oliver Schnetz
II. Institut für theoretische Physik
Luruper Chaussee 149
22761 Hamburg
Zeuthen, Feb. 22, 2024

(1) Graphical functions
(2) Generalized single-valued hyperlogarithms
(3) Non-integer dimensions
(4) Results
(5) QED and Yang-Mills theory
(6) HyperlogProcedures

The graphical functions method works for

- massless,
- 2 pt , 3 pt , or convergent (conformal) 4pt amplitudes
- in even dimensions ≥ 4.

In this setup, high loop orders are possible.
Ideal playground: renormalization functions $\beta(g), \gamma(g), \gamma_{m}(g)$.

- Massless 2pt amplitudes are scalars (periods). Add a third point for more structure.
- Massless 3pt integrals (or 4pt conformal) are the simplest functions in QFT (two-scale).
- Construct a given Feynman integral by an increasing sequence of 3 pt subgraphs.
- Use position space. Three points span a plane in \mathbb{R}^{D}. Consider this plane as \mathbb{C}.
- Study the 3pt integrals as functions on \mathbb{C} using the theory of complex functions.
- Add edges by solving the Laplace equation.

Picture (by M. Borinsky)

Consider a Feynman graph G with three external vertices $z_{0}, z_{1}, z_{2} \in \mathbb{R}^{D}$ and $v=V_{G}^{\text {int }}$ internal vertices $x_{1}, \ldots, x_{v} \in \mathbb{R}^{D}$. In D-dimensional position space an edge $e=y_{1} y_{2}$ in G has the propagator

$$
p_{e}\left(y_{1}, y_{2}\right)=\frac{1}{\left\|y_{1}-y_{2}\right\|^{D-2}} .
$$

The vertices y_{1} and y_{2} can be internal or external. We generalize the propagator by allowing edge weights $\nu_{e} \in \mathbb{R}$,

$$
p_{e, \nu_{e}}\left(y_{1}, y_{2}\right)=\frac{1}{\left\|y_{1}-y_{2}\right\|^{2 \lambda \nu_{e}}}
$$

where $\lambda=D / 2-1$. The Feynman integral of the graph G is

$$
A_{G}\left(z_{0}, z_{1}, z_{2}\right)=\int \frac{\mathrm{d} x_{1}}{\pi^{D / 2}} \cdots \int \frac{\mathrm{~d} x_{v}}{\pi^{D / 2}} \prod_{e \in E_{G}} p_{e, \nu_{e}}(x, z)
$$

The graphical functions $f_{G}(z)$ is defined by

$$
f_{G}(z)=A_{G}\left(z_{0}, z_{1}, z_{2}\right)
$$

for the external vectors

$$
z_{0}=0, z_{1}=(1,0,0, \ldots, 0)^{T}, z_{2}=(\operatorname{Re} z, \operatorname{Im} z, 0, \ldots, 0)^{T}
$$

For general z_{0}, z_{1}, z_{2} one has the relation

$$
A_{G}\left(z_{0}, z_{1}, z_{2}\right)=\left\|z_{1}-z_{0}\right\|^{-2 \lambda N_{G}} f_{G}(z)
$$

with invariants

$$
\frac{\left\|z_{2}-z_{0}\right\|^{2}}{\left\|z_{1}-z_{0}\right\|^{2}}=z \bar{z}, \quad \frac{\left\|z_{2}-z_{1}\right\|^{2}}{\left\|z_{1}-z_{0}\right\|^{2}}=(z-1)(\bar{z}-1)
$$

and the scaling weight (superficial degree of divergence)

$$
N_{G}=\left(\sum_{e \in E_{G}} \nu_{e}\right)-\frac{(\lambda+1) v}{\lambda}
$$

- Reflection symmetry $f_{G}(z)=f_{G}(\bar{z})$.
- f_{G} is a real-analytic single-valued function on $\mathbb{C} \backslash\{0,1\}$ (with M. Golz, E. Panzer).
- There exist single-valued log-Laurent expansions for the ϵ^{k} coefficients of $f_{G}(z)$ at the singular points $s=0,1$ and at ∞.

$$
\begin{aligned}
& \sum_{\ell \geq 0} \sum_{m, n=M_{s}}^{\infty} c_{\ell, m, n}^{s, k}[\log (z-s)(\bar{z}-s)]^{\ell}(z-s)^{m}(\bar{z}-s)^{n} \quad \text { if }|z-s|<1, \\
& \sum_{\ell \geq 0} \sum_{m, n=-\infty}^{M_{\infty}} c_{\ell, m, n}^{\infty, k}(\log z \bar{z})^{\ell} z^{m} \bar{z}^{n} \quad \text { if }|z|>1, \\
& \text { with } c_{\ell, m, n}^{\bullet, k}=c_{\ell, n, m}^{\bullet, k} \in \mathbb{R} .
\end{aligned}
$$

Construction

- Add edges between external vertices

$$
\begin{aligned}
{\left[z \cdot<_{0}^{1}\right] } & =\left[z \cdot \bigcup_{0}^{1}\right]=(z \bar{z})^{\lambda \nu_{e}}\left[z \cdot l_{0}^{1}\right] \\
& =[(z-1)(\bar{z}-1)]^{\lambda \nu_{e}}\left[z \cdot Q_{0}^{1}\right]
\end{aligned}
$$

- Permute external vertices

$$
\left[z \cdot\left\langle\begin{array}{l}
0 \\
1
\end{array}\right]=\left[(1-z) \cdot\left\langle_{0}^{1} \begin{array}{l}
0
\end{array}\right]=(z \bar{z})^{-\lambda N_{G}}\left[1 \cdot\left\{_{\frac{1}{z}}^{0}\right] .\right.\right.\right.
$$

Appending edges

- Invert the effective Laplace operator \square_{D} for an isolated edge of weight 1 at vertex z,

$$
\left.\begin{array}{c}
\left(\Delta_{n}+\frac{\varepsilon / 2}{z-\bar{z}}\left(\partial_{z}-\partial_{\bar{z}}\right)\right)\left[z \cdot\left\{_{0}^{1} \begin{array}{l}
1
\end{array}\right]=-\frac{1}{\Gamma(\lambda)}\left[z \cdot \left\{_{0}^{1}\right.\right.\right. \\
0
\end{array}\right]
$$

- In the last step one may want to integrate over z to pass from a $3 p t$ function to a 2 pt function using

$$
\frac{1}{(2 \mathrm{i})^{2 \lambda} \sqrt{\pi} \Gamma(\lambda+1 / 2)} \int_{\mathbb{C}} f_{G}(z)(z-\bar{z})^{2 \lambda} \mathrm{~d}^{2} z
$$

In even integer dimensions one can use a residue theorem to do the integral.
In non-integer dimensions we add an edge between 0 and z of weight -1 , append an edge of weight 1 to z, and set $z=0$.

- For even integer D there exists a closed solution for the effective Laplace equation by taking single-valued primitives (with M. Borinsky). This is trivial in $D=4$ dimensions.
- The solution is unique in the space of graphical functions.
- Generalized single-valued hyperlogarithms (GSVHs) are closed under solving the effective Laplace equation. The algorithm is efficient for GSVHs.
- The solution generalizes to non-integer dimensions $2 n+4-\epsilon$.
- Spin k in D dimensions (QED, Yang-Mills) makes the effective Laplace equation a coupled system with triangular matrix whose diagonal is populated by (copies of)
$\square_{D}, \square_{D+2}, \ldots, \square_{D+2 k}$.

GSVHs

Generalized single-valued hyperlogarithms (GSVHs) are iterated single-valued primitives of differential forms

$$
\frac{\mathrm{d} z}{a z \bar{z}+b z+c \bar{z}+d}, \quad a, b, c, d \in \mathbb{C}
$$

on the punctured (!) Riemann sphere $\mathbb{C} \backslash\left\{0, s_{1}, \ldots, s_{n}\right\}$. Example (C. Duhr et al.).

$$
\int_{\mathrm{sv}} \frac{D(z) \mathrm{d} z}{z-\bar{z}}
$$

where $D(z)$ is the Bloch-Wigner dilogarithm,

$$
D(z)=\operatorname{Im}\left(\operatorname{Li}_{2}(z)+\log (1-z) \log |z|\right) .
$$

GSVHs can be constructed with a commutative hexagon:

where \mathcal{G} is the \mathbb{C}-algebra of GSVHs and $\pi_{\partial_{z}}\left(\pi_{\partial_{\bar{z}}}\right)$ kills (anti-)residues in $\partial_{z} \mathcal{G}\left(\partial_{\bar{z}} \mathcal{G}\right)$.

$2 n+4-\epsilon$ dimensions

- Taylor coefficients of convergent graphical functions in non-integer dimensions are obtained by a straight forward expansion method.
- For singular graphical functions a sophisticated subtraction method is necessary to obtain the Laurent coefficients.
Problem: inversion of the effective Laplace equation.
Example: bottom line in the cat eye calculation,

$$
\frac{1}{(z \bar{z})^{2 \lambda}((z-1)(\bar{z}-1))^{\lambda}} .
$$

After inverting the effective Laplace operator, the graphical function has a singular part which is annihilated by Δ_{0},

$$
\frac{1}{z-\bar{z}} \partial_{z} \partial_{\bar{z}}(z-\bar{z}) \frac{2}{\epsilon z \bar{z}}=0
$$

Solution: Subtract (logarithmic) subdivergences:

$$
\left(\frac{1}{(z \bar{z})^{2 \lambda}((z-1)(\bar{z}-1))^{\lambda}}-\frac{1}{(z \bar{z})^{2 \lambda}}\right)+\frac{1}{(z \bar{z})^{2 \lambda}}
$$

- The first term is sufficiently regular at $z=0$: The effective Laplace equation can be inverted uniquely.
- The inversion of the second term is a convolution:

$$
\frac{1}{\pi^{D / 2}} \int_{\mathbb{R}^{D}} \frac{1}{\|x\|^{4 \lambda}\left\|x-z_{2}(z)\right\|^{2 \lambda}} \mathrm{~d} x
$$

- The general situation is fully algorithmic.
- Quadratic subdivergences are mere 2 pt insertions.
- No a priori analysis or extra orders in ϵ necessary.

There exists a large toolbox for calculating low order Laurent coefficients of (singular) graphical functions.

- Completion: conformal symmetry.
- Approximation: replace a subgraph with a sum of simpler graphs with the same low order ϵ expansion.
- Rerouting: subtraction of subdivergences with simpler graphs to reduce the pole order in ϵ (F . Brown, D. Kreimer).
- Integration by parts (in particular spin >0 or dimension ≥ 6).
- Algebraic identities (in particular spin >0).
- Special identities: Twist, planar duals...
- Parametric integration: HyperInt (F. Brown, E. Panzer).
- ...

Comparison with classical techniques

- Momentum space techniques are more general (masses, Npt functions).
- Momentum space techniques can also be applied to graphical functions (master integrals).
- The theory of graphical functions performs integrations.
- The large set of constructible graphs is always computable with graphical functions (to sensible orders in ϵ).
- It is not necessary to solve large systems of linear equations.
- One always obtains a reduction of complexity by integrating out some vertices of the Feynman graph.
- Calculation of many primitive ϕ^{4} periods up to 11 loops (and primitive ϕ^{3} periods up to 9 loops) which lead to the discovery of the connection between motivic Galois theory and QFT (the coaction principle, the cosmic Galois group).
- ϕ^{4} theory (4 dim .): 8 loops field anomalous dimension γ.

7 loops β, mass anomalous dimension γ_{m}, self-energy Σ.

- ϕ^{3} theory (6 dim.): 6 loops field anomalous dimension γ, β, mass anomalous dimension γ_{m}.
5 loops self-energy Σ.

$$
\begin{aligned}
\beta_{6}^{\phi^{3}} & =\frac{245045}{144} \zeta(9)+37 \zeta(3)^{3}+\frac{3357}{40} \zeta(5,3)-\frac{11}{3} \zeta(5) \zeta(3) \\
& -\frac{81733}{2016000} \pi^{8}-\frac{456443}{1152} \zeta(7)+\frac{99}{800} \pi^{4} \zeta(3)-\frac{2425}{384} \zeta(3)^{2} \\
& +\frac{176425}{2612736} \pi^{6}-\frac{24878747}{34560} \zeta(5)+\frac{42654751}{74649600} \pi^{4} \\
& -\frac{85523425}{186624} \zeta(3)-\frac{173655397121}{3224862720} \\
& =-241.455497609497 \ldots
\end{aligned}
$$

$$
\zeta(5,3)=\sum_{k_{1}>k_{2} \geq 1} \frac{1}{k_{1}^{5} k_{2}^{3}}(\text { May } 19,2023) .
$$

QED and Yang-Mills theory (with S. Theil)

Express all integrals in terms of Feynman periods: scalar (fully contracted) integrals with no external vertices. Each Feynman period can be expressed by an unlabeled vacuum graph. Any choice of two vertices 0 and 1 give the same Feynman integral. Example:

Reduction of complexity

- A sizable subset of Feynman periods can be calculated immediately.
- One can increase the number of known Feynman periods by calculating kernel graphical functions.
- One can use IBP identities to reduce an unknown Feynman period to known Feynman periods.
- A combination of both techniques can reduce the complexity. For six loop primitive graphs in ϕ^{3} theory:
M. Borinsky, O. Schnetz, Recursive computation of Feynman periods, JHEP No. 08, 291 (2022).

(De-)construction

- HyperlogProcedures is a Maple package that performs calculations using graphical functions and GSVHs.
- It is also a toolbox to handle multiple zeta values (MZVs) including extensions to second (Euler sums), third, fourth, and sixth roots of unity.
- A large number of manipulations for hyperlogarithms (Goncharov polylogs) are implemented in HyperlogProcedures.
- HyperlogProcedures has the results for the renormalization functions in ϕ^{4} and ϕ^{3} with a large number of extra data.
- HyperlogProcedures is available for free download from my homepage.
https://www.math.fau.de/person/oliver-schnetz/

