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Quantum field theory

➢The foundational theoretical framework of  physics

• Particle physics, nuclear physics

• Many-body quantum system, cold atom physics

• Gravitational waves

• …

➢The only way to combine quantum and relativity

• Uncertainty principle: Large energy probed at short time

• Relativity: Energy can produce mass and particles, thus multi-particle system
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Path integral formula for QFT

➢Green functions:

𝒟𝜙~∏ 𝑥∫ 𝑑𝜙𝑥

➢Definition of  path integral

• Integrate over fields at each spacetime point

• Divergent due to infinite number of  spacetime points
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Two ways to compute QFT (path integrals)

➢Numerical computation via Monte Carlo

• Nonperturbative lattice QFT 

➢Expanding to asymptotic series

• Perturbative QFT

Complementary 

to each other
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K. G. Wilson Lattice Super computer

Solving QFT nonperturbatively

➢Discretize spacetime: reduction to finite degrees of  freedom

➢ Imaginary time (𝑡 → 𝑖 𝜏): avoidance of  oscillatory behavior

• Computing path integrals via Monte Carlo simulation
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𝛼𝑠(𝑄)

𝑄 (GeV)

Solving QFT nonperturbatively

➢Difficulties

• Computational complexity scales as 𝑂(𝑄4), hard for high energy 𝑄 physics

• Hard for time-dependent observables, like scattering processes



8/38Yan-Qing Ma

Solving QFT perturbatively

➢Perturbation: expanding interacting terms as small numbers 

• Valid only if  coupling is small!

• Integration over fields: Gaussian integrals, can be worked out

• Result in lots of  Feynman diagrams
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Perturbative QFT computation

1. Generate Feynman amplitudes

• Feynman diagrams and Feynman rules

2. Calculate Feynman loop integrals (FIs)

3. Perform phase-space integrations
• Monte Carlo simulation with IR subtractions

• Relating to loop integrals via reverse unitarity

• Amplitudes: linear combinations of  FIs with rational coefficients 
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Definition of Feynman integrals

➢A family of  Feynman integrals

• ℓ1, … , ℓ𝐿: loop momenta; 𝑝1, … , 𝑝𝐸: external momenta; 

• 𝐴, 𝐵: integers; 𝐶:  linear combination of  Ԧ𝑠 (including masses)

• 𝒟1, … , 𝒟𝐾: inverse propagators; 𝜈1, … , 𝜈𝐾: integers

• 𝒟𝐾+1, … , 𝒟𝑁: irreducible scalar products; 𝜈𝐾+1, … , 𝜈𝑁: non-negative integers

• 𝐷: dimensional regularization, avoid infinities (originated from path integrals)
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Nature of FIs

➢Remnants of  path integrals

➢Complexity of  path integrals ⇒ complexity of  FIs

• Resurgence theory: the perturbative series can eventually recover all 

nonperturbative information of  quantum field theory

• Simpler for small number of  loops

• Should be extremely hard as the number of  loops increasing

• After integrated out fields, integration over the position/momentum of  fields remains
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➢Long-standing challenging problem

’t Hooft, Veltman, NPB (1979)

Challenges of computing FIs

• One-loop computation: satisfactory approach existed as early as 1970s

• Multi-loop computation: challenging the field for more than 40 years

• Analytical: known special functions are insufficient to express multi-loop FIs

• Numerical: (from path integrals) UV, IR,  integrable singularities, …

➢Difficulties of  computing FIs
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Integration-by-parts: example

• Integrand: fixed power in 𝑅; Measure: 𝑅𝐷−1

• Thus vanishing in dimensional regularization

➢Vanishing on the big hypersphere with radius 𝑅

➢Relations between FIs

• All FIs in this family can be expressed by 𝐹(1)

Lagrange, Gauss, Green, Ostrogradski, 1760s-1830s ‘t Hooft, Veltman, NPB (1972)

• A family of  FIs:



15/38Yan-Qing Ma

General IBP equations

➢Dimensional regularization: vanish at boundary

• Linear equation:

• 𝑄: polynomials in 𝐷, Ԧ𝑠

𝑞𝜇 = (ℓ1
𝜇
, ⋯ , ℓ𝐿

𝜇
, 𝑝1

𝜇
, ⋯ , 𝑝𝐸

𝜇
)

• Plenty of  linear equations can be easily obtained by varying: Ԧ𝜈, 𝑗, 𝑘

‘t Hooft, Veltman, NPB (1972)

Chetyrkin, Tkachov, NPB (1981)
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IBP reduction

Laporta, 0102033

➢Solving IBP eqs. based on Laporta’s algorithm:

• Automatic, any-loop order

• Public codes: AIR, FIRE, LiteRed, Reduze, Kira, FiniteFlow, NeatIBP, Blade… 

• Many more private codes

Proved by: Smirnov, Petukhov, 1004.4199

➢A family of  FIs form a FINITE-dim. linear space

• Bases of  the linear space called master integrals (MIs) 

• IBPs reduce plenty of  FIs to much less MIs
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Differential equations: example

➢Due to IBP: DEs of  MIs

➢Boundary Condition
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DEs method

➢Step 1: Set up Ԧ𝑠-DEs of  MIs

➢ Step 2: Calculate boundary condition at a given value of  Ԧ𝑠

• Differentiate MIs w.r.t. invariants Ԧ𝑠, such as 𝑚2, 𝑝𝑖 ⋅ 𝑝𝑗

• IBP relations result in: 

Kotikov, PLB(1991)

➢Step 3: Solve DEs either analytically or numerically

• 𝐴𝑖: matrix with rational elements
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Canonical form

➢ In some cases, choosing proper basis

➢Solution after expanding 𝜖: Multiple Polylogarithms

Henn, 1304.1806

• Properties well-known, easy to obtain numerical values

• Many cutting-edge problems have been solved in this way!
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Beyond Multiple Polylogarithms

➢Elliptic functions

• Appear as early as equal mass sunrise diagram!

➢More complicated functions exist, like 

defined by Calabi-Yau manifold

• Not well-studied mathematical objects

• Hard to obtain numerical values

Studying these mathematical objects: a hot topic
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➢Auxiliary FIs

• 𝜆𝑖 ≥ 0 (typically 0 or 1), an auxiliary mass if  𝜆𝑖 > 0

• Analytical function of  𝜂

• Physical result obtained by (causality)

Auxiliary mass terms

X. Liu, YQM, C. Y. Wang, 1711.09572

• 1) Setup 𝜂-DEs; 2) Calculate boundary conditions; 3) Solve 𝜂-DEs

➢ 𝜂-DEs for MIs in auxiliary family using IBP

Xiao Liu, Oxford U.

Chen-Yu Wang, MPP
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➢Simplify propagators at 𝜂 → ∞

Boundary values at 𝜂 → ∞

➢Nonzero integration regions as 𝜂 → ∞

• Linear combinations of  loop momenta: 𝒪( 𝜂 ) or 𝒪(1)

• ℓ𝐿 is the 𝒪( 𝜂 ) part of  loop momenta

• ℓ𝑆 is the 𝒪(1) part of  loop momenta

• 𝑝 is linear combination of  external momenta

• Unchange if  ℓ𝐿 = 0 and 𝜅 = 0

Beneke, Smirnov, 9711391

Smirnov, 9907471

➢Boundary FIs are simpler

1. Vacuum integrals

2. Simpler FIs with less denominators, if  all loop momenta are 𝒪(1)

Tips: Strategy of  regions is very 

powerful and useful. It is the 

rationale of  effective field theory. 
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➢Solve ODEs of  MIs

Singularity structure

Step1: Asymptotic expansion at 𝜂 = ∞
Step2: Taylor expansion at analytical points

Step3: Asymptotic expansion at 𝜂 = 0

• If  Ԧ𝐼𝑎𝑢𝑥(𝐷, Ԧ𝑠,∞) is known , solving ODEs 

numerically to obtain Ԧ𝐼𝑎𝑢𝑥(𝐷, Ԧ𝑠, i0−)
• A well-studied mathematical problem

Flow of auxiliary mass

• Efficient to get high precision : 

ODEs, known singularity structure
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0

➢For boundary FIs with less denominators:

• Calculate them again use AMF method,  even simpler boundary FIs as input 

(besides vacuum integrals)

Iterative strategy: FIs with less denominators

• Eventually, leaving only (single-mass) vacuum integrals as input

X. Liu, YQM, 2107.01864 
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Iterative strategy: vacuum integrals

➢A family of  single-mass vacuum integrals

• 𝐿-loop vacuum integrals expressed by (𝐿 − 1)-loop p-integrals

• Using AMFLow: 𝐿-loop vacuum integrals reduced to (𝐿 − 1)-loop vacuum integrals 

Z.F.Liu, YQM, 2201.11637 

Zero input; valid to any loop

Zhi-Feng Liu, Zhejiang U.
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AMFlow: Package

➢Download Liu, YQM, 2201.11669

• The first package that can calculate any FI (with any number of  loops, any 𝐷

and Ԧ𝑠) to arbitrary precision,  given sufficient resource

Link: https://gitlab.com/multiloop-pku/amflow

➢Feature

https://gitlab.com/multiloop-pku/amflow
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Phenomenological applications

➢Compute FIs point by point using AMFlow?

• Easy to implement and to parallelize

• But ignoring the fact that the value of  FIs at 

two nearby points have small difference

• Not an efficient way
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AMFlow+kinematic DEs

➢ Information of  kinematic DEs

• Tell how FIs change in the kinematic space

• Very efficient when two points are close to each other

• Zero-dim.: a number computed by AMFlow

• One-dim.: series solutions to cover all interested regions

• Low dim.: a grid (of  series solutions)

• High dim.: importance sampling

➢Tips
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Short summary

➢Analytical computation

• General enough to deal with any FI

• Can obtain numerical values to arbitrary precision

• What are still missing for this purpose?

➢Semi-analytical computation

• In general involving not well-studied special functions, 

which are hard to obtain numerical values

➢Can we define MIs as special functions?
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Special functions

➢Typically require the following conditions:

1. Having both integral and differential representations

2. Clear singularities and branching cuts

3. Availability of  expansions to Taylor series or asymptotic series

➢Facilitate the exploration of  global and local properties, 

as well as efficient evaluation
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1. Integral and differential representations

➢ Integral representation: Yes

➢Differential representation: Yes

• Have DEs w.r.t. kinematic variables, boundary conditions provided by AMFlow

• Note: no differential equations w.r.t. 𝜖, it should be thought as a parameter

➢Wish list

• Choosing better MIs, so that DEs are simple, no spurious poles; the method 

must be systematic, applicable to general cases beyond MPLs
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2. Singularities and branching cuts

➢Singularities: Yes

➢Branching cuts: maybe

• Determined by Landau equations, but are hard to solve

• Subset of  poles in DEs; spurious poles can be checked by solving DEs going around it

• Clear for simple cases, by studying the Feynman prescription  𝑖 0+

• No good method for general case, especially when there are cut propagators 1/𝒟 → 𝛿(𝒟)

• Bottom line: compute many points around a singularity using AMFlow, comparing with 

running using DEs 

➢Wish list
• A better way to determine singularities: solving Landau equations or other ways

• A better way to identify branching cuts
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3. Taylor or asymptotic series

➢Yes

➢Efficiency

• Can do the expansion at any points using DEs

• Depending on the complexity of  DEs, helpful to have better MIs
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Bonus

➢Exhausting relations among coefficients of  𝜖 expansion

• More relations exists after expansion, how to systematically find these relations?

• A famous example, one-loop 5-point function expressed by 4-point functions

• Bottom line: PSLQ fit with high-precision input using AMFlow

➢Relations to not well-studied special functions 

• Instead of  using other special functions to study FIs, using FIs to study these special functions
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Summary

➢ Solving QFT perturbatively: important for many fields 

➢ Analytical computation of  FIs: fruitful, but has clear obstacles 

➢ One of  the main challenges: FIs computation 

➢ Constructive to define FIs as special functions 

➢ Semi-analytical computation of  FIs: general enough
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Outlook

➢Plenty things to do

① Systematical way to choose better MIs

② Systematical way to determine singularities

③ Systematical way to identify branching cuts

④ Systematical way to find relations after 𝜖 expansion

⑤ Improve the efficiency of  IBP reduction: the main bottleneck for many problems

Thank you!
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Era of precision physics at the LHC

➢High-precision data

• Many observables probed at 

precent-level precision

Automatic higher order perturbative calculation is highly demanded

• At least NNLO QCD corrections 

generally required (plus NLO EW, 

parton shower, resummation, etc.)

ATL-PHYS-PUB-2022-009

Note: Automatic NLO correction obtained 15 years ago: MadGraph, Helac, etc


