REVISITING STRONG-COUPLING DETERMINATIONS FROM EVENT SHAPES

[GUIDO BELL]
based on: GB, C. Lee, Y. Makris, J. Talbert, B. Yan, 2311.03990.

Introduction

- α_{s} is a fundamental SM parameter
- α_{s} enters every precision study in particle physics

PDG 2021 world average

$$
\alpha_{s}\left(M_{z}\right)=0.1179 \pm 0.0009
$$

Introduction

- α_{s} is a fundamental SM parameter
- α_{s} enters every precision study in particle physics

PDG 2021 world average

$$
\alpha_{s}\left(M_{z}\right)=0.1179 \pm 0.0009
$$

Thrust
[Abbate, Fickinger, Hoang, Mateu, Stewart 10]
$\alpha_{s}\left(M_{z}\right)=0.1135 \pm 0.0011$

C-parameter
[Hoang, Kolodrubetz, Mateu, Stewart 15]
$\alpha_{s}\left(M_{Z}\right)=0.1123 \pm 0.0015$
\Rightarrow " 3σ anomaly"

New developments

Recent studies focused on non-perturbative effects from 3-jet configurations

- C-parameter in the symmetric 3 -jet limit
- general renormalon analysis
[Caola, Ferrario Ravasio, Limatola, Melnikov, Nason 21; + Ozcelik 22]

effective shift parameter

$$
\frac{d \sigma}{d e}(e) \xrightarrow{N P} \frac{d \sigma}{d e}\left(e-\zeta(e) \frac{\Lambda}{Q}\right)
$$

\triangleright renormalon-type (massive gluon) computation starting from $q \bar{q} \gamma$ final state
\triangleright reconstructs QCD result as a sum over colour dipoles
\Rightarrow first (model-dependent) estimate of 3-jet power corrections

New developments

Novel 3-jet power corrections have been implemented in α_{s} fit

New developments

Novel 3-jet power corrections have been implemented in α_{s} fit

- fit to ALPEH data with $Q=M_{z}$ only
- fit does not include resummation
- universality of non-perturbative corrections unclear (in particular for y_{3})
\Rightarrow conclusions are premature

Our approach

Focus on 2-jet predictions that are theoretically well established

- SCET-based α_{s} extractions were performed by a single group

> Thrust at $\mathrm{N}^{3} \mathrm{LL}$ with Power Corrections and a Precision Global Fit for $\boldsymbol{\alpha}_{\boldsymbol{s}}\left(\boldsymbol{m}_{\boldsymbol{Z}}\right)$
> Riccardo Abbate, ${ }^{1}$ Michael Fickinger, ${ }^{2}$ André H. Hoang, ${ }^{3}$ Vicent Mateu, ${ }^{3}$ and Iain W. Stewart ${ }^{1}$

[^0]
Our approach

Focus on 2-jet predictions that are theoretically well established

- SCET-based α_{s} extractions were performed by a single group
- Scrutinise implementation of non-perturbative effects

Main Focus:

- renormalon schemes
- perturbative scale choices
\Rightarrow we do not aim at a competetive α_{s} extraction in this work!

OUTLINE

PERTURBATIVE TREATMENT

RESUMMATION
MATCHING TO FIXED-ORDER
PROFILE FUNCTIONS

NON-PERTURBATIVE TREATMENT
GAPPED SHAPE FUNCTION
RENORMALON SCHEMES
α_{s} FITS
EXTRACTION METHOD
RESULTS

OUTLINE

PERTURBATIVE TREATMENT

RESUMMATION
MATCHING TO FIXED-ORDER
PROFILE FUNCTIONS

NON-PERTURBATIVE TREATMENT
GAPPED SHAPE FUNCTION
RENORMALON SCHEMES
α_{s} FITS
EXTRACTION METHOD
RESULTS

Thrust

Event shapes assign a number to the geometric distribution of hadrons

$$
T=\frac{1}{Q} \max _{\vec{n}}\left(\sum_{i}\left|\vec{p}_{i} \cdot \vec{n}\right|\right) \equiv 1-\tau
$$

$\tau \approx 0$

$\tau \approx 0.5$

Thrust

Event shapes assign a number to the geometric distribution of hadrons

$$
T=\frac{1}{Q} \max _{\vec{n}}\left(\sum_{i}\left|\vec{p}_{i} \cdot \vec{n}\right|\right) \equiv 1-\tau
$$

$\tau \approx 0$

$\tau \approx 0.5$

Standard exercise to calculate $\mathcal{O}\left(\alpha_{s}\right)$ distribution

$$
\begin{aligned}
\frac{1}{\sigma_{B}} \frac{d \sigma}{d \tau} & =\delta(\tau)+\frac{\alpha_{S} C_{F}}{2 \pi}\left\{\left(\frac{\pi^{2}}{3}-1\right) \delta(\tau)-\frac{3(1-3 \tau)(1+\tau)}{\tau_{+}}-\frac{2\left(2-3 \tau+3 \tau^{2}\right)}{(1-\tau)}\left(\left[\frac{\ln \tau}{\tau}\right]_{+}-\frac{\ln (1-2 \tau)}{\tau}\right)\right\} \\
& =\delta(\tau)+\frac{\alpha_{s} C_{F}}{2 \pi}\left\{\left(\frac{\pi^{2}}{3}-1\right) \delta(\tau)-\frac{3}{\tau_{+}}-4\left[\frac{\ln \tau}{\tau}\right]_{+}+\text {non-singular terms }\right\}
\end{aligned}
$$

Overall structure

Thrust distribution

$$
\frac{1}{\sigma_{B}} \frac{d \sigma}{d \tau}=\delta(\tau)+\frac{\alpha_{s} C_{F}}{2 \pi}\left\{\left(\frac{\pi^{2}}{3}-1\right) \delta(\tau)-\frac{3}{\tau_{+}}-4\left[\frac{\ln \tau}{\tau}\right]_{+}+\text {non-singular }\right\}+\mathcal{O}\left(\alpha_{s}^{2}\right)
$$

peak region

- very sensitive to non-perturbative effects
tail region
- resummation of singular corrections far-tail region
- fixed-order QCD, but few events

Singular contribution

For $\tau \rightarrow 0$ all emissions are collinear or soft

$$
\frac{1}{\sigma_{B}} \frac{d \sigma}{d \tau} \simeq H(Q, \mu) \int d \tau_{n} d \tau_{\bar{n}} d \tau_{s} J\left(\sqrt{\tau_{n}} Q, \mu\right) J\left(\sqrt{\tau_{\bar{n}}} Q, \mu\right) S\left(\tau_{s} Q, \mu\right) \delta\left(\tau-\tau_{n}-\tau_{\bar{n}}-\tau_{s}\right)
$$

Singular contribution

For $\tau \rightarrow 0$ all emissions are collinear or soft

$$
\frac{1}{\sigma_{B}} \frac{d \sigma}{d \tau} \simeq H(Q, \mu) \int d \tau_{n} d \tau_{\bar{n}} d \tau_{s} J\left(\sqrt{\tau_{n}} Q, \mu\right) J\left(\sqrt{\tau_{\bar{n}}} Q, \mu\right) S\left(\tau_{s} Q, \mu\right) \delta\left(\tau-\tau_{n}-\tau_{\bar{n}}-\tau_{s}\right)
$$

$H(Q, \mu)$: square of on-shell vector form factor

- known to 4-loop
[Lee, von Manteuffel, Schabinger, Smirnov, Smirnov, Steinhauser 22]

Singular contribution

For $\tau \rightarrow 0$ all emissions are collinear or soft

$$
\frac{1}{\sigma_{B}} \frac{d \sigma}{d \tau} \simeq H(Q, \mu) \int d \tau_{n} d \tau_{\bar{n}} d \tau_{s} J\left(\sqrt{\tau_{n}} Q, \mu\right) J\left(\sqrt{\tau_{\bar{n}}} Q, \mu\right) S\left(\tau_{s} Q, \mu\right) \delta\left(\tau-\tau_{n}-\tau_{\bar{n}}-\tau_{s}\right)
$$

$H(Q, \mu)$: square of on-shell vector form factor

- known to 4-loop
[Lee, von Manteuffel, Schabinger, Smirnov, Smirnov, Steinhauser 22]
$J\left(\sqrt{\tau_{n}} Q, \mu\right)$: inclusive quark jet function
- known to 3-loop
[Brüser, Liu, Stahlhofen 18; Banerjee, Dhania, Ravindran 18]

Singular contribution

For $\tau \rightarrow 0$ all emissions are collinear or soft

$$
\frac{1}{\sigma_{B}} \frac{d \sigma}{d \tau} \simeq H(Q, \mu) \int d \tau_{n} d \tau_{\bar{n}} d \tau_{s} J\left(\sqrt{\tau_{n}} Q, \mu\right) J\left(\sqrt{\tau_{\bar{n}}} Q, \mu\right) S\left(\tau_{s} Q, \mu\right) \delta\left(\tau-\tau_{n}-\tau_{\bar{n}}-\tau_{s}\right)
$$

$H(Q, \mu): \quad$ square of on-shell vector form factor

- known to 4-loop
[Lee, von Manteuffel, Schabinger, Smirnov, Smirnov, Steinhauser 22]
$J\left(\sqrt{\tau_{n}} Q, \mu\right)$: inclusive quark jet function
- known to 3-loop
[Brüser, Liu, Stahlhofen 18; Banerjee, Dhania, Ravindran 18]
$S\left(\tau_{s} Q, \mu\right)$: thrust soft function
- known to 2-loop
[Kelley, Schwartz, Schabinger, Zhu 11; Gehrmann, Luisoni, Monni 11]
- 3-loop computation on-going

Resummation

Resum singular corrections to all orders using RG techniques

$$
\begin{aligned}
& \frac{d}{d \ln \mu} H(Q, \mu)=\left[2 \Gamma_{\text {cusp }}\left(\alpha_{s}\right) \ln \frac{Q^{2}}{\mu^{2}}+\gamma_{H}\left(\alpha_{s}\right)\right] H(Q, \mu) \\
\Rightarrow & H(Q, \mu)=H\left(Q, \mu_{H}\right) U_{H}\left(\mu_{H}, \mu\right)
\end{aligned}
$$

Resummation

Resum singular corrections to all orders using RG techniques

$$
\begin{aligned}
& \frac{d}{d \ln \mu} H(Q, \mu)=\left[2 \Gamma_{\text {cusp }}\left(\alpha_{s}\right) \ln \frac{Q^{2}}{\mu^{2}}+\gamma_{H}\left(\alpha_{s}\right)\right] H(Q, \mu) \\
\Rightarrow & H(Q, \mu)=H\left(Q, \mu_{H}\right) U_{H}\left(\mu_{H}, \mu\right)
\end{aligned}
$$

All ingredients for N^{3} LL' resummation are known, except for 3-loop soft constant

$$
c_{\tilde{S}}^{3}=\left\{\begin{aligned}
-19988 \pm 5440 & \text { EERAD3 } \\
691 \pm 1000 & \text { Padé }
\end{aligned}\right.
$$

\Rightarrow EERAD3 is our default choice, but we also study the impact of switching to Padé

Non-singular contribution

Thrust distribution is known to $\mathcal{O}\left(\alpha_{s}^{3}\right)$

\Rightarrow implemented in public EERAD3 generator
[Gehrmann-De Ridder, Gehrmann, Glover, Heinrich 07;
Weinzierl 09]
[Gehrmann-De Ridder, Gehrmann, Glover, Heinrich 07;
Weinzierl 09]

[Gehrmann-De Ridder, Gehrmann, Glover, Heinrich 14]

Non-singular contribution

Thrust distribution is known to $\mathcal{O}\left(\alpha_{s}^{3}\right)$
Weinzierl 09]

\Rightarrow implemented in public EERAD3 generator

Combine singular and non-singular contributions

$$
\begin{aligned}
\sigma_{c}^{P T}(\tau)= & \frac{\sigma_{c, \operatorname{sing}\left(\tau ; \mu_{H}, \mu_{J}, \mu_{S}\right)}^{\sigma_{0}}+\frac{\alpha_{s}\left(\mu_{n s}\right)}{2 \pi} r_{c}^{1}(\tau)+\left(\frac{\alpha_{s}\left(\mu_{n s}\right)}{2 \pi}\right)^{2}\left\{r_{c}^{2}(\tau)+\beta_{0} r_{c}^{1}(\tau) \ln \frac{\mu_{n s}}{Q}\right\}}{} \\
& +\left(\frac{\alpha_{s}\left(\mu_{n s}\right)}{2 \pi}\right)^{3}\left\{r_{c}^{3}(\tau)+2 \beta_{0} r_{c}^{2}(\tau) \ln \frac{\mu_{n s}}{Q}+r_{c}^{1}(\tau)\left(\frac{\beta_{1}}{2} \ln \frac{\mu_{n s}}{Q}+\beta_{0}^{2} \ln ^{2} \frac{\mu_{n s}}{Q}\right)\right\}
\end{aligned}
$$

\Rightarrow need to determine remainder functions $r_{c}^{i}(\tau)$

Remainder functions

Compare our extraction with 2010 analysis from Abbate et al

- high-statistics runs reveal that EERAD3 is unstable for small τ values
\Rightarrow use $\mathrm{N}^{3} \mathrm{LL}^{\prime}+\mathcal{O}\left(\alpha_{s}^{2}\right)$ predictions for the α_{s} fits

Profile functions

Perturbative prediction depends on four dynamical scales: $\mu_{H}, \mu_{J}, \mu_{S}, \mu_{n s}$
\Rightarrow use scale variation to estimate higher-order corrections in all sectors of the calculation

- 2018 scales were designed to describe angularity distributions

Profile functions

Perturbative prediction depends on four dynamical scales: $\mu_{H}, \mu_{\mathrm{J}}, \mu_{\mathrm{S}}, \mu_{\text {ns }}$
\Rightarrow use scale variation to estimate higher-order corrections in all sectors of the calculation

- 2018 scales were designed to describe angularity distributions
- 2018 scales are more conservative than the 2010 scales used by Abbate et al
- 2018 scales are similar to the 2015 scales used by Hoang et al

Profile functions

Perturbative prediction depends on four dynamical scales: $\mu_{H}, \mu_{J}, \mu_{S}, \mu_{n s}$
\Rightarrow use scale variation to estimate higher-order corrections in all sectors of the calculation

- 2018 scales were designed to describe angularity distributions
[GB, Hornig, Lee, Talbert 18]
- 2018 scales are more conservative than the 2010 scales used by Abbate et al
- 2018 scales are similar to the 2015 scales used by Hoang et al
- variations of $\mu_{\text {ns }}$ try to account for missing logs in $\mathcal{O}(\tau)$ suppressed terms

OUTLINE

PERTURBATIVE TREATMENT
RESUMMATION
MATCHING TO FIXED-ORDER

PROFILE FUNCTIONS

NON-PERTURBATIVE TREATMENT

GAPPED SHAPE FUNCTION
RENORMALON SCHEMES
α_{S} FITS
EXTRACTION METHOD
RESULTS

Non-perturbative effects

Dijet factorisation theorem relies on SCET-1 scale hierachy $\mu_{H} \gg \mu_{J} \gg \mu_{S}$

Peak region: $\mu_{S} \sim \Lambda_{Q C D}$

- fully non-perturbative shape function
\Rightarrow theoretical prediction becomes very model dependent

Non-perturbative effects

Dijet factorisation theorem relies on SCET-1 scale hierachy $\mu_{H}>\mu_{J} \gg \mu_{S}$

Peak region: $\mu_{S} \sim \Lambda_{Q C D}$

- fully non-perturbative shape function
\Rightarrow theoretical prediction becomes very model dependent

Tail region: $\mu_{S} \gg \Lambda_{Q C D}$

- OPE of soft function

$$
S(k)=\frac{1}{N_{c}} \operatorname{Tr}\langle\Omega| S_{\bar{n}}^{\dagger} S_{n} \delta\left(k-\int d \eta e^{-|\eta|} \mathcal{E}_{T}(\eta)\right) S_{n}^{\dagger} S_{\bar{n}}|\Omega\rangle=\delta(k)-2 \Omega_{1} \delta^{\prime}(k)+\ldots
$$

\Rightarrow translates into a shift of the perturbative distribution

$$
\frac{d \sigma}{d \tau}(\tau) \xrightarrow{\mathrm{NP}} \frac{d \sigma}{d \tau}\left(\tau-\frac{2 \Omega_{1}}{Q}\right)
$$

$$
\Omega_{1}=\frac{1}{N_{c}} \operatorname{Tr}\langle\Omega| S_{\bar{n}}^{\dagger} S_{n} \mathcal{E}_{T}(0) S_{n}^{\dagger} S_{\bar{n}}|\Omega\rangle
$$

Gapped shape function

Specific implementation of non-perturbative effects

$$
S\left(k, \mu_{S}\right)=\int d k^{\prime} \underbrace{S_{P T}\left(k-k^{\prime}, \mu_{S}\right)}_{\text {perturbative soft function }} \underbrace{f_{\bmod }\left(k^{\prime}-2 \bar{\Delta}\right)}_{\text {shape-function model }}
$$

- gap parameter $\bar{\Delta}$ models minimal soft momentum of hadronic final state
\Rightarrow convolution with perturbative cross section yields shift

$$
2 \bar{\Omega}_{1}=2 \bar{\Delta}+\int d k k f_{\bmod }(k)
$$

Gapped shape function

Specific implementation of non-perturbative effects

$$
S\left(k, \mu_{S}\right)=\int d k^{\prime} \underbrace{S_{P T}\left(k-k^{\prime}, \mu_{S}\right)}_{\text {perturbative soft function }} \underbrace{f_{\bmod }\left(k^{\prime}-2 \bar{\Delta}\right)}_{\text {shape-function model }}
$$

- gap parameter $\bar{\Delta}$ models minimal soft momentum of hadronic final state
\Rightarrow convolution with perturbative cross section yields shift

$$
2 \bar{\Omega}_{1}=2 \bar{\Delta}+\int d k k f_{\bmod }(k)
$$

$S_{P T}$ and $\bar{\Delta}$ suffer from renormalon ambiguities in the $\overline{\mathrm{MS}}$ scheme
\Rightarrow switch to a renormalon-free scheme

Renormalon subtraction

Redefine gap parameter

$$
\bar{\Delta}=\underbrace{\Delta\left(\mu_{\delta}, \mu_{R}\right)}_{\text {renormalon free }}+\underbrace{\delta\left(\mu_{\delta}, \mu_{R}\right)}_{\text {cancels renormalon ambiguity of } S_{P T}}
$$

Renormalon subtraction

Redefine gap parameter

$$
\bar{\Delta}=\underbrace{\Delta\left(\mu_{\delta}, \mu_{R}\right)}_{\text {renormalon free }}+\underbrace{\delta\left(\mu_{\delta}, \mu_{R}\right)}_{\text {cancels renormalon ambiguity of } S_{P T}}
$$

Class of schemes that is free of leading soft renormalon

$$
\frac{d^{n}}{d(\ln \nu)^{n}} \ln \left[\widetilde{S}_{P T}\left(\nu, \mu_{\delta}\right) e^{-2 \nu \delta\left(\mu_{\delta}, \mu_{R}\right)}\right]_{\nu=\xi / \mu_{R}}=0
$$

- derivative rank $n \geq 0$
- reference scale μ_{δ}
- subtraction scale μ_{R}
- overall normalisation $\xi=\mathcal{O}(1)$
\Rightarrow different choices of $\left\{n, \xi, \mu_{\delta}, \mu_{R}\right\}$ define different renormalon subtraction schemes

R-gap scheme

Used in 2010 and 2015 analyses
R Scheme: $\left\{n, \xi, \mu_{\delta}, \mu_{R}\right\}=\left\{1, e^{-\gamma_{E}}, \mu_{S}, R\right\}$

- additional profile for subtraction scale μ_{R}

$$
\mu_{R}(\tau)=R(\tau) \equiv\left\{\begin{array}{ccl}
R_{0}+\mu_{1} \tau+\mu_{2} \tau^{2} & \tau \leq t_{1} & \text { (peak region) } \\
\mu_{S}(\tau) & \tau \geq t_{1} & \text { (tail and far-tail) }
\end{array}\right.
$$

Dependence on μ_{δ} and μ_{R} is controlled by RGE

$$
\begin{aligned}
\frac{d}{d \ln \mu_{\delta}} \Delta\left(\mu_{\delta}, \mu_{R}\right) & =-\frac{d}{d \ln \mu_{\delta}} \delta\left(\mu_{\delta}, \mu_{R}\right) \equiv \gamma_{\Delta}\left[\alpha_{s}\left(\mu_{\delta}\right)\right] \\
\frac{d}{d \mu_{R}} \Delta\left(\mu_{R}, \mu_{R}\right) & =-\frac{d}{d \mu_{R}} \delta\left(\mu_{R}, \mu_{R}\right) \equiv-\gamma_{R}\left[\alpha_{S}\left(\mu_{R}\right)\right] \quad \text { "R evolution" }
\end{aligned}
$$

R-gap scheme

Effective shift of perturbative distribution

$$
\zeta_{\mathrm{eff}}(\tau) \equiv \int d k k e^{-2 \delta\left(\mu_{\delta}, \mu_{R}\right) \frac{d}{d k}} f_{\bmod }\left(k-2 \Delta\left(\mu_{\delta}, \mu_{R}\right)\right)
$$

R evolution induces a larger shift for larger values of τ
\Rightarrow can one find a scheme in which the growth of the shift is mitigated?

R* scheme

We propose a closely related scheme
\mathbf{R}^{\star} Scheme: $\left\{n, \xi, \mu_{\delta}, \mu_{R}\right\}=\left\{1, e^{-\gamma_{E}}, R^{\star}, R^{\star}\right\}$
R Scheme: $\quad\left\{n, \xi, \mu_{\delta}, \mu_{R}\right\}=\left\{1, e^{-\gamma_{E}}, \mu_{S}, R\right\}$

- modified profile for subtraction scale μ_{R}

$$
\mu_{R}(\tau)=R^{*}(\tau) \equiv\left\{\begin{array}{cll}
R_{0}+\mu_{1} \tau+\mu_{2} \tau^{2} & \tau \leq t_{1} & \text { (peak region) } \\
R_{\max } & \tau \geq t_{1} & \text { (tail and far-tail) }
\end{array}\right.
$$

- no logarithms in $\frac{\mu_{\delta}}{\mu_{R}}$
- subtractions must be reexpanded in $\alpha_{S}\left(\mu_{S}\right)$
\Rightarrow logarithms in $\frac{\mu_{S}}{\mu_{\delta}}$ only arise at $\mathcal{O}\left(\alpha_{S}^{3}\right)$

R* scheme

We propose a closely related scheme
\mathbf{R}^{\star} Scheme: $\left\{n, \xi, \mu_{\delta}, \mu_{R}\right\}=\left\{1, e^{-\gamma_{E}}, R^{\star}, R^{\star}\right\}$
R Scheme: $\quad\left\{n, \xi, \mu_{\delta}, \mu_{R}\right\}=\left\{1, e^{-\gamma_{E}}, \mu_{S}, R\right\}$

- modified profile for subtraction scale μ_{R}

$$
\mu_{R}(\tau)=R^{*}(\tau) \equiv\left\{\begin{array}{cll}
R_{0}+\mu_{1} \tau+\mu_{2} \tau^{2} & \tau \leq t_{1} & \text { (peak region) } \\
R_{\max } & \tau \geq t_{1} & \text { (tail and far-tail) }
\end{array}\right.
$$

- no logarithms in $\frac{\mu_{\delta}}{\mu_{R}}$
- subtractions must be reexpanded in $\alpha_{S}\left(\mu_{S}\right)$
\Rightarrow logarithms in $\frac{\mu_{S}}{\mu_{\delta}}$ only arise at $\mathcal{O}\left(\alpha_{S}^{3}\right)$

R* scheme

Effective shift of perturbative distribution

$$
\zeta_{\mathrm{eff}}(\tau) \equiv \int d k k e^{-2 \delta\left(\mu_{\delta}, \mu_{R}\right) \frac{d}{d k}} f_{\bmod }\left(k-2 \Delta\left(\mu_{\delta}, \mu_{R}\right)\right)
$$

- effective shift flattened as desired
- corresponds to $\lesssim 10 \%$ modification of dominant power correction
\Rightarrow the scheme is not necessarily preferred, but it allows us to verify if
the predictions are stable under a variation of the renormalon scheme

Differential distributions

We compare two renormalon schemes (R, R^{*}) for two profile scale choices $(2018,2010)$

Differential distributions

We compare two renormalon schemes (R, R^{*}) for two profile scale choices $(2018,2010)$

OUTLINE

PERTURBATIVE TREATMENT
RESUMMATION
MATCHING TO FIXED-ORDER

PROFILE FUNCTIONS

NON-PERTURBATIVE TREATMENT
GAPPED SHAPE FUNCTION
RENORMALON SCHEMES
α_{s} FITS
EXTRACTION METHOD
RESULTS

Extraction method

We perform a χ^{2} analysis at the level of binned distributions

$$
\left.\chi^{2} \equiv \sum_{i, j} \Delta_{i} V_{i j}^{-1} \Delta_{j} \quad \Delta_{i} \equiv \frac{1}{\sigma} \frac{d \sigma}{d \tau}\left(\tau_{i}\right)\right|^{\exp }-\left.\frac{1}{\sigma} \frac{d \sigma}{d \tau}\left(\tau_{i}\right)\right|^{\text {th }}
$$

- theory bins from cumulative distribution according to midpoint prescription

$$
\left.\frac{1}{\sigma} \frac{d \sigma}{d \tau}\left(\tau_{i}\right)\right|_{\mathrm{MP}} ^{\text {th }} \equiv \frac{1}{\sigma_{\text {tot }}} \frac{\sigma_{c}\left(\tau_{2}, \mu_{\mathrm{a}}(\bar{\tau})\right)-\sigma_{c}\left(\tau_{1}, \mu_{\mathrm{a}}(\bar{\tau})\right)}{\tau_{2}-\tau_{1}} \quad \bar{\tau}=\frac{\tau_{1}+\tau_{2}}{2}
$$

- correlation of systematic experimental uncertainties estimated via minimal overlap model

$$
\left.V_{i j}\right|_{\text {мом }}=\left(e_{i}^{\text {stat }}\right)^{2} \delta_{i j}+\min \left(e_{i}^{\text {sys }}, e_{j}^{\text {sys }}\right)^{2}
$$

- theoretical uncertainties estimated from a random scan of $\mathcal{O}(1000)$ profile parameters
\Rightarrow parametrised by an error ellipse $K_{\text {theory }}=\left(\begin{array}{cc}\sigma_{\alpha}^{2} & \rho_{\alpha \Omega} \sigma_{\alpha} \sigma_{\Omega} \\ \rho_{\alpha \Omega} \sigma_{\alpha} \sigma_{\Omega} & \sigma_{\Omega}^{2}\end{array}\right)$

Experimental data

52 datasets with varying center-of-mass energies

ALEPH	$91.2,133,161,172,183,189,200,206$
DELPHI	$45,66,76,91.2,133,161,172,183,189,192,196,200,202,205,207$
JADE	35,44
L3	$41.4,55.3,65.4,75.7,82.3,85.1,91.2,130.1,136.1,161.3,172.3,182.8,188.6,194.4,200,206.2$
OPAL	$91,133,161,172,177,183,189,197$
SLD	91.2
TASSO	35,44

Two fit windows

- default

$$
\begin{aligned}
& 6 / Q \leq \tau \leq 0.33 \\
& 6 / Q \leq \tau \leq 0.225
\end{aligned}
$$

488 bins

- reduced

371 bins

Two fit parameters

- $\alpha_{s} \equiv \alpha_{s}\left(m_{z}\right)$
- $\Omega_{1} \equiv \Omega_{1}\left(R_{\Delta}, R_{\Delta}\right)$ with $R_{\Delta}=1.5 \mathrm{GeV}$

Results

R scheme with different profile scale choices

- R_{2010} setup closest to

Abbate et al

- confirm low α_{s} value
- R_{2018} has significantly larger uncertainties

Results

2018 scales for different renormalon schemes

- note that Ω_{1} is a schemedependent quantity
- α_{s} drifts mildly to larger values of α_{s}

Results

2010 scales for different renormalon schemes

- note that Ω_{1} is a schemedependent quantity
- scheme change has a much larger impact for 2010 scales
- related to lower value of t_{1}

Fit quality

All schemes provide good fits to the data

- R_{2010}^{*} slightly less preferred than the others
- spread of $\left\{\alpha_{s}, \Omega_{1}\right\}$ values much larger than R_{2010} ellipse would suggest
\Rightarrow sign of additional systematic theory uncertainties?

Reduced fit window

Compare with fits that concentrate more on dijet events

- only mild effect on the extracted $\left\{\alpha_{s}, \Omega_{1}\right\}$ values
- universal trend towards lower $\chi_{\text {dof }}^{2}$ values among all schemes
\Rightarrow may reduce uncertainties from uncontrolled extrapolation into 3-jet region

Comparison to prior analyses

Our setup is similar but not identical to the 2010 and 2015 analyses

- we use $\mathrm{N}^{3} \mathrm{LL}^{\prime}+\mathcal{O}\left(\alpha_{s}^{2}\right)$ predictions instead of $\mathrm{N}^{3} \mathrm{LL}^{\prime}+\mathcal{O}\left(\alpha_{s}^{3}\right)$
- we use a very different numerical value for $c_{\widetilde{S}}^{3}$
- we do not account for bottom and hadron masses or QED effects
- we use a slightly different method for calculating binned distributions
- we use a slightly different fit method
\Rightarrow all these points are unrelated to the main concern of our analysis
(renormalon schemes and profile scale choices)
\Rightarrow in fact our analysis represents the first independent confirmation of the prior analyses!

Impact of $c_{\tilde{S}}^{3}$

Compare extractions that use two different values of the 3-loop soft constant

$$
c_{\tilde{s}}^{3}=\left\{\begin{aligned}
-19988 \pm 5440 & \text { EERAD3 } \\
691 \pm 1000 & \text { Padé }
\end{aligned}\right.
$$

- minor impact on α_{s}
- noticeable downward shift for Ω_{1}
\Rightarrow brings our extraction into even better agreement with Abbate et al

Conclusions

We revisited α_{s} determinations based on global thrust data

- our analysis represents the first independent confirmation of the previous analyses
- we find that the extractions are very sensitive to scheme and scale choices
\Rightarrow view this as a signal of systematic theory uncertainties
- fits that are based on dijet events show a better fit quality
\Rightarrow propose to perform fits that are more focussed on this region
- further progress possible on perturbative side
$\Rightarrow \mathcal{O}\left(\alpha_{s}^{3}\right)$ remainder function, 3-loop soft constant $c_{\tilde{S}}^{3}$, resummation of $\mathcal{O}(\tau)$ corrections

Backup slides

[^0]: A Precise Determination of α_{s} from the C-parameter Distribution
 André H. Hoang, ${ }^{1,2}$ Daniel W. Kolodrubetz, ${ }^{3}$ Vicent Mateu, ${ }^{1}$ and Iain W. Stewart ${ }^{3}$

