Frontiers in Numerical Relativity: Binary black holes with high massratio and eccentricity

Image: Nils Vu

Harald Pfeiffer MPI for Gravitational Physics DESY Theory Seminar Zeuthen Dec 14, 2023

LIGO-Virgo-KAGRA Gravitational Wave Observations

LIGO-Virgo-KAGRA | Aaron Geller | Northwestern

Waveform knowledge essential for GW astronomy

H. Pfeiffer 5

Parameter estimation

LIGO+Virgo,

PRL

201

1706.01812)

"GW150914" Abbott+ PRL 12016

LIGO & Virgo: CQG 2017 611.07531)

50

Methods for modeling BBH

H. Pfeiffer

6

Inspiral

frequency

Numerical Relativity

perturbation theory

Role of NR

Solutions of GR for GW-Astro for late inspiral + merger

- cover parameter space
- error estimates
- Regions of validity of perturbative methods
 - all available perturbation orders needed for science
- Properties of GR in nonlinear & dynamic regime

Numerical Relativity

Solving Einstein Equations - Basic idea

• Goal: Space-time metric $g_{ab}(x^{i}, t)$ satisfying

- Split spacetime into space and time
- Evolution equations

$$\partial_t \boldsymbol{g}_{ij} = \dots$$

 $\partial_t \boldsymbol{K}_{ij} = \dots$

Constraints

$$R[g_{ij}] + K^2 - K_{ij}K^{ij} = 0$$
$$\nabla_j \left(K^{ij} - g^{ij}K \right) = 0$$

cf. Maxwell's equations $\partial_t \vec{E} = \nabla \times \vec{B}$ $\partial_t \vec{B} = -\nabla \times \vec{E}$ $\nabla \cdot \vec{E} = 0$ $\nabla \cdot \vec{B} = 0$

Why is this hard?

- ADM equations ill-posed; rewrite as hyperbolic system
- Singularities inside black holes
- Constraints difficult to preserve
- Coordinate freedom
 - How to choose coordinates for a space-time one does not know yet?
- Many common numerical challenges
 - 20-50 variables
 - 10,000 FLOP / grid-point / time-step
 - Different length scales
 - High accuracy requirements

The first 50 Years of numerical relativity for BBH

3+1 formulation C Abrai	I 992,3 Choptuik; I hams+Evans A	2000-04 AEI/UTB-NA 999-00 EI/PSU codes (Lazar	SA ing rus) 2005 Pretorius inspiral-merger- ringdown (IMR) w/ harmonic	2007 <i>Ajith, AEI</i> phenom GW	Jena / models 2 Lou	2011 usto ea
critica 1964 Hahn-Lindquist 2 wormholes 1984 Unruh excision	I phenomena grazir I 997 Brandt- Brügmann puncture data I 994-98 BBH Grand Challe	ng collisions ~2000 Choptul Schnetter;Brügma mesh refinement Gun constra	ik; ann 2005 dlach ea int damping Ann Campanelli+; IMR w/ BS moving pun Scheel IMR Campanelli+; IMR w/ BS Scheel IMR	06 Baker+ SN & Ctures 006-08 HP+ SXS w/ spectral 05	2009- MD, SXS GW models 2011 Schmidt ea; Boyle ea Radiation aligned frame	2014- precessing GW models 2015 Szilagyi ea 175 orbits 2015
I 975-77 Smarr-Eppley head-on	1 994 <i>Cook</i> Bowen-York initial data	1999 2000-0 BSSN Alcubier evolution gauge condi-	2 20 re Bal tions Gonz	06,07 20 ker ea; all o zalez ea N	008 20 of NR Lovela NJA S/M ² =	1 I ace ea =0.97
collision		system	2004 non-spi	nning BBH	2	011
collision 1979 York kinematics an dynamics of G	d NCSA-Wash R improved head-on collisi	OU 1999 York conformal thin sandwich ID	Brügmann ea one orbit 2003-08	cicks 2007 SXS PN-NR	2009-11 Bishop,	Tiec ea rce studies

11 H. Pfeiffer

Courtesy Carlos Lousto, updated by HP

2005: First working BBH inspirals

Pretorius 05

12 H. Pfeiffer

Baker+07

Important early result: **Simplicity of merger** Continuous transition inspiral → ringdown

C

Major approaches towards BBH simulations

"BSSN & Moving punctures"

Puncture initial-data $\chi \lesssim 0.9$ (but see Zlochower+ 17)

BSSN or CC4z

Moving puncture mergers "easy"

Sommerfeld outer BC

4th to 8th order finite-difference

BHs advect through static grids

GW extrapolation (Healy,Lousto '20 for LazEv COM correction)

LazEv, Maya, ETK, BAM, Goddard, GRchombo, ...

13 H. Pfeiffer

GW extrapolation & center-of-mass correction

Cauchy-characteristic extraction *accurate m=0 modes, GW memory*

SpEC (SXS collaboration)

Spectral Einstein Code (SpEC)

$$u'(x,t) = \sum_{k=1}^{N} \tilde{u}_k(t) \Phi'_k(x)$$

- Exponentially fast convergence
 - for smooth problems

Einstein constraints: Formalism

$$R + (\operatorname{tr} K)^2 - K^2 = 0$$
$$\nabla \cdot (K - g \operatorname{tr} K) = 0$$
$$K =$$
$$K =$$
$$H = A_{\mathrm{Tr}}$$

15

York(+) 72; 74; 99, HP, York 03

r

0

Applied to binary black holes

Asymptotics/boundary conditions

Brandt, Brügmann 97; Cook, HP 04

• Elliptic solver

HP+ 02; Ansorg 04; Vu,HP+ 21a,b

• Spins > 0.9

Lovelace..HP+ 08

Control eccentricity

Generalized Harmonic Evolution System

Einstein's equations

$$0 = R_{ab}[g_{ab}] = -\frac{1}{2}\Box g_{ab} + \nabla_{(a}\Gamma_{b)} +$$

Generalized harmonic coordinates g (Friedrich 1985, Pretorius 2005; H = 0 used

 $\Box g_{ab} =$ lower order terms.

$$\Rightarrow$$
 Constraint $C_a \equiv H_a - g_{ab} \Box x^b = 0$

Constraint damping (Gundlach, et al., Pretorius, 2005)

$$\Box g_{ab} = \gamma \left[t_{(a} C_{b)} - \frac{1}{2} g_{ab} \right]$$

 $\partial_t C_a \sim -\gamma C_a$.

H. Pfeiffer

-lower order terms, $\Gamma_a = -g_{ab} \Box x^b$.

$$g_{ab} \Box x^b \equiv H_a(x^a, g_{ab})$$
 since 1920's)

Excellent GH exposition: Lindblom et al 2006

0

abt^cC_c + lower order terms

BH Excision

- Excise inside BH horizons
- Excision boundaries:
 follow BHs continuously
 conform to shape of AH

↓ t Horizon Outside Horizon x

18 H. Pfeiffer

Scheel, HP+ 08, Szilagyi+ 08, Hemberger+ 13

BH Excision

- Excise inside BH horizons
- Excision boundaries:
 follow BHs continuously
 conform to shape of AH
- Horizon tracking & shape-control

 $\vec{x}_{\text{inertial}} = a(t)\mathbf{R}(t)\vec{\xi}_{\text{grid}} + \text{deformations}$

- {a(t), R(t),...} determined by feedback-loop
 - find AH(t) in $\vec{x}_{inertial}$
 - adjust {a(t), R(t),...} to keep excision boundaries inside AH

Scheel, HP+ 08, Szilagyi+ 08, Hemberger+ 13

Accuracy of SpEC (circular inspiral)

H. Pfeiffer

20

post-Newtonian vs. NR

21 H. Pfeiffer

TaylorT1...T4 Different choices to truncate energy balance equation

$$\frac{dE}{dt} = -F_{\rm GW}$$

Boyle..HP+ 07

NR Parameter space exploration

NINJA

Aylott .. HP+ 09

More parameter space exploration efforts

				$q \geq$	1/15					
Catalog	Started	Updating?	$Simulation_S$	$m_1/m_2 \ range$	χ₁ range	χ₂ range	$P_{recessing?}$	$MedianN_{ m cyc}$	$Publi_{\rm C?}$	
NINJA [98, 115]	2008	X	63	1-10	0-0.95	0 - 0.95	X	15	X	
NRAR $[120]$	2013	X	25	1 - 10	0 - 0.8	0 - 0.6	\checkmark	24	X	
Georgia Tech $[122]$	2016	\checkmark	452	1 - 15	0 - 0.8	0 - 0.8	\checkmark	4	\checkmark	
RIT (2017) [123]	2017	\checkmark	126	1 - 6	0 - 0.85	0 - 0.85	\checkmark	16	\checkmark	
RIT (2020) [124]	2017	\checkmark	777	1-15	0 - 0.95	0 - 0.95	\checkmark	19	\checkmark	
NCSA (2019) [125]	2019	X	89	1 - 10	0	0	X	20	X	eccentric
SXS (2018)	2013	\checkmark	337	1 - 10	0 - 0.995	0 - 0.995	\checkmark	23	\checkmark	
SXS (2019)	2013	\checkmark	2018	1 - 10	0 - 0.998	0 - 0.998	\checkmark	39	\checkmark	longest sims
						highes	st			
						spins				Table from P

AND...

Palma group (Husa+), Cardiff group (Hannam+) Eccentric catalog (Healy+Lousto (PRD 2022), 2202.00018) Maya 2nd catalog (Ferguson+ 2309.00262)

H. Pfeiffer 23

a > 1/15

Boyle et al 2019 IADIE ITOM (1904.04831)

Parameter space: NR records

H. Pfeiffer

Rettegno, Pratten+ 23

Waveform models

- **Continuous** in parameters $\theta = \{m_1, m_2, \vec{S}_1, \vec{S}_2; e, l; \iota, \phi, \psi; RA, dec, D_L, T_c\}$
- Fast evaluation
- Cover parameter-space
- Accurate

LIGO/Virgo IMR waveform models

Inspiral-merger-ringdown BH-BH waveform models

Effective one body (EOB)

Power-series for $h_{lm}(\theta; f)$

Phenom Ajith+ 08 Phenom{B,C} (aligned spins) Ajith+ 11, Santamaria+ 10 PhenomD Husa+ 15, Khan+ 15 PhenomHM London+18 Phenom{P, Pv2} (precessing) Hannam+ 13 Phenom{Pv3, Pv3HM} Khan+ 19, Khan+ 20 PhenomX{AS, HM, P, PHM} Pratten+ 20, Garcia-Quiros+ 20ab, Pratten+ 21 PhenomPNR Hamilton+ 21 PhenomX_{O4a, Taylor}

$$H = \mu \sqrt{p_r^2 + A(r) \left[1 + \frac{p_r^2}{r^2} + 2(4 - 3\nu)\nu \frac{p_r^4}{r^2} \right]}$$

Hamiltonian dynamics dynamics $\Rightarrow h_{lm}(\theta; t)$

Buonanno, Damour 99

EOBNR Buonanno+ 09, Pan+11 SEOBNR (aligned spins) Taracchini+ 12 SEOBNv3 (precessing) Pan+ 14, Taracchini+14, SEOBNRv4 {HM, P, PHM, HM_ROM} Bohe+ 17, Cotesta+ 18, Cotesta+ 20, Ossokine+ 20 TEOBResumS, TEOBResumSM Nagar+ 18, 20 SEOBNRv5{HM,P,PHM,E,PEHM}

H. Pfeiffer 28

NR surrogate Models

Direct interpolation in parameters θ

Blackman+ 15,17,18 Varma+ 18,19 *Islam*+ 21

Major application of NR: waveform modeling

- Determine **importance** of improvements
 - higher order
 - additional physics
 - higher modes, precession, memory
- Calibrate parameters in model to improve agreement
 - ► GW modes & fluxes
 - merger dynamics
 - ringdown attachment

▶ ...

Errors in 4 waveform models as compared to 442 NR simulations

Example plots of waveform models

TEOBResumS Plot from Gamba+ 22

IMRPhenomT *Plot from Estelles+ 20*

SEOBNR Plot from Ramos-Buades+ 23

higher-modes break degeneracies

some differences between waveform models remain even at current SNR

IMRPhenomPv3HM Khan et al 19; 20 SEOBNRv4PHM Ossokine+ 20

case-study: GW190412 $(30 + 8)M_{\odot}$ at SNR=19

32 H. Pfeiffer

(some) recent NR developments

Binaries at all mass-ratios

New methods for small-q Numerical Relativity

Worldtube excision

- **Excise region** with radius R around m_2
- In excised region, use tidally perturbed **BH** metric
- Determine internal BH-perturbations by matching to NR
- Set NR boundary conditions from internal solution
- Courant limit increased by factor $R/m_2 \sim 1/q \gg 1$

Dhesi, Rüter, Pound, Barack, HP PRD 104 (2021) 124002 *Wittek, Dhesi*, *Barack*, *HP*, *Pound*+ *PRD* 108 (2023) 024041 Wittek, Pound, Barack, HP+ in prep

Idea from Bernard Schutz

Warm up: Scalar charge

 Scalar charge orbiting Schwarzschild BH

 $g^{ab} \nabla_a \nabla_b \Phi(x^c) = -4\pi \rho(x^c)$

• Goal: handle point-charge

$$\rho(x^c) = q \int \frac{\delta^4 [x^c - x_p^c(\tau)]}{\sqrt{-g}} d\tau$$

Perturbative solution inside worldtube

$$-\Phi^A = \Phi^S + \Phi^R$$

- $\Phi^{S}(x^{i} t)$ (singular part — known analytically)

$$-\Phi^{R}(x^{i},t) = \xi_{0}(t) + \xi_{1}^{i}(t)(x^{i} - c^{i}) + \xi_{2}^{ij}(t)(x^{i} - c^{i})(x^{j} - c^{j}) + \dots$$

• coefficients ξ specify perturbation & need to be determined from NR

So far: Scalar point charge

1+1D (circular motion) $\Phi_{lm}(r,t)$

Dhesi, Rüter, Pound, Barack, HP PRD 104 (2021) 124002

Interplay NR & small mass-ratio perturbation theory

van de Meent & HP, PRL 125 181101 (2020) — non-spinning, non-eccentric **Ramos-Buades**, vdMeent, HP+. PRD 106 124040 (2022) — non-spinning, eccentric

Extract GSF information directly from NR

$$\Phi(M\Omega) = \frac{1}{\nu} \Phi_0(M\Omega) + \Phi_1(M\Omega) + \nu \Phi_1(M\Omega) + \mu \Phi_$$

• Fit $\Phi_{\mathrm{NR}}(\Omega_{\mathrm{NR}})$ to	5
SMR expansion	3
– 55 NR sims at different $ u$	
 non-spinning 	0

- Different orders in ν
 - $\Phi_0(M\Omega)$ agrees with OPA
 - $\Phi_1(M\Omega)$ hereby computed
 - $\Phi_2(M\Omega)$ remarkably small

Extract GSF information directly from NR

$$\Phi(M\Omega) = \frac{1}{\nu} \Phi_0(M\Omega) + \Phi_1(M\Omega) + \nu \Phi_1(M\Omega) + \mu \Phi_$$

- Fit $\Phi_{\rm NR}(\Omega_{\rm NR})$ to **SMR** expansion
 - 55 NR sims at different ν
 - non-spinning
- Different orders in ν
 - $\Phi_0(M\Omega)$ agrees with OPA
 - $\Phi_1(M\Omega)$ hereby computed
 - $\Phi_2(M\Omega)$ remarkably small
- Predict region of validity of SMR quasi-circular & non-spinning

Confirmed by actual 2-SMR calculations

Eccentric BBH simulations

- Why eccentric NR?
 - measure eccentricity of GW signals
 - distinguish "deviation from GR" from "eccentric GR"
 - EMRIs will be eccentric in LISA

NB:

- All animations based on full 3-D PDE solutions, not just ODEs for centers of BHs.

- BH Horizons shaded by their curvature, showing tidal deformations at periastron passages

t= 715M

Eccentric NR, q=1-0.1

- new NR sims
 - **-** q=1–0.1, e=0–0.7
 - three resolutions each
 - NR errors analysed

Eccentric NR, q=1-0.1

- new NR sims
 - **-** q=1–0.1, e=0–0.7
 - three resolutions each
 - NR errors analysed
- GW pulses visible in AMR

$\langle \dot{E}_{\rm GW,NR} \rangle$ for 52 simulations

44

$\langle \dot{E}_{\rm GW,NR} \rangle$ for 52 simulations

 $\dot{E}_{2}(e) = \mathcal{O}(\nu^{4}) - insignificant$

BH scattering

BH Scattering

- Clean probe of strong field dynamics
- Gauge invariant quantities
 - scattering angle(s) α

–
$$E_{\rm GW}$$
, $L_{\rm GW}$, $\Delta v_{\infty,i}$

-
$$\Delta m_i$$
, $\Delta \vec{S}_i$

BH Scattering

- Clean probe of strong field dynamics
- Gauge invariant quantities
 - scattering angle(s) α

-
$$E_{\rm GW}$$
, $L_{\rm GW}$, $\Delta v_{\infty,i}$

-
$$\Delta m_i$$
, ΔS_i

- Time-dependent data
 - GWs
 - Horizons

Scattering angles from NR

H. Pfeiffer 50

Most impressive results: Rettegno, Pratten, Thomas, Schmidt, Damour 2307.06999

Scattering angles from NR

H. Pfeiffer 51

Most impressive results: Rettegno, Pratten, Thomas, Schmidt, Damour 2307.06999

Some first waveforms

E=0.0223 M

Rüter, HP, SXS in prep

Summary

- NR for quasi-circular **binaries mature pillar** of GW astronomy
 - must keep up with improving detectors!

High mass-ratio challenging

- new methods promising
- growing evidence that 2nd order SMR may be surprisingly accurate

Eccentric and hyperbolic systems gain in attention

super-large parameter spaces

Dmin7.0_D50_vinfty0.00_q1.50

Rüter, HP