A semi-analytic approach to one-scale Feynman integrals

Matteo Fael (CERN)

DESY-HU Berlin - 23 Nov. 2023 in collaboration with M. Egner, F. Lange, K. Schönwald, M. Steinhauser, J. Usovitsch

- The method
- Application I: QCD massive form factors at 3 loops
- Application II: B-meson decays

Solving Feynman integrals via differential equations

Solving Feynman integrals via differential equations

Solving Feynman integrals via differential equations

Print; .end

FORM

AIR, Kira, FIRE, Reduze Blade, NeatIBP, FiniteFlow

- $d = 4 2\epsilon$
- $\vec{x} = \{x_1, ..., x_m\}$ with e.g. $x_i = m/M$, $x = s/M^2$
- $\vec{j}(\vec{x},\epsilon) = \{j_1(\vec{x},\epsilon), \dots, j_N(\vec{x},\epsilon)\}$
- $M_i(\vec{x},\epsilon)$ from IBP and dimensional shift relations

 $\frac{\partial \vec{j}}{\partial x_i} = M_i(\vec{x},\epsilon) \,\vec{j}$

Kotikov, Phys.Lett.B 254 (1991) 158 Gehrmann, Remiddi, Nucl.Phys.B 580 (2000) 485

Analytic solution

- Solve in terms of known constants/functions
- Function properties well understood
- Known analytic structures and series
 expansions
- Fast and generic numerical evaluation tools

Numerical solution

- Oriented to phenomenological studies
- Applicable to larger class of problems
- Finite numerical accuracy

A semi-analytic method for one-scale problem

- We consider one dimensionless variable x
- We can compute **boundary conditions for** $x = x_0$

- $\frac{\partial \vec{j}}{\partial x} = M(x,\epsilon) \,\vec{j}$
- **GOAL**: construct in the complex plane a series expansion around some point x_0 (and ϵ)

A semi-analytic method for one-scale problem

• Inserting the ansatz into the differential equation

$$\underbrace{\sum_{m} \sum_{n=1}^{n} nc_{a,mn} \epsilon^m (x - x_0)^{n-1}}_{\partial j_a / \partial x} = \underbrace{\sum_{b} M_{ab}(x, \epsilon)}_{b} \underbrace{\sum_{m} \sum_{n=0}^{n} c_{b,mn} \epsilon^m (x - x_0)^n}_{j_b}$$

- Establish a linear system of equations for the expansion coefficients $c_{k,mn}$
- Solve the liner system in term of a minimal set of coefficients $\tilde{c}_{a,mn}$
- The minimal set of undetermined coefficients are fixed from boundary conditions

- Proceeds with a **new expansion around** $x = x_1$
- Match new expansion to the previous one (with finite accuracy)
- **Iterate** until all range of *x* is covered

- Proceeds with a **new expansion around** $x = x_1$
- Match new expansion to the previous one (with finite accuracy)
- **Iterate** until all range of *x* is covered

• Expansion around **singular points** (poles and thresholds)

$$j_a(x,\epsilon) = \sum_{m=m_{\min}}^{m_{\max}} \sum_{n=0}^{n_{\max}} \sum_{l \ge 0} c_{a,mnl} \epsilon^m (x_2 - x)^{\alpha n - \beta} \log^l (x_2 - x)$$

Features of our implementation

Fael, Lange, Schönwald, Steinhauser JHEP 09 (2021) 152

- **GOAL**: cover physical range of *x* with series expansions.
- No special form of the differential equations
- Well suited for fast numerical evaluation
- Precision systematic improvable:
 - more expansion points
 - deeper expansion in *x*
 - variable transformation
 (Möbius transformation)
- Bottleneck
 - Problems with $O(10^2)$ masters
 - Solve linear system with $O(10^6)$ equations
 - Match expansion in numerically stable way

Similar approaches

• SYS

Laporta, Int.J.Mod.Phys.A 15 (2000) 5087

SolveCoupledSystems.m

Blümlein, Schneider, Phys.Lett.B 771 (2017) 31

- DESS
 - Lee, Smirnov, Smirnov, JHEP 03 (2018) 008
- DiffExp

Hidding, Comput.Phys.Commun. 269 (2021) 108125

SeaSide

Armadillo, Bonciani, Devoto, Rana, Vicini, Comput.Phys.Commun. 282 (2023) 108545

AMFlow

Xiao Liu, Yan-Qing Ma, Comput.Phys.Commun. 283 (2023) 108565

Application I: QCD massive form factors at 3 loops

Phys.Rev.Lett. 128 (2022), Phys.Rev.D 106 (2023), Phys.Rev.D 107 (2023)

Massive form factors

$$V(q_1, q_2) = \bar{u}(q_2)\Gamma(s)v(q_1)$$

with
$$q_1^2 = q_2^2 = m^2$$
 and $s = (q_1 + q_2)^2$

 μe scattering

2 loop QED ۲

> Mastrolia, Remiddi, Nucl. Phys. B 664 (2003) Bonciani, Mastrolia, Remiddi, Nucl. Phys. B 676 (2004) 399

۲

2 loop QCD Bernreuther, Bonciani, Gehrmann, Heinesch, Leineweber, Mastrolia, Remiddi, Nucl. Phys. B 706 (2005) 245 Gluza, Mitov, Moch, Riemann, JHEP 07 (2009), 001 Ahmed, Henn, Steinhauser, JHEP 06 (2017), 125. Ablinger, et al, Phys.Rev. D 97 (2018), 094022

3 loop planar ۲

Henn, Smirnov, Smirnov, Steinhauser, JHEP 01 (2017), 074. Ablinger, Blümlein, Marquard, Rana, Schneider, Phys. Lett. B 782 (2018), 528

3 loop fermions ۲

Lee, Smirnov, Smirnov and M. Steinhauser, JHEP 03 (2018), 136. Blümlein, Marquard, Rana, Schneider, Nucl. Phys. B 949 (2019), 114751, Phys.Rev.D 108 (2023) 094003

	non singlet	n _h singlet	n _l singlet
diagrams	271	66	66
families	34	17	13
masters	422	316	158

Form factors

vector $j^{v}_{\mu} = \overline{\psi} \gamma_{\mu} \psi$ $\Gamma^{v}_{\mu}(s) = F^{v}_{1}(s) \gamma_{\mu} - \frac{i}{2m} F^{v}_{2}(s) \sigma_{\mu\nu} q^{\nu}$

axial-vector $j^a_\mu = \overline{\psi}\gamma_\mu\gamma_5\psi$ $\Gamma^a_\mu(s) = F^a_1(s)\gamma_\mu\gamma_5 - \frac{1}{2m}F^a_2(s)\gamma_5q_\mu$

scalar $j_s = m\overline{\psi}\psi$ $\Gamma^s(s) = mF^s(s)$

pseudo-scalar $j_p = im\overline{\psi}\gamma_5\psi$ $\Gamma^p(s) = imF^p(s)$

• Before complete IBP reduction, we search for a **good basis** of master integrals

In the coefficients in front of the master integrals, ϵ and the kinematic variables factories in the denominators

ImproveMasters.m A. & V. Smirnov, Nucl.Phys.B 960 (2020) 115213, Usovitsch, hep-ph/2002.08173.

- Reduce each integral family to good basis
- Reduce masters across families to minimal set

Kira A. & V. Smirnov, Nucl.Phys.B 960 (2020) 115213, Usovitsch, hep-ph/2002.08173.

(CERN) Y
N = 2V

Current

$\hat{s} = s/m^2$

$$j_n = \sum_{i=-3}^{\infty} \sum_{j=-s_{\min}}^{50} \sum_{k=0}^{i+3} c_{n,ijk} \epsilon^i \left[4 - \hat{s}\right]^{j/2} \log^k(4 - \hat{s})$$

 $\hat{s} = 16$: four-particle threshold

$$j_n = \sum_{i=-3}^{\infty} \sum_{j=-s_{\min}}^{50} \sum_{k=0}^{i+3} c_{n,ijk} \epsilon^i \left[16 - \hat{s}\right]^{j/2} \log^k(16 - \hat{s})$$

 $\hat{s} = \infty$: high energy/massless limit

$$j_n = \sum_{i=-3}^{\infty} \sum_{j=-s_{\min}}^{50} \sum_{k=0}^{i+6} c_{n,ijk} \left(\frac{1}{\hat{s}}\right)^j \log^k(-\hat{s})$$

also $\hat{s} = 0$ for singlet diagrams

ÉRN

Boundary conditions

Non-singlet

- Analytic results at s = 0
- Simple Taylor expansion

- However we need higher orders in *c* (up to weight 9)
- Use SummerTime.m and PSLQ

Lee, Mingulov, Comput.Phys.Commun. 203 (2016) 255

Singlet

- Asymptotic expansion for singlet at s = 0
- n_h -singlet we have **analytic boundary cond**.
 - **asy.m** Jantzen, Smirnov, Smirnov, Eur. Phys. J. C 72 (2012), 2139
 - HyperInt Panzer, Comput. Phys. Commun. 188 (2015), 148
- *n_l*-singlet: **numerical boundary conditions**
 - AMFlow, high-precision evaluation at $\hat{s} = -1$

Liu, Ma, Comput.Phys.Commun. 283 (2023) 108565

Computational challenges

- Generation linear equations with Mathematica
- Interface to Kira and solution via reduce_user_defined_system
- Singular points: finite field methods and rational reconstruction: Kira+FireFly

von Manteuffel, Schabinger, Phys.Lett.B 744 (2015) 101 Peraro, *JHEP* 12 (2016) 030 Klappert, Klein, Lange, Comput. Phys. Commun. 264 (2021), 107968

Better more matching points than deeper expansions
 e.g. for the non-singlet

 \sim few hours \sim 1d per expansion point

 $\hat{s}_0 = \{\infty, -32, -28, -24, -16, -12, -8, -4, 0, 1, 2, 5/2, 3, 7/2, 4, 9/2, 5, 6, 7, 8, 10, 12, 14, 15, 16, 17, 19, 22, 28, 40, 52\}$

Numerical instabilities in the matching

Renormalization and IR subtraction

• UV renormalisation in the on-shell scheme

Melnikov, van Ritbergen, Phys.Lett.B 482 (2000) 99; Chetyrkin, Steinhauser, Nucl.Phys.B 573 (2000) 617-651

- Structure of IR poles is universal
- Minimal subtraction

$$F_i^{\text{UV ren}}(s) = Z_{\text{IR}} F_i^f(s)$$

with Z_{IR} given by Γ_{cusp}

$$\log Z_{\rm IR} = -\frac{1}{2\epsilon} \frac{\alpha_s}{\pi} \Gamma^{(1)} + \left(\frac{\alpha_s}{\pi}\right)^2 \left[\frac{\beta_0 \Gamma^{(1)}}{16\epsilon^2} - \frac{\Gamma^{(2)}}{4\epsilon}\right] + \left(\frac{\alpha_s}{\pi}\right)^3 \left[-\frac{\beta_0^2 \Gamma^{(1)}}{96\epsilon^3} + \frac{\beta_1 \Gamma^{(1)} + 4\beta_0 \Gamma^{(2)}}{96\epsilon^2} - \frac{\Gamma^{(3)}}{6\epsilon}\right]$$

Grozin, Henn, Korchemsky, Marquard, Phys.Rev.Lett. 114 (2015) 6, 062006; JHEP 01 (2016) 140.

Results

• Fortran library for Monte Carlo implementation

https://gitlab.com/formfactors3l/FF3l

- UV renormalised
- No IR subtraction, other schemes beyond minimal can be applied
- Chebyschev interpolation grids for

 $-40 < \hat{s} < 3.75$ and $4.25 < \hat{s} < 60$

Series expansions for

 $s = \pm \infty, s = 4m^2$ (also s = 0 for singlet)

CÉRN

$$\delta(F^{f,(3)}|_{\epsilon^{i}}) = \frac{F^{(3)}|_{\epsilon^{i}} + F^{(\mathrm{CT}+\mathrm{Z})}|_{\epsilon^{i}}}{F^{(\mathrm{CT}+\mathrm{Z})}|_{\epsilon^{i}}}$$

Quarkonium contributions: good agreement $O(10^{-10})$ with independent calculation

Blümlein, Marquard, Rana, Schneider, Phys.Rev.D 108 (2023) 094003

Facts of life with γ_5

• For singlet diagrams we use the Larin prescription

$$\gamma^{\mu}\gamma_{5} \rightarrow \frac{1}{12} \varepsilon^{\mu\nu\rho\sigma} (\gamma^{\nu}\gamma^{\rho}\gamma^{\sigma} - \gamma^{\sigma}\gamma^{\rho}\gamma^{\nu})$$

- Finite renormalization constants for $j_a^{\mu}(x)$ and $j_p(x)$
- Only the sum of singlet and non-singlet diagrams renormalizes multiplicative
- Non-singlet must be calculated in the Larin scheme
- We check the Chiral Ward Identity

$$F_{1,\text{sing}}^{a,f} + \frac{s}{4m^2} F_{2,\text{sing}}^{a,f} = F_{\text{sing}}^{p,f} + \frac{\alpha_s}{4\pi} T_F F_{G\tilde{G}}^f$$

Larin, Phys.Lett.B 303 (1993) 113 Larin, Vermaseren, Phys. Lett. B 259 (1991), 345

Application II: B-meson decays

JHEP 09 (2023) 112, hep-ph 2309.14706, hep-ph 2310.03685

Inclusive decays of **B** mesons

Semileptonic $B \rightarrow X_c l \bar{\nu}_l$

Rare decay $B \rightarrow X_s \gamma$

Lifetimes of the *B* meson

We need precise predictions in the SM, often at the 1% level!

The Heavy Quark Expansion

Inclusive decays of **B** mesons

- Inclusive *B*-meson decays admit an **OPE**
- The ratio $m_c/m_b \simeq 0.25$ all over the place
- Several short-distance mass schemes are used

$$m_b^{\text{OS}}: m_c^{\text{OS}} \qquad \Gamma(B \to X_c \ell \bar{\nu}_\ell) \sim 1 - 1.78 \left(\frac{\alpha_s}{\pi}\right) - 13.1 \left(\frac{\alpha_s}{\pi}\right)^2 - 163.3 \left(\frac{\alpha_s}{\pi}\right)^3$$
$$m_b^{\text{kin}}(1 \text{ GeV}): \overline{m}_c(2 \text{ GeV}) \qquad \Gamma(B \to X_c \ell \bar{\nu}_\ell) \sim 1 - 1.24 \left(\frac{\alpha_s}{\pi}\right) - 3.65 \left(\frac{\alpha_s}{\pi}\right)^2 - 1.0 \left(\frac{\alpha_s}{\pi}\right)^3$$
$$m_b^{1\text{S}}: m_c \text{ via HQET} \qquad \Gamma(B \to X_c \ell \bar{\nu}_\ell) \sim 1 - 1.38 \left(\frac{\alpha_s}{\pi}\right) - 6.32 \left(\frac{\alpha_s}{\pi}\right)^2 - 33.1 \left(\frac{\alpha_s}{\pi}\right)^3$$

• Estimate theoretical uncertainties with scale variations

$$\overline{m}_c(\mu_c), \overline{m}_b(\mu_b), m_b^{\text{kin}}(\mu_{WC}), \dots$$

 $B \to X_s \gamma$

Br^{exp} $(B \to X_s \gamma, E_{\gamma} > 1.6 \,\text{GeV}) = (3.49 \pm 0.19) \times 10^{-4}$ HFLAV, Phys. Rev. D 107 (2023), 052008

Brth
$$(B \to X_s \gamma, E_{\gamma} > 1.6 \,\text{GeV}) = (3.40 \pm 0.17) \times 10^{-4}$$

Misiak et al, Phys. Rev. Lett. 114 Misiak, Rehman, Steinhauser, JHEP 06 (2020), 175

- Includes NNLO QCD corrections
- Charm mass interpolation responsible for 3% uncertainty
- Unknown higher-order correction (3%)
- Input and non-perturbative parameters (2.5%)

 $Q_{1/2}$

S

Three-loop corrections to $b \rightarrow s\gamma$ vertex

$$\mathcal{M}(b \to s\gamma) = \frac{4G_F m_b^2}{\sqrt{2}} V_{ts}^{\star} V_{tb} \varepsilon_{\mu}(q_{\gamma}) \,\bar{u}_s(p_s) P_R\left(t_1 \frac{q_{\gamma}}{m_b} + t_2 \frac{q_b^{\mu}}{m_b} + t_3 \gamma^{\mu}\right) u_b(p_b)$$

- Differential equations for 479 master integrals w.r.t. $x = m_c/m_b$
- Apply semi-analytic method
- Boundary conditions at $x_0 = m_c/m_b = 1/5$ with AMFlow
- Taylor expansions at $x_0 = 1/5$, 1/10 and power-log expansion at $x_0 = 0$

$$\mathsf{Re}(t_2^{Q_1}) = n_l \left\{ -\frac{0.643804}{\epsilon^2} - \frac{6.31123}{\epsilon} - 27.9137 + x^2 \frac{1}{\epsilon} \left(2.107 \log^3(x) + 3.16049 \log^2(x) - 27.8263 \log(x) \right) - 11.7523) + \dots \right\}$$

Fael, Lange, Schönwald, Steinhauser, 2309.14706 Misiak et al, 2309.14707

Lifetime of **B** mesons

$$\Gamma(B_q) = \Gamma_3 + \Gamma_5 \frac{\langle \mathcal{O}_5 \rangle}{m_b^2} + \Gamma_6 \frac{\langle \mathcal{O}_6 \rangle}{m_b^3} + \dots$$

 $\Gamma(B^+) = (0.59^{+0.11}_{-0.07}) \text{ ps}^{-1}$ $\Gamma(B_d) = (0.63^{+0.11}_{-0.07}) \text{ ps}^{-1}$ $\Gamma(B_s) = (0.63^{+0.11}_{-0.07}) \text{ ps}^{-1}$

Lenz, Piscopo, Rusov, JHEP 01 (2023) 004

- NLO QCD corrections to non-leptonic decay Bagan, Patricia Ball, Braun, Gosdzinsky, Nucl.Phys.B 432 (1994) 3 Krinner, Lenz, Rauh, Nucl.Phys.B 876 (2013) 31
- $\Gamma(B) = \Gamma(b \to c\ell \bar{\nu}_{\ell}) + \Gamma(b \to c\bar{u}d) + \Gamma(b \to c\bar{c}s) + \dots$

$$\Gamma(B \to X_q \ell \bar{\nu}_\ell) = \frac{G_F^2 m_b^5 |V_{qb}|^2}{192\pi^3} \left[X_0(\rho) + \frac{\alpha_s}{\pi} X_1(\rho) + \left(\frac{\alpha_s}{\pi}\right)^2 X_2(\rho) + \dots \right]$$

• Establish differential equations w.r.t. $\rho = m_c/m_b$

h

50

• Consider only the imaginary part of masters

- Analytic boundary conditions in the limit $\rho \rightarrow 1$
- Continue the solution to $\rho = 0$

 Solving for complete real + imaginary part correctly reproduce the massless limit

Egner, Fael, Schönwald, Steinhauser, JHEP 09 (2023) 112

Third order corrections to $B \rightarrow X_{\mu} l \bar{\nu}_l$ decay

MF, Usovitsch, hep-ph 2310.03685

MF, Schönwald, Steinhauser, Phys. Rev. D 104 (2021) 016003, JHEP 08 (2022) 039.

$$m_b^{\text{kin}}(1 \text{ GeV}) : \overline{m}_c(3 \text{ GeV}) \quad \Gamma_{\text{sl}} \simeq 1 - 0.019 |_{\alpha_s} + 0.019 |_{\alpha_s^2} + 0.032 (9) |_{\alpha_s^3}$$

CÉRN

IBP reduction at 5 loops

Challenges

• 5loop integral families with 12 propagators and 8 numerators

$$\int d^d p \frac{p^{\mu_1} \dots p^{\mu_N}}{(-p^2)[-(p-q)^2]} = \frac{i\pi^{2-\epsilon}}{(-q^2)^{\epsilon}} \sum_{i=0}^{[N/2]} f(\epsilon, i, N) \left(\frac{q^2}{2}\right)^i \{[g]^i [q]^{N-2i}\}^{\mu_1 \dots \mu_N}$$

Rewrite 5loop families into 4loop ones with one denominator raised to symbolic power

$$I_5(n_1, n_2, \dots, n_{20}) \leftrightarrow \sum_{\overrightarrow{m} \in M} f_{\overrightarrow{m}}(\epsilon) J_{4\epsilon}(m_1, m_2, \dots, m_{14})$$

• Eliminate non-trivial sectors without physical cuts

Numerical evaluation of 5 loop integrals

- **1369** master integrals
- Numerical evaluation with 40 digits with **AMFlow** Xiao Liu, Yan-Qing Ma, Comput.Phys.Commun. 283 (2023) 108565
- Implement our own interface to Kira
- Parallel calculation large- N_c contributions Chen, Li, Li, Wang, Wand, Wu, hep-ph/2309.00762

	This work	Ref. [28]	Difference
$T_F^2 N_L^2$	-6.9195	-6.34 (42)	8.3%
$T_F^{ar{2}}N_H^{ar{2}}$	-1.8768×10^{-2}	$-1.97(42) \times 10^{-2}$	5.0%
$T_F^2 N_H N_L$	-1.2881×10^{-2}	$-1.1(1.1) \times 10^{-2}$	12%
$C_F T_F N_L$	-7.1876	-5.65(55)	22%
$C_A T_F N_L$	42.717	39.7(2.1)	7%
$C_F T_F N_H$	2.1098	2.056(64)	2.5%
$C_A T_F N_H$	-0.45059	-0.449(18)	0.4%

 $C_F X_3 = 280.2$ fermionic -536.4 bosonic, large N_c -11.6 (2.7) bosonic, subleading N_c = -267.8 (2.7)MF, Usovitsch, hep-ph 2310.03685

previous estimate:

$$C_F X_3(\rho = 0) = -269 \pm 27 (10\%)$$

MF, Schönwald, Steinhauser, Phys.Rev.D 104 (2021) 016003, JHEP 08 (2022) 039.

Conclusions

- Numerical and semi-analytic methods offer very powerful tools for phenomenology
- Our implementation can deal with difficult problems with one-scale Feynman integrals
- We can study also interesting singular limits, e.g. threshold production or high-energy limits
- Extend to two-scale problems via construction of interpolation grids

Backup

• Flavour non-singlet

$$\begin{aligned} J_{\mathrm{NS},\mu}^{a} &= \sum_{i=1}^{n_{f}} a_{i} \overline{\psi}_{i} \gamma_{\mu} \gamma_{5} \psi_{i} \\ F_{i,\mathrm{NS}} &= F_{i,\mathrm{non-sing}} + F_{i,\mathrm{nh-sing}} - F_{i,\mathrm{nl-sing}} \end{aligned}$$

• Flavour singlet

$$\begin{aligned} J_{\mathrm{S},\mu}^{a} &= \sum_{i=1}^{n_{f}} \overline{\psi}_{i} \gamma_{\mu} \gamma_{5} \psi_{i} \\ F_{i,\mathrm{S}} &= F_{i,\mathrm{non-sing}} + F_{i,\mathrm{nh-sing}} + \sum_{j=1}^{n_{l}} F_{i,\mathrm{nl-sing}} \end{aligned}$$

• Flavour singlet and non-singlet renormalize multiplicatively

$$F_{i,\mathrm{NS}} = Z_{\mathrm{NS}} Z_2^{\mathrm{OS}} F_{i,\mathrm{NS}}^{\mathrm{bare}}$$

 $F_{i,\mathrm{S}} = Z_{\mathrm{S}} Z_2^{\mathrm{OS}} F_{i,\mathrm{S}}^{\mathrm{bare}}$

• with

$$Z_{\rm NS} = Z_{\rm NS}^{\rm \overline{MS}} Z_{\rm NS}^{\rm fin} \qquad \qquad Z_{\rm S} = Z_{\rm S}^{\rm \overline{MS}} Z_{\rm S}^{\rm fin}$$

• Consistency relations:

$$\begin{aligned} F_{i,\text{non-sing}} &= Z_{\text{NS}} Z_2^{\text{OS}} F_{i,\text{non-sing}}^{\text{bare}} \\ F_{i,\text{nX-sing}} &= Z_{\text{NS}} Z_2^{\text{OS}} F_{i,\text{nX-sing}}^{\text{bare}} + \frac{1}{n_f} (Z_{\text{S}} - Z_{\text{NS}}) Z_2^{\text{OS}} \left(F_{i,\text{non-sing}}^{\text{bare}} + \sum_{k=1}^{n_f} F_{i,\text{k-sing}}^{\text{bare}} \right) \end{aligned}$$

N³LO kick-off workstop / thinkstart

Aug 3–5, 2022 IPPP Europe/London timezone

Overview

Call for Abstracts

Timetable

Contribution List

Book of Abstracts

Registration

Participant List

Code of Conduct

Contact

yannick.ulrich@durham....

Recent progress at NNLO suggests that a fully differential N³LO calculation of $\gamma^* \rightarrow ll$ should be possible. IPPP will host a three-day in-person kick-off workstop to try and organise the different contributions. We will cover

- VVV: the three-loop heavy-quark / heavy-lepton form factor (massification, exact, semi-numerical, etc.)
- RVV: adapting γ^{*}→qqg, new calculations, mass dependence
- RRV: automation, numerical stability
- · assembly & dirty tricks: Monte Carlo, massification, jettification, NTS stabilisation etc.
- open discussion

Each area will be given half a day, starting with an open 1h seminar followed by a lengthy discussion.

Just like previous workstops, we try to gather a small number of theorists who actively work on this topic to make very concrete progress. It should not just be about giving talks, but to actually learn from each other and put together the jigsaw pieces.

Yannick Ulrich

IPPP 0C218

Go to map

Q

5th Workstop / Thinkstart: Radiative corrections and Monte Carlo tools for Strong 2020

Jun 5–9, 2023	E to a state of the second		
University of Zurich	Enter your search term	4	
Europe/Zurich timezone			

Overview	In this workstop, we will discuss radiative corrections and Monte Carlo tools for
Timetable	low-energy hadronic cross sections in e^+e^- collisions. This is to be seen as part of the Strong 2020
Contribution List	effort. We will cover
Registration	 leptonic processes at NNLO and beyond processes with hadrons
Participant List	 parton shower experimental input
Code of Conduct	Each area will be given at least half a day, starting with an open 1h seminar followed by a lengthy
Contact	discussion.
yannick.ulrich@durham	Just like previous workstops, this is an in-person event. We try to gather a small number of theorists who actively work on this topic to make very concrete progress. It should not just be about giving talks,

but to actually learn from each other and put together the jigsaw pieces.

Additionally to the workstop that is only by-invite only, there is a broader **conference** directly following the workstop.

 $\sim \frac{2}{\sqrt{2}}$ ~ three-loop heavy quark form factor \rightarrow Matteo's talk

- $\begin{cases} \xi \\ \\ \end{cases} \sim \text{really difficult, see later} \quad m_e = 0: \text{Badger, Kryś, Moodie, Zoia, JHEP 11 (2023) 041} \end{cases}$
- $\frac{\sqrt{2}}{\sqrt{2}} \sqrt{2} \sim \text{OpenLoops} \oplus \text{NTS stabilisation} \rightarrow \text{nasty but doable}$
- _____ ~ tree level but
 - \sim tree level but difficult phase space ightarrow (hopefully) easy enough
- $\int d\Phi_5 | \cdots | \sim FKS^3$ subtraction