Towards improved theoretical predictions for $t\bar{t}Z$ and $t\bar{t}W$ at the LHC

<u>Laura Reina</u> (Florida State University)

DESY-HU Theory Seminar

December 7, 2023

$t\bar{t}Z/W$ central to the (HL)LHC top-quark physics program

Standard Model Total Production Cross Section Measurements

Crucial for a complete measurement of top-quark EW couplings $(t\bar{t}Z, together with t\bar{t}\gamma, t\bar{t}H, single-top processes, ...)$

> Top-quark couplings @ (HL-)LHC as indirect probe of BSM physics

- Top-quark, unique probe
- (HL-)LHC: unprecedented number of top quarks
- Unrivaled access to top-quark physics till future TeV-energy lepton collider

\succ Background to $t\bar{t}H$

- \blacktriangleright Need accurate modeling of both $t\bar{t}Z$ and $t\bar{t}W$ to measure $t\bar{t}H$ ($\rightarrow y_t$)
- Background to many searches of BSM physics
 - signatures with multi-leptons, b jets, and missing energy

Have received focused experimental and theoretical attention

LHC Run2: access to event distributions

ATLAS [arXiv:2103.12603]

$t\bar{t}W$ measured in multilepton signatures, 2*lSS* and 3*l*

CMS [arXiv:2208.06485]

$t\bar{t}W$ background shows largest theory vs data tensions in multilepton signatures

Multilepton signatures, 2lSS and 3l, also important in $t\bar{t}H$ searches

ATLAS-CONF-2019-045

Interpreting $t\bar{t}X$ measurements ...

Anomalous top couplings

$${\cal L} = ear{u}(p_t) \left[\gamma^\mu (C_{1,V} + \gamma_5 C_{1,A}) + rac{i \sigma^{\mu
u} q_
u}{M_Z} (C_{2,V} + i \gamma_5 C_{2,A})
ight] v(p_{ar{t}}) Z_\mu$$

Effective operators

$$\begin{aligned} \mathcal{L}_{\text{eff}} &= \mathcal{L}_{\text{SM}} + \left(\frac{1}{\Lambda^2} \sum_i C_i O_i + \text{h.c.} \right) + O(\Lambda^{-4}) \\ O_{uZ} &= -s_W O_{uB} + c_W O_{uW} \\ O_{uB} &= (\bar{q} \sigma^{\mu\nu} u) (\epsilon \varphi^* B_{\mu\nu}) \\ O_{uW} &= (\bar{q} \tau^I \sigma^{\mu\nu} u) (\epsilon \varphi^* W^I_{\mu\nu}) \\ O_{\varphi u} &= (\bar{u} \gamma^{\mu} u) (\varphi^{\dagger} i \overleftrightarrow{D}_{\mu} \varphi) \\ O_{\varphi q}^- &= O^1_{\varphi q} - O^3_{\varphi q} \\ O^1_{\varphi q} &= (\bar{q} \gamma^{\mu} q) (\varphi^{\dagger} i \overleftrightarrow{D}_{\mu} \varphi) \\ O^3_{\varphi q} &= (\bar{q} \tau^I \gamma^{\mu} q) (\varphi^{\dagger} i \overleftrightarrow{D}_{\mu} \varphi) \end{aligned}$$

77.5 fb⁻¹ (13 TeV)

CMS

 $c_{\phi t}$ / Λ^2 [1/TeV²]

-20

77.5 fb⁻¹ (13 TeV)

CMS

... through multiple probes

Global fits of top observables

V Miralles, M. Miralles López, M. Moreno Llacer, A. Peñuelas, M. Perelló, M. Vos [arXiv:2107.13917]

... and through new explorations

Top+additional leptons

Pointing to the need for precision in modelling the complex signatures from $t\bar{t}X$ processes in regions where on-shell calculations may not be accurate enough

Theory versus data at a glance

Comparison of most recent results

Kulesza et al.

Still large residual uncertainty from modelling

	$\frac{\Delta\sigma(t\bar{t}W)}{\sigma(t\bar{t}W)}$ [%]	$rac{\Delta\sigma_{\mathrm{fid}}(t\bar{t}W)}{\sigma_{\mathrm{fid}}}$ [%]	$\frac{\Delta R(t\bar{t}W)}{R(t\bar{t}W)}$ [%]	$\frac{\Delta A_{ m C}^{ m rel}}{A_{ m C}^{ m rel}}[\%]$
$t\bar{t}W$ ME and PS modelling	6.0	7.0	6.0	8.0
Prompt lepton bkg. norm.	2.6	2.5	1.6	2.2
Lepton isolation BDT	2.3	2.3	1.0	1.2
Fakes/ $VV/t\bar{t}Z$ norm. (free-floated)	2.3	2.7	1.8	2.5
Non-prompt lepton bkg. modelling	1.9	1.7	2.3	3.1
Trigger	1.9	1.8	0.5	0.7
MC statistics	1.5	1.6	1.9	2.5
$t\bar{t}W$ PDF	1.5	1.4	2.1	2.8
Jet energy scale	1.4	1.9	0.8	1.1
Prompt lepton bkg. modelling	1.3	1.3	1.3	1.9
Luminosity	1.0	1.0	0.08	0.13
Charge Mis-ID	0.7	0.7	0.4	0.5
Jet energy resolution	0.5	0.6	0.7	0.31
Flavour tagging	0.28	0.33	0.5	1.0
$t\bar{t}W$ Scale	0.21	0.9	1.4	1.9
Electron/photon reco.	0.15	0.2	0.12	0.3
MET	< 0.10	< 0.10	0.17	0.4
Muon	< 0.10	< 0.10	< 0.10	0.4
Pile-up	< 0.10	0.25	< 0.10	0.3
Total syst.	8	10	8	10
Data statistics	5	5	10	16
Total	9	11	13	19

Moving forward:

- Reduce theoretical systematics
- Describe full events more faithfully
 - Leptonic (and jet) observables
 - W/Z and tops off-shell

The case of $t\bar{t}Z$

$pp \rightarrow t\bar{t}Z$: modeling events beyond on-shell production

- $pp \rightarrow t\bar{t}l^+l^-$ (*l*=lepton): NLO QCD + <u>parton shower</u> (PS)
 - On-shell top quarks with LO spin-correlations in decay ($t \rightarrow b l \nu$) (using NWA)
 - Include $t\bar{t}Z$ off-shell effects and $t\bar{t}Z/t\bar{t}\gamma$ interference
 - Interfaced with PS in the <u>Powheg-Box-V2</u> framework (including on-shell $t\bar{t}Z$)

5

M. Ghezzi, B. Jäger, S. Lopez, L. Reina. D. Wackeroth, [arXiv:2112.08892]]

- <u>Fully off-shell</u> pp $\rightarrow e^+ \nu_e \mu^- \bar{\nu}_\mu b \bar{b} \tau^+ \tau^-$: NLO QCD
 - Both double-, single-, and non resonant contributions, interferences, and off-shell effects of top, Z, W, and photon.
 - All heavy resonances described by Breit-Wigner propagators.
 - Comparison with NWA calculation.

G. Bevilacqua, H.B. Hartanto, M. Kraus, J. Nasufi, M. Worek [arXiv:2203.15688] [See also Denner et al., 2306.13535]

$pp ightarrow t \bar{t} l^+ l^-$ matched to parton shower

+ NLO QCD + PS

- One-loop matrix elements from NLOX [Honeywell et al., arXiv:1812.11925]
- EW G_{μ} input scheme (G_{μ} , m_z , m_w). Other inputs: m_t , Γ_t , Γ_w , Γ_Z
- Studied (μ_R, μ_F) scale dependence wrt to both a fixed and dynamical central scale (7-point variation)

$$\mu_0 = \frac{2m_t + m_Z}{2} \qquad \mu_0 = \frac{M_T(e^+e^-) + M_T(t) + M_T(\bar{t})}{3}$$

- PDF: CT18NLO with $\alpha_s(m_z)=0.118$ ($\alpha_s(\mu)$ in Msbar, 5FS)
- PS: Pythia8
- $\sqrt{s} = 13 \text{ TeV}$
- Specific signature studied: $t\bar{t}e^+e^-$ with $t \rightarrow b\mu\nu_{\mu}$ (with LO spin correlation)
 - $p_T^{e,\mu} > 10 \text{ GeV}, |\eta^{e,\mu}| < 2.5$
 - |M_{ee}- m_Z| < 10 GeV (to mimic exp. fiducial region)

$pp \rightarrow e^+ \nu_e \mu^- \overline{\nu}_\mu b \overline{b} \tau^+ \tau^-$: full off-shell description

- NLO QCD corrections obtained in the HELAC-NLO framework [Bevilacqua et al., arXiv:1110.1499]
 - One-loop matrix elements with HELAC-1LOOP. Real radiation with HELAC-DIPOLES.
- EW G_{μ} input scheme (G_{μ} , m_Z , m_W). Other inputs: m_t , Γ_W , Γ_Z , Γ_t (LO, NLO, unstable-W and NWA)
- Unstable particles in complex mass scheme.
- Studied PDF dependence. Main results presented for NNPDF3.1
- Studied (μ_R, μ_F) scale dependence wrt to both a fixed and dynamical central scale (7-point variation)
- $\sqrt{s} = 13 \text{ TeV}$

$$\mu_0 = \frac{2m_t + m_Z}{2}$$
 $\mu_0 = \frac{H_T}{3}$ for $H_T = \sum_i p_{T,i}$

- Specific signature studied: $e^+ v_e \mu^- \bar{v}_\mu b \bar{b} \tau^+ \tau^-$
 - $p_T^{l} > 20 \text{ GeV}, |y_l| < 2.5, \Delta R_{ll} > 0.4$
 - $p_T^b > 25 \text{ GeV}, |y_b| < 2.5, \Delta R_{bb} > 0.4$
 - p_T^{miss} > 40 GeV

Theoretical systematics: $pp \rightarrow t\bar{t}e^+e^-$

NLO QCD corrections are substantial and reduce the overall perturbative uncertainty

$$\sigma^{\text{LO}}_{t\bar{t}e^+e^-} = 15.9^{+5.1}_{-3.6} (15.8^{+5.0}_{-3.5}) \text{ fb}$$

$$\sigma^{\text{NLO}}_{t\bar{t}e^+e^-} = 21.9^{+2.0}_{-2.4} (22.1^{+2.2}_{-2.5}) \text{ fb}$$

Fixed and dynamic scales give very similar results (dyn. scale in parenthesis)

No uniform rescaling: different effects in different phase-space regions

Theoretical systematics: $pp ightarrow e^+ \nu_e \mu^- ar{ u}_\mu b \overline{b} au^+ au^-$

Very small residual systematic uncertainty at NLO QCD

$$\begin{split} \sigma_{\text{full off-shell}}^{\text{LO}} &= 80.32_{-18.02(22\%)}^{+25.51(32\%)} \left(76.98_{-17.17(22\%)}^{+24.30(32\%)}\right) \text{ ab} \\ \sigma_{\text{full off-shell}}^{\text{NLO}} &= 98.88_{-5.68(6\%)}^{+1.22(1\%)} \left(97.86_{-6.16(6\%)}^{+1.08(1\%)}\right) \text{ ab} \end{split}$$

Dynamic scale preferred over full range of distributions. Not a uniform rescaling.

Small dependence on PDF

$pp \rightarrow t\bar{t}e^+e^-$: partial off-shell and spin-correlation effects + PS

23

Compare $t\bar{t}Z$ and $t\bar{t}e^+e^$ keeping stable top quarks:

- Effects of off-shell Z \geq
- Effects of e^+e^- spin correlations \triangleright

10-20% effect in high p_T region and in the large absolute-value pseudorapidity difference region

Compare $t\bar{t}e^+e^-$ with and without modeling of top decays (NWA with LO spin correlations).

10-20% visible effects in the tails of distributions

$pp \rightarrow e^+ \nu_e \mu^- \overline{\nu}_\mu b \overline{b} \tau^+ \tau^-$: fully off-shell vs NWA

Very thorough study of modelling effects

- ► Large off-shell effects on total cross section (11%) originating from $t\bar{t}\gamma^*$ contribution (including Z/ γ^* interference): studied imposing narrower $|M_{\tau\tau}-m_Z| < X (X=25,20,15,10 \text{ GeV}) \text{ cut.}$ Less evident in $t\bar{t}l^+l^-$ study because it used X=10 GeV.
- Large effect from including NLO QCD corrections to top-quark decay (9%)
- Sizable off-shell effects in specific fiducial regions of differential distributions even with narrow window cut around the Z peak.

The case of $t\bar{t}W$

$pp \rightarrow t\bar{t}W$: modeling events beyond on-shell production

- Fixed-order higher-order corrections to fully decayed final states (3*l*)
 - Bevilacqua et al. (NLO QCD) [arXiv:2005.09427, 2012.01363]
 - Denner et al. (NLO QCD+EW) [arXiv:2007.12089]
- Comparing and combining NLO QCD off-shell with NLO QCD+PS
 - Frederix and Tsinikos [arXiv:2004.09552, arXiv:2108.07826] aMC@NLO+FxFx
 - Buddenbrock et al. [arXiv:2009.00032] aMC@NLO+FxFx
 - [ATL-PHYS-PUB-2020-024] aMC@NLO+FxFx and SHERPA
 - Febres Cordero, Kraus, Reina [arXiv:2108.07826] POWHEG-BOX
- NLO QCD + parton shower, including $O(\alpha_s^3 \alpha)$ and $O(\alpha_s \alpha^3)$, LO spin correlations in decays, jet merging
 - Bevilacqua, Bi, Febres Cordero, Hartanto, Kraus, Nasufi, Reina, Worek [arXiv:2109.15181]

Comparison of different NLO PS frameworks

[Febres Cordero, Kraus, Reina, arXiv:2101.11808]

- Considered POWHEG BOX, MG5aMC@NLO, and SHERPA.
- First public POWHEG BOX implementation.
- $O(\alpha_s^3 \alpha)$ and $O(\alpha_s \alpha^3)$ included (one-loop via NLOX).
- Scale and PS uncertainties thoroughly studied.
- Spin correlations included at LO.
- Signature: 2ISS+jets:
 - $p_T(l) > 15 \text{ GeV}, |\eta(l)| < 2.5$
 - $p_T(j) > 25$ GeV, $|\eta(j)| < 2.5$, anti-kT with R = 0.4
 - $N_b \geq 2, N_j \geq 2$
 - Using PYTHIA 8.303

Use as baseline for further estimate of theoretical uncertainty/systematics

Inclusive b-jet multiplicity Transverse momentum of the hardest b jet Transverse momentum of the lepton pair 10 d∂/dN [fb] [fb/GeV] POWHEG-BOX POWHEG-BOX POWHEG-BOX MG5_aMC@NLO MG5_aMC@NLO đ MG5_aMC@NLO Sherpa — Sherpa Sherpa 10 IO ^L 10⁻² $t\bar{t}W^{\pm}$ [2 ℓSS] $t\bar{t}W^{\pm}$ [2 ℓSS] $t\bar{t}W^{\pm}$ [2 ℓSS] 10^{-} 10^{-3} 10^{-2} 10 10^{-3} 10^{-4} 1.3 1.1 NG) sc 1.6 ĝ 1.4 0.9 $\sigma/\sigma_{\rm PV}$ 1.2 0.8 1... 1.1 1.8 1.6 PWG) 1.4 0.9 0.9 1.2 0.8 400 $500 - 600 = p_T(\ell \ell)$ [GeV] 500 600 > 2> 3 ≥ 4 > 5 $p_T(b_1)$ [GeV] Invariant mass of the lepton pair N_{b-jets} dσ/dM [fb/GeV] Inclusive light jet multiplicity ΔR separation between the two leading b jets POWHEG-BOX -/dAR [fb] MG5_aMC@NLO -POWHEG-BOX dσ/dN| POWHEG-BOX Sherpa -MG5_aMC@NLO MG5_aMC@NLO $t\bar{t}W^{\pm}$ [2 ℓSS] Sherpa -Sherpa $t\bar{t}W^{\pm}$ [2 ℓSS] $t\bar{t}W^{\pm}$ [2 ℓSS] 10 10-10 10 1.3 1.8 NG)s 1.2 1.2 1.6 1.1 ŝ 1.1 1.4 0.0 т 1.2 0.9 0.8 0.8 1.8 1 2 1.2 1.6 1.1 1.1 1.4 WG) 1.2 0.9 т 6 0.9 0.8 0.8 0.8 100 200 300 400 500 600 700 800 900 > 2 ≥ 3 > 6 >7 > 8>4> 5 Mee [GeV] N_{1-iets} ΔR_{hh}

Overall good agreement within theoretical uncertainties that can now be quantified and used as a base to estimate residual modelling uncertainties

Considering off-shell effects

Off-shell fixed order NLO QCD calculation of 3l signature: $pp \rightarrow e^+ v_e \mu^- \bar{v}_\mu e^+ b\bar{b}$

 W^+

 Off-shell: uncertainty below 10% independently of scale choice (fixed/dynamic).

 W^+

• Large off-shell effects in the tails of distributions.

Bevilacqua et al. arXiv:2005.09427

See also Denner et al., arXiv:2007.12089, 2102.03246

Combining parton-shower and off-shell effects

[Bevilacqua, Bi, Febres Cordero, Hartanto, Kraus, Nasufi, Reina, Worek, arXiv:2109.15181]

[From M. Kraus]

- Off-shell effects very visible in tails of distributions PS misses single-resonant and nonresonant effects
- ➢ PS effects affect broader regions of PS, e.g. low-p_T regions

$$\frac{d\sigma^{\rm th}}{dX} = \frac{d\sigma^{\rm NLO+PS}}{dX} + \frac{d\Delta\sigma_{\rm off-shell}}{dX} \quad \text{with} \quad \frac{d\Delta\sigma_{\rm off-shell}}{dX} = \frac{d\sigma^{\rm NLO}_{\rm off-shell}}{dX} - \frac{d\sigma^{\rm NLO}_{\rm NWA}}{dX}$$

Conclusions

- Enabling the top-physics precision program of the (HL)-LHC is a priority since no other collider will reach the necessary energy to explore it for at least a few decades
- > $t\bar{t} + X$ (X=W, Z, γ , H) processes are challenging but uniquely capable of testing the presence of new physics (NP) effects in top-quark interactions.
 - They are interconnected and may need to be approached as a whole Aim for global fits of classes of signatures

 - Off-shell and parton-shower effects can be large in this kinematic regions and need to be included.
- > This talk has reviewed progress made with studies of PS and off-shell effects for the particular case of $t\bar{t}Z$ and $t\bar{t}W$ production, including leptonic decays, and confirmed the importance of extending the modelling of $t\bar{t}Z$ and $t\bar{t}W$ events to include such effects.