## Reclassifying Feynman Integrals as Special Functions

Yan－Qing Ma（Peking University） yqma＠pku．edu．cn

DESY－Humboldt University Theorie－Seminar， 2023／11／09

北京大豈

## Outline

## I. Introduction to Feynman integrals

II. Analytical computation
III. Semi-analytical computation
IV. Feynman integrals as special functions
V. Summary and outlook

## Quantum field theory

## The only way to combine quantum and relativity

- Uncertainty principle: Large energy probed at short time
- Relativity: Energy can produce mass and particles, thus multi-particle system
$>$ The foundational theoretical framework of physics
- Particle physics, nuclear physics
- Many-body quantum system, cold atom physics
- Gravitational waves
- ...


## Path integral formula for QFT

## $>$ Green functions:

$$
\langle\Omega| T \mathcal{O}(\hat{\phi})|\Omega\rangle=\frac{\int \mathcal{D} \phi \mathcal{O}(\phi) e^{\mathrm{i} S[\phi]}}{\int \mathcal{D} \phi e^{\mathrm{i} S[\phi]}}
$$

Definition of path integral

$$
\mathcal{D} \phi \sim \prod_{x} \int d \phi_{x}
$$

- Integrate over fields at each spacetime point
- Divergent due to infinite number of spacetime points


## 'Two ways to compute QFT (path integrals)

## > Numerical computation via Monte Carlo

- Nonperturbative lattice QFT
$>$ Expanding to asymptotic series
- Perturbative QFT



## Solving QFT nonperturbatively

$>$ Discretize spacetime: reduction to finite degrees of freedom
$>$ Imaginary time $(t \rightarrow i \tau)$ : avoidance of oscillatory behavior

- Computing path integrals via Monte Carlo simulation



## Solving QFT nonperturbatively

## Difficulties

- Computational complexity scales as $O\left(Q^{4}\right)$, hard for high energy $Q$ physics
- Hard for time-dependent observables, like scattering processes




## Solving QFT perturbatively

## $>$ Perturbation: expanding interacting terms as small numbers

$$
\mathcal{L}=\mathcal{L}_{0}+\mathcal{L}_{I}
$$

$$
\int \mathcal{D} \phi\left(1+\mathrm{i} \int \mathrm{~d}^{4} x \mathcal{L}_{I}(\phi)+\cdots\right) e^{\mathrm{i} \int \mathrm{~d}^{4} x\left(\mathcal{L}_{0}+J \phi\right)}
$$

- Valid only if coupling is small!
- Integration over fields: Gaussian integrals, can be worked out
- Result in lots of Feynman diagrams



## Perturbative QFT computation

## 1. Generate Feynman amplitudes

- Feynman diagrams and Feynman rules



## 2. Calculate Feynman loop integrals (FIs)

- Amplitudes: linear combinations of Fls with rational coefficients


## 3. Perform phase-space integrations

- Monte Carlo simulation with IR subtractions
- Relating to loop integrals via reverse unitarity

$$
\int \frac{\mathrm{d}^{D} p}{(2 \pi)^{D}}(2 \pi) \delta_{+}\left(p^{2}\right)=\int \frac{\mathrm{d}^{D} p}{(2 \pi)^{D}}\left(\frac{\mathrm{i}}{p^{2}+\mathrm{i} 0^{+}}+\frac{-\mathrm{i}}{p^{2}-\mathrm{i} 0^{+}}\right)
$$

## Definition of Feynman integrals

## - A family of Feynman integrals

$$
\begin{aligned}
I_{\vec{\nu}}(D, \vec{s}) & =\int \prod_{i=1}^{L} \frac{\mathrm{~d}^{D} \ell_{i}}{\mathrm{i} \pi^{D / 2}} \frac{\mathcal{D}_{K+1}^{-\nu_{K+1}} \cdots \mathcal{D}_{N}^{-\nu_{N}}}{\left(\mathcal{D}_{1}+\mathrm{i} 0^{+}\right)^{\nu_{1}} \cdots\left(\mathcal{D}_{K}+\mathrm{i} 0^{+}\right)^{\nu_{K}}} \\
\mathcal{D}_{\alpha} & =A_{\alpha i j} \ell_{i} \cdot \ell_{j}+B_{\alpha i j} \ell_{i} \cdot p_{j}+C_{\alpha}
\end{aligned}
$$



- $\ell_{1}, \ldots, \ell_{L}$ : loop momenta; $p_{1}, \ldots, p_{E}$ : external momenta;
- $A, B$ : integers; $C$ : linear combination of $\vec{S}$ (including masses)
- $\mathcal{D}_{1}, \ldots, \mathcal{D}_{K}$ : inverse propagators; $v_{1}, \ldots, v_{K}$ : integers
- $\mathcal{D}_{K+1}, \ldots, \mathcal{D}_{N}$ : irreducible scalar products; $v_{K+1}, \ldots, v_{N}$ : non-negative integers
- $D$ : dimensional regularization, avoid infinities (originated from path integrals)


## Nature of FIs

## $>$ Remnants of path integrals

- After integrated out fields, integration over the position/momentum of fields remains
$>$ Complexity of path integrals $\Rightarrow$ complexity of Fls
- Resurgence theory: the perturbative series can eventually recover all nonperturbative information of quantum field theory
- Simpler for small number of loops
- Should be extremely hard as the number of loops increasing


## Challenges of computing FIs

## > Long-standing challenging problem

- One-loop computation: satisfactory approach existed as early as 1970s
't Hooft, Veltman, NPB (1979)
- Multi-loop computation: challenging the field for more than 40 years


## Difficulties of computing Fls

- Analytical: known special functions are insufficient to express multi-loop Fls
- Numerical: (from path integrals) UV, IR, integrable singularities, ...


## Outline

I. Introduction to Feynman integrals
II. Analytical computation
III. Semi-analytical computation
IV. Feynman integrals as special functions
V. Summary and outlook

## Integration-by-parts: example

- A family of FIs: $\quad F(n)=\int \frac{\mathrm{d}^{D} \ell}{(2 \pi)^{D}} \frac{1}{\left(\ell^{2}-\Delta\right)^{n}}$


## $>$ Vanishing on the big hypersphere with radius $R$

> Lagrange, Gauss, Green, Ostrogradski, 1760s-1830s $\int \frac{\mathrm{d}^{D} \ell}{(2 \pi)^{D}} \frac{\partial}{\partial \ell^{\mu}}\left[\frac{\ell^{\mu}}{\left(\ell^{2}-\Delta\right)^{n}}\right] \stackrel{\downarrow}{=} \int_{\partial} \frac{\mathrm{d}^{D-1} S_{\mu}}{(2 \pi)^{D}}\left[\frac{\ell^{\mu}}{\left(\ell^{2}-\Delta\right)^{n}}\right]=0$

- Integrand: fixed power in $R$; Measure: $R^{D-1}$
- Thus vanishing in dimensional regularization
$>$ Relations between Fls

$$
\begin{gathered}
0=\int_{\ell}\left[\frac{D}{\left(\ell^{2}-\Delta\right)^{n}}-n \int_{\ell} \frac{2\left(\ell^{2}-\Delta\right)+2 \Delta}{\left(\ell^{2}-\Delta\right)^{n+1}}\right]=(D-2 n) F(n)-2 n \Delta F(n+1) \\
F(n+1)=\frac{1}{-\Delta} \frac{n-\frac{D}{2}}{n} F(n)
\end{gathered}
$$

- All Fls in this family can be expressed by $F(1)$


## General IBP equations

## Dimensional regularization: vanish at boundary

$$
\int \prod_{i=1}^{L} \frac{\mathrm{~d}^{D} \ell_{i}}{\mathrm{i} \pi^{D / 2}} \frac{\partial}{\partial \ell_{j}^{\mu}}\left(q_{k}^{\mu} \frac{\mathcal{D}_{K+1}^{-\nu_{K+1}} \cdots \mathcal{D}_{N}^{-\nu_{N}}}{\mathcal{D}_{1}^{\nu_{1}} \cdots \mathcal{D}_{K}^{\nu_{K}}}\right)=0, \quad \begin{aligned}
& \begin{array}{l}
\text { 't Hooft, Veltman, NPB (1972) } \\
\text { Chetyrkin, Tkachov, NPB (1981) }
\end{array} \\
& \forall \vec{\nu}, j, k
\end{aligned} \quad \begin{aligned}
& q^{\mu}=\left(\ell_{1}^{\mu}, \cdots, \ell_{L}^{\mu}, p_{1}^{\mu}, \cdots, p_{E}^{\mu}\right)
\end{aligned}
$$

- Linear equation: $\sum_{\vec{\nu}^{\prime}} Q_{\vec{\nu}^{\prime}}^{\vec{\nu} j k}(D, \vec{s}) I_{\vec{\nu}^{\prime}}(D, \vec{s})=0$
- $Q$ : polynomials in $D, \vec{s}$
- Plenty of linear equations can be easily obtained by varying: $\vec{v}, j, k$


## IBP reduction

## $>$ A family of Fls form a FINITE-dim. linear space

Proved by: Smirnov, Petukhov, 1004.4199

- Bases of the linear space called master integrals (MIs)
- IBPs reduce plenty of FIs to much less MIs

$$
I_{\vec{\nu}}=\sum_{i=1}^{M} c_{i} I_{i}
$$

$>$ Solving IBP eqs. based on Laporta's algorithm:

- Automatic, any-loop order
- Public codes: AIR, FIRE, LiteRed, Reduze, Kira, FiniteFlow, NeatIBP, Blade...
- Many more private codes


## Differential equations: example

## $>$ Due to IBP: DEs of MIs

$$
\begin{aligned}
& \frac{s=p^{2}}{m} I_{\nu_{1} \nu_{2}}=\int \frac{\mathrm{d}^{D} \ell}{\mathrm{i} \pi^{D / 2}} \frac{1}{\left(\ell^{2}-m^{2}\right)^{\nu_{1}}\left[(\ell+p)^{2}-m^{2}\right]^{\nu_{2}}} \\
& \frac{\partial}{\partial m^{2}} I_{11}=I_{21}+I_{12} \stackrel{\text { IBP }}{=} \frac{2(D-3)}{4 m^{2}-s} I_{11}-\frac{D-2}{m^{2}\left(4 m^{2}-s\right)} I_{10} \\
& \frac{\partial}{\partial m^{2}} I_{10}=I_{20} \stackrel{\operatorname{IBP}}{=} \frac{D-2}{2 m^{2}} I_{10} \\
& \left\{\begin{array}{l}
\frac{\partial}{\partial s} I_{11}=\frac{p^{\mu}}{2 s} \frac{\partial}{\partial p^{\mu}} I_{11}=-\frac{1}{2 s} \int \frac{\mathrm{~d}^{D} \ell}{\mathrm{i} \pi^{D / 2}} \frac{2(\ell+p) \cdot p}{\left(\ell^{2}-m^{2}\right)\left[(\ell+p)^{2}-m^{2}\right]^{2}} \\
\frac{\partial}{\partial s} I_{10}=-\frac{s I_{12}+I_{11}-I_{02}}{2 s} \stackrel{\operatorname{IBP}}{=} a_{11} I_{11}+a_{10} I_{10}
\end{array}\right.
\end{aligned}
$$

## >Boundary Condition

$$
\left\{\begin{array}{l}
\left.I_{11}\right|_{m^{2} \rightarrow 0}=(-s)^{D / 2-2} \Gamma(2-D / 2) \frac{\Gamma(D / 2-1)^{2}}{\Gamma(D-2)} \\
I_{10}
\end{array}\right.
$$

## DEs method

$>$ Step 1: Set up $\vec{s}$-DEs of MIs

- Differentiate MIs w.r.t. invariants $\vec{s}$, such as $m^{2}, p_{i} \cdot p_{j}$
- IBP relations result in:

$$
\frac{\partial}{\partial s_{i}} \boldsymbol{I}(\epsilon, \vec{s})=A_{i}(\epsilon, \vec{s}) \boldsymbol{I}(\epsilon, \vec{s})
$$

- $A_{i}$ : matrix with rational elements
$>$ Step 2: Calculate boundary condition at a given value of $\vec{s}$

Step 3: Solve DEs either analytically or numerically

## Canonical form

$>$ In some cases, choosing proper basis

$$
\frac{\partial}{\partial s_{i}} \boldsymbol{I}^{\prime}(\epsilon, \vec{s})=\epsilon A_{i}^{\prime}(\vec{s}) \boldsymbol{I}^{\prime}(\epsilon, \vec{s})
$$

$>$ Solution after expanding $\epsilon$ : Multiple Polylogarithms

$$
\begin{aligned}
G\left(a_{1}, a_{2}, \cdots, a_{n} ; z\right) & :=\int_{0}^{z} \frac{\mathrm{~d} t}{t-a_{1}} G\left(a_{2}, \cdots, a_{n} ; t\right) \\
G(\overbrace{0, \cdots, 0}^{n} ; z) & :=\frac{1}{n!} \log ^{n} z, \quad G(; z):=1
\end{aligned}
$$

- Properties well-known, easy to obtain numerical values
- Many cutting-edge problems have been solved in this way!


## Beyond Multiple Polylogarithms

## Elliptic functions

- Appear as early as equal mass sunrise diagram!



## More complicated functions exist, like defined by Calabi-Yau manifold

- Not well-studied mathematical objects
- Hard to obtain numerical values

Studying these mathematical objects: a hot topic

## Outline

I. Introduction to Feynman integrals
II. Analytical computation
III. Semi-analytical computation
IV. Feynman integrals as special functions
V. Summary and outlook

## Auxiliary mass terms

## > Auxiliary Fls

$$
I_{\vec{\nu}}^{a \operatorname{aux}}(D, \vec{s}, \eta)=\int \prod_{i=1}^{L} \frac{\mathrm{~d}^{D} \ell_{i}}{\mathrm{i} \pi^{D / 2}} \frac{\mathcal{D}_{K+1}^{-\nu_{K+1}} \cdots \mathcal{D}_{N}^{-\nu_{N}}}{\left(\mathcal{D}_{1}-\lambda_{1} \eta+\mathrm{i} 0^{+}\right)^{\nu_{1}} \cdots\left(\mathcal{D}_{K}-\lambda_{K} \eta+\mathrm{i} 0^{+}\right)^{\nu_{K}}}
$$

- $\lambda_{i} \geq 0$ (typically 0 or 1 ), an auxiliary mass if $\lambda_{i}>0$
- Analytical function of $\eta$
- Physical result obtained by (causality)
X. Liu, YQM, C. Y. Wang, 1711.09572


Xiao Liu, Oxford U.

$$
I_{\vec{\nu}}(D, \vec{s}) \equiv \lim _{\eta \rightarrow \mathrm{i} 0^{-}} I_{\vec{\nu}}^{\operatorname{aux}}(D, \vec{s}, \eta)
$$

- 1) Setup $\eta$-DEs; 2) Calculate boundary conditions; 3) Solve $\eta$-DEs
$>\eta$-DEs for MIs in auxiliary family using IBP

$$
\frac{\partial}{\partial \eta} \vec{I}^{\mathrm{aux}}(D, \vec{s}, \eta)=A(D, \vec{s}, \eta) \vec{I}^{\mathrm{aux}}(D, \vec{s}, \eta)
$$



Chen-Yu Wang, MPP

## Boundary values at $\eta \rightarrow \infty$

Nonzero integration regions as $\eta \rightarrow \infty$

- Linear combinations of loop momenta: $\mathcal{O}(\sqrt{|\eta|})$ or $\mathcal{O}(1) \quad \begin{aligned} & \text { Beneke, Smirnov, } 9711391 \\ & \text { Smirnov, } 9907471\end{aligned}$
$>$ Simplify propagators at $\eta \rightarrow \infty$
- $\quad \ell_{L}$ is the $\mathcal{O}(\sqrt{|\eta|})$ part of loop momenta
- $\quad \ell_{S}$ is the $\mathcal{O}(1)$ part of loop momenta

- $p$ is linear combination of external momenta

$$
\frac{1}{\left(\ell_{\mathrm{L}}+\ell_{\mathrm{S}}+p\right)^{2}-m^{2}-\kappa \eta} \sim \frac{1}{\ell_{\mathrm{L}}^{2}-\kappa \eta}
$$

- Unchange if $\ell_{L}=0$ and $\kappa=0$


## $>$ Boundary Fls are simpler

1. Vacuum integrals
2. Simpler FIs with less denominators, if all loop momenta are $\mathcal{O}(1)$

## Flow of auxiliary mass

## > Solve ODEs of MIs



$$
\frac{\partial}{\partial \eta} \vec{I}^{\mathrm{aux}}(D, \vec{s}, \eta)=A(D, \vec{s}, \eta) \vec{I}^{\mathrm{aux}}(D, \vec{s}, \eta)
$$

- If $\vec{I}^{\text {aux }}(D, \vec{s}, \infty)$ is known, solving ODEs numerically to obtain $\vec{I}^{a u x}\left(D, \vec{s}, \mathrm{i}^{-}\right)$
- A well-studied mathematical problem

Step1: Asymptotic expansion at $\eta=\infty$
Step2: Taylor expansion at analytical points Step3: Asymptotic expansion at $\eta=0$

- Efficient to get high precision : ODEs, known singularity structure


## Iterative strategy: FIs with less denominators

## > For boundary Fls with less denominators:

- Calculate them again use AMF method, even simpler boundary Fls as input (besides vacuum integrals)

- Eventually, leaving only (single-mass) vacuum integrals as input


## Iterative strategy: vacuum integrals

## - A family of single-mass vacuum integrals

$$
\begin{aligned}
& I_{\vec{\nu}}\left(D, m^{2}\right)=\int \prod_{i=1}^{L} \frac{\mathrm{~d}^{D} \ell_{i}}{\mathrm{i} \pi^{D / 2}} \frac{\mathcal{D}_{K+1}^{-\nu_{K+1}} \cdots \mathcal{D}_{N}^{-\nu_{N}}}{\left(\mathcal{D}_{1}+\mathrm{i} 0^{+}\right)^{\nu_{1}} \cdots\left(\mathcal{D}_{K}+\mathrm{i} 0^{+}\right)^{\nu_{K}}} \\
& \widehat{I}_{\vec{\nu}^{\prime}}\left(\ell_{1}^{2}\right)=\int\left(\prod_{i=2}^{L} \frac{\mathrm{D}^{D} \ell_{i}}{\mathrm{i} \pi^{D / 2}} \frac{\mathcal{D}_{K+1}^{2}-m^{2}+\mathrm{i}^{+}}{\mathcal{D}_{2}^{\nu_{2}} \cdots \mathcal{D}_{K}^{\nu_{K}}}\right. \\
& I_{\vec{\nu}}=\int \frac{\mathrm{d}^{D} \ell_{1}}{\mathrm{i} \pi^{D / 2}} \frac{\left(-\ell_{1}^{2}\right)^{\frac{(L-1) D}{2}}-\nu+\nu_{1}}{\left(\ell_{1}^{2}-1+\mathrm{i} 0^{+}\right)^{\nu_{1}}} \widehat{I}_{\vec{\nu}^{\prime}}(-1)=\frac{\Gamma(\nu-L D / 2) \Gamma\left(L D / 2-\nu+\nu_{1}\right)}{(-1)^{\nu_{1}} \Gamma\left(\nu_{1}\right) \Gamma(D / 2)} \widehat{I}_{\vec{\nu}^{\prime}}(-1)
\end{aligned}
$$

- $L$-loop vacuum integrals expressed by $(L-1)$-loop p-integrals
- Using AMFLow: $L$-loop vacuum integrals reduced to $(L-1)$-loop vacuum integrals


Zero input; valid to any loop

## AMFlow: Package

## Download

Link: https://gitlab.com/multiloop-pku/amflow

| Name | Last commit | Last update |
| :---: | :---: | :---: |
| $\square$ diffeq_solver | update | 5 months ago |
| $\square$ examples | update | 3 months ago |
| ■ibp_interface | fix_a_bug_for_mpi_version | 1 week ago |
| c AMFlow.m | fix mass mode | 2 months ago |
| m* CHANGELOG.md | update changelog | 1 week ago |
| M* FAQ.md | update | 6 months ago |
| En LICENSE.md | test | 7 months ago |
| M* README.md | update | 3 months ago |
| [ options_summary | update | 3 months ago |

$>$ Feature

- The first package that can calculate any FI (with any number of loops, any $D$ and $\vec{s}$ ) to arbitrary precision, given sufficient resource


## Phenomenological applications

$>$ Compute FIs point by point using AMFIow?

- Easy to implement and to parallelize
- But ignoring the fact that the value of Fls at two nearby points have small difference
- Not an efficient way



## AMFlow+kinematic DEs

## $>$ Information of kinematic DEs

$$
\frac{\partial}{\partial s_{i}} \boldsymbol{I}(\epsilon, \vec{s})=A_{i}(\epsilon, \vec{s}) \boldsymbol{I}(\epsilon, \vec{s})
$$

- Tell how Fls change in the kinematic space
- Very efficient when two points are close to each other


## $>$ Tips

- Zero-dim.: a number computed by AMFIow
- One-dim.: series solutions to cover all interested regions
- Low dim.: a grid (of series solutions)
- High dim.: importance sampling


## Outline

I. Introduction to Feynman integrals
II. Analytical computation
III. Semi-analytical computation
IV. Feynman integrals as special functions
V. Summary and outlook

## Short summary

## > Analytical computation

- In general involving not well-studied special functions, which are hard to obtain numerical values


## >Semi-analytical computation

- General enough to deal with any FI
- Can obtain numerical values to arbitrary precision
$>$ Can we define MIs as special functions?
- What are still missing for this purpose?


## Special functions

$>$ Typically require the following conditions:

1. Having both integral and differential representations
2. Clear singularities and branching cuts
3. Availability of expansions to Taylor series or asymptotic series
$>$ Facilitate the exploration of global and local properties, as well as efficient evaluation

## 1. Integral and differential representations

## > Integral representation: Yes

## Differential representation: Yes

- Have DEs w.r.t. kinematic variables, boundary conditions provided by AMFIow
- Note: no differential equations w.r.t. $\epsilon$, it should be thought as a parameter


## Wish list

- Choosing better MIs, so that DEs are simple, no spurious poles; the method must be systematic, applicable to general cases beyond MPLs


## 2. Singularities and branching cuts

## $>$ Singularities: Yes

- Determined by Landau equations, but are hard to solve
- Subset of poles in DEs; spurious poles can be checked by solving DEs going around it


## > Branching cuts: maybe

- Clear for simple cases, by studying the Feynman prescription $i 0^{+}$
- No good method for general case, especially when there are cut propagators $1 / \mathcal{D} \rightarrow \delta(\mathcal{D})$
- Bottom line: compute many points around a singularity using AMFlow, comparing with running using DEs


## Wish list

- A better way to determine singularities: solving Landau equations or other ways
- A better way to identify branching cuts


## 3. Taylor or asymptotic series

$>$ Yes

- Can do the expansion at any points using DEs
> Efficiency
- Depending on the complexity of DEs, helpful to have better MIs


## Bonus

## $>$ Exhausting relations among coefficients of $\epsilon$ expansion

$$
\boldsymbol{I}(\epsilon, \vec{s})=\sum_{i} \boldsymbol{I}^{(i)}(\vec{s}) \epsilon^{i}
$$

- More relations exists after expansion, how to systematically find these relations?
- A famous example, one-loop 5-point function expressed by 4-point functions
- Bottom line: PSLQ fit with high-precision input using AMFIow


## $>$ Relations to not well-studied special functions

- Instead of using other special functions to study FIs, using FIs to study these special functions


## Summary

$>$ Solving QFT perturbatively: important for many fields
$>$ One of the main challenges: Fls computation
> Analytical computation of Fls: fruitful, but has clear obstacles
> Semi-analytical computation of FIs: general enough

- Constructive to define FIs as special functions


## Outlook

## Plenty things to do

(1) Systematical way to choose better MIs
(2) Systematical way to determine singularities
(3) Systematical way to identify branching cuts
(4) Systematical way to find relations after $\epsilon$ expansion
(5) Improve the efficiency of IBP reduction: the main bottleneck for many problems

## Thank you!

## Era of precision physics at the LHC

## High-precision data

- Many observables probed at precent-level precision
- At least NNLO QCD corrections generally required (plus NLO EW, parton shower, resummation, etc.)


Automatic higher order perturbative calculation is highly demanded

Note: Automatic NLO correction obtained 15 years ago: MadGraph, Helac, etc

