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Quantum field theory

» The only way to combine quantum and relativity

* Uncertainty principle: Large energy probed at short time

* Relativity: Energy can produce mass and particles, thus multi-particle system

» The foundational theoretical framework of physics

« Particle physics, nuclear physics
 Many-body quantum system, cold atom physics

 Gravitational waves
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Path integral formula for QFT

» Green functions:

Do)l
@rrow)e) = L 5TN

» Definition of path integral
D¢~H xf d¢x

* Integrate over fields at each spacetime point

* Divergent due to infinite number of spacetime points
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Two ways to compute QFT (path integrals)

» Numerical computation via Monte Carlo —

* Nonperturbative lattice QFT bed 0

1 W

» Expanding to asymptotic series

 Perturbative QFT
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Solving QFT nonperturbatively

» Discretize spacetime: reduction to finite degrees of freedom
» Imaginary time (t — i 7): avoidance of oscillatory behavior

« Computing path integrals via Monte Carlo simulation

K. G. Wilson Lattice Super computer

Yan-Qing Ma 6/38



> Difficulties

- Computational complexity scales as 0(Q*), hard for high energy Q physics

 Hard for time-dependent observables, like scattering processes

Solving QFT nonperturbatively
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Solving QFT perturbatively

» Perturbation: expanding interacting terms as small numbers

L=Ly+ L /D¢(1+i/d4x£](q§)_|_...)€ifd450(£0+J¢)

« Valid only if coupling is small!
» Integration over fields: Gaussian integrals, can be worked out

* Resultin lots of Feynman diagrams
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Perturbative QFT computation

1. Generate Feynman amplitudes

[2. Calculate Feynman loop integrals (Fls) }

Amplitudes: linear combinations of Fls with rational coefficients

3. Perform phase-space integrations

Monte Carlo simulation with IR subtractions
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Relating to loop integrals via reverse unitarity
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Definition of Feynman integrals

> A family of Feynman integrals

(D, dPe; Dyt DY
S /H 17TD/2 Dl —|_ 10+)V1 e (DK —|_ io+)VK L LD L L L b o L

Dy = Apijli - j + Baijli - pj + Co

?4, ..., 7. loop momenta; py, ..., pr: external momenta;

A, B: integers; C: linear combination of s (including masses)

D4, ..., Dg: inverse propagators; v4, ..., vg: integers

Dx+1,---, Dy irreducible scalar products; v, 4, ..., vy: Nnon-negative integers

D: dimensional regularization, avoid infinities (originated from path integrals)
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Nature of Fls

» Remnants of path integrals

« After integrated out fields, integration over the position/momentum of fields remains

» Complexity of path integrals = complexity of Fls

 Resurgence theory: the perturbative series can eventually recover all
nonperturbative information of quantum field theory
« Simpler for small number of loops

« Should be extremely hard as the number of loops increasing
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Challenges of computing FIs

» Long-standing challenging problem

 One-loop computation: satisfactory approach existed as early as 1970s

« Multi-loop computation: challenging the field for more than 40 years

» Difficulties of computing Fls

« Analytical: known special functions are insufficient to express multi-loop Fls

 Numerical: (from path integrals) UV, IR, integrable singularities, ...
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Integration-by-parts: example

dPy 1
2m) P (02 — A)n

» Vanishing on the big hypersphere with radius R

dP¢ 0 Az U dD—1SM o ll
/ (2m)" ot {“2 B N”} N /a (2m)P {(62 - A)”} =Y

Integrand: fixed power in R; Measure: R°~1

« A family of Fls: F(n):/(

 Thus vanishing in dimensional regularization

> Relations between Fls
B D 202 — A)+2A7
O_/g{(£2 A)”_n/g NG } = (D —2n)F(n) —2nAF(n+1)
| n_D
F(n+1) = —— 2 F(n)

« All Fls in this family can be expressed by F(1)
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General IBP equations

» Dimensional regularization: vanish at boundary

/HdDg O (@B = DN TN 00y,
17TD/28€“ k DIt - - DX ’ e

\U/ ﬁ:({)f’...,{)g’p{t,...,pg)

Linear equation: Z ka SV (D, §) =0

Q: polynomials in D, S

Plenty of linear equations can be easily obtained by varying: v,/, k
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IBP reduction

» A family of Fls form a FINITE-dim. linear space

Bases of the linear space called master integrals (Mls)

IBPs reduce plenty of Fls to much less Mls

M
L;;: E Ci[@;
1=1

» Solving IBP eqs. based on Laporta’s algorithm:

Automatic, any-loop order
Public codes: AIR, FIRE, LiteRed, Reduze, Kira, FiniteFlow, NeatIiBP, Blade...

Many more private codes
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Differential equations: example

> Due to IBP: DEs of Mis

IBP 2(D—3 D -2 7
4m? — s m2(4m?2 — s) "
D -2
IBP 2o
- 1 dP/¢ 200+ p)-p
—In=7—In=—4 - _D/2 (2 2 2 212
0s 25 Oph 2s | inP/2 (2 — m?)[(£L + p)? — m?]
d 1 I —1
S 12+211 22 anhi + aioho
2] =0 i
L 5110 =
» Boundary Condition

{IﬂmQ—m = (=5)P*7°r(2 - D/Q)F(Pl()l/f__;))
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DEs method

> Step 1: Set up s-DEs of Mis

Differentiate Mls w.r.t. invariants s, such as m?,p; - 1

IBP relations result in:

0
887;

A;: matrix with rational elements

I(e,5)=A;(e,5)I(e,5)

> Step 2: Calculate boundary condition at a given value of s

» Step 3: Solve DEs either analytically or numerically
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Canonical form

» In some cases, choosing proper basis

%I’(e,g’) = eAL(5)I'(e,5)

» Solution after expanding e: Multiple Polylogarithms

°odt
G((M?GQ? e :.az-n,; Z) .= f G(&Q? e :.a/-n,;t):.
0

t—a:1
" 1 |
G0, ---,0;2) .= —log"z, G(;z):=1.

n!

Properties well-known, easy to obtain numerical values

Many cutting-edge problems have been solved in this way!
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Beyond Multiple Polylogarithms

» Elliptic functions

Appear as early as equal mass sunrise diagram!

» More complicated functions exist, like
defined by Calabi-Yau manifold

Not well-studied mathematical objects

Hard to obtain numerical values

Studying these mathematical objects: a hot topic
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Auxiliary mass terms

X. Liu, YQM, C. Y. Wang, 1711.09572

» Auxiliary Fls

epsn- [l e D
v irD/2 (D — My p+i0H)"1 - (D — Agn +i01H)vx

« J1; = 0 (typically 0 or 1), an auxiliary mass if 1; > 0

« Analytical function of n

« Physical result obtained by (causality) o Xiao Liu, OXfordU.
I(D,s) = lim I3*(D,s,n)
n—10—

* 1) Setup n-DEs; 2) Calculate boundary conditions; 3) Solve n-DEs

» n-DEs for Mls in auxiliary family using IBP

0

a—fa“X(D, §,n) = A(D,8,n)[*™(D, 5,n)
n

Chen-Yu Wang, MPP
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Boundary values at n — o

» Nonzero integration regions as n — o
« Linear combinations of loop momenta: 0(,/[5]) or 0(1)

» Simplify propagators atn — o o )
: Tips: Strategy of regions is very |

I

« ¢, isthe 0({/In]) part of loop momenta I powerful and useful. ltis the I

« ¢ is the 0(1) part of loop momenta ] rationale of effective field theory.=

* pislinear combination of external momenta
1 1
(l, +0ls+p)2—m2 —kn E%—ﬁ‘,n
* Unchangeif /, =0andkx =0

» Boundary Fls are simpler

1. Vacuum integrals

2. Simpler Fls with less denominators, if all loop momenta are 0(1)
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Flow of auxiliary mass

> Solve ODEs of Mls

Yan-Qing Ma

Im(n)

________

" | Singularity structure

T’Tu

8 - —
(D, 5,) = A(D, 5, )I*(D,5,1)
n

. If [%¥*(D, 3, ) is known , solving ODEs
numerically to obtain /%%*(D, §,i07)
« A well-studied mathematical problem

Step1: Asymptotic expansion atn = o
Step2: Taylor expansion at analytical points
Step3: Asymptotic expansionatn =0

« Efficient to get high precision :
ODEs, known singularity structure
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Iterative strategy: FIs with less denominators

» For boundary Fls with less denominators:

Calculate them again use AMF method, even simpler boundary Fls as input

(besides vacuum integrals)

-
S
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Eventually, leaving only (single-mass) vacuum integrals as input

3
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.
»
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i
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Iterative strategy: vacuum integrals

> A family of single-mass vacuum integrals £ R, A, z2o1esy
/H aP¢, KiKlH...D]—V”N D, = 32 m2 +i0t
ir/2 (D1 +10%)"1 -+ (D +10F)c e,
Lj’ (E%) - / (IHQ i7I'D/2) 552 - D;(K R
AP (CR)TET T . Ty LD/T(LD)2 — v+ 1) -
17 _/ inD/2 (2 —14i0+)" Ty (=)= (—1)T(vy)T(D/2) Ty (=1)

Zhi-Feng Liu, Zhejiang U.
« L-loop vacuum integrals expressed by (L — 1)-loop p-integrals

* Using AMFLow: L-loop vacuum integrals reduced to (L — 1)-loop vacuum integrals

Zero input; valid to any loop
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AMFlow: Package

> Download Liu, YQM, 2201.11669
Link: https://gitlab.com/multiloop-pku/amflow

Name Last commit Last update
3 diffeq_solver update 3 months ago
3 examples update 3 months ago
B3 ibp_interface fix_a_bug_for_mpi_version 1 week ago
C AMFlow.m fix mass mode 2 months ago
M CHANGELOG.md update changelog 1 week ago
Me FAQ.md update 6 maonths ago
B3 LICENSE.md test 7 months ago
=+ README.md update 3 months ago
[% options_summary update 3 months ago

> Feature

« The first package that can calculate any Fl (with any number of loops, any D

and 5) to arbitrary precision, given sufficient resource
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https://gitlab.com/multiloop-pku/amflow

Phenomenological applications

» Compute Fls point by point using AMFlow? =

« Easy to implement and to parallelize

« Butignoring the fact that the value of Fis at

two nearby points have small difference

Not an efficient way
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AMFlow+kinematic DEs

> Information of kinematic DEs

9, . . . in
83,,;I(6’8 )= A;(e,5 )I(€,5)

* Tell how Fls change in the kinematic space

» Very efficient when two points are close to each other
> Tips

« Zero-dim.: a number computed by AMFlow

 One-dim.: series solutions to cover all interested regions
« Low dim.: a grid (of series solutions)

 High dim.: importance sampling
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Short summary

» Analytical computation

In general involving not well-studied special functions,

which are hard to obtain numerical values

» Semi-analytical computation

* General enough to deal with any FI

« Can obtain numerical values to arbitrary precision

» Can we define MIs as special functions?

« What are still missing for this purpose?

Yan-Qing Ma
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Special functions

» Typically require the following conditions:

1. Having both integral and differential representations
2. Clear singularities and branching cuts

3. Availability of expansions to Taylor series or asymptotic series

> Facilitate the exploration of global and local properties,
as well as efficient evaluation
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1. Integral and differential representations

» Integral representation: Yes

» Differential representation: Yes

Have DEs w.r.t. kinematic variables, boundary conditions provided by AMFlow

Note: no differential equations w.r.t. ¢, it should be thought as a parameter

> Wish list

Choosing better Mls, so that DEs are simple, no spurious poles; the method

must be systematic, applicable to general cases beyond MPLs

Yan-Qing Ma
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2. Singularities and branching cuts

» Singularities: Yes

 Determined by Landau equations, but are hard to solve

 Subset of poles in DEs; spurious poles can be checked by solving DEs going around it

» Branching cuts: maybe

« Clear for simple cases, by studying the Feynman prescription i 0%
 No good method for general case, especially when there are cut propagators 1/D — §(D)

 Bottom line: compute many points around a singularity using AMFlow, comparing with

running using DEs
» Wish list

* A better way to determine singularities: solving Landau equations or other ways

* A better way to identify branching cuts
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3. Taylor or asymptotic series

> Yes

Can do the expansion at any points using DEs

» Efficiency

Depending on the complexity of DEs, helpful to have better Mis
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Bonus

» Exhausting relations among coefficients of ¢ expansion
I(e,5)= ZI(i)(g)Ei

More relations exists after expansion, how to systematically find these relations?

A famous example, one-loop 5-point function expressed by 4-point functions

Bottom line: PSLQ fit with high-precision input using AMFlow

» Relations to not well-studied special functions

* Instead of using other special functions to study Fls, using Fls to study these special functions
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Summary

» Solving QFT perturbatively: important for many fields

» One of the main challenges: Fls computation

» Analytical computation of Flis: fruitful, but has clear obstacles

» Semi-analytical computation of Fls: general enough

» Constructive to define Fls as special functions
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Outlook

» Plenty things to do

(D Systematical way to choose better Mis

@ Systematical way to determine singularities

(3 Systematical way to identify branching cuts

@) Systematical way to find relations after € expansion

® Improve the efficiency of IBP reduction: the main bottleneck for many problems

Thank you!
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Era of precision physics at the LHC

> H i h r e C i S i O n d at a Standard Model Production Cross Section Measurements Status: February 2022
g p g 10" ‘ ATLAS Preliminary B e
b V5=57,813 TeV
10° &5 Cpp V:
- Many observables probed at w0 | "
i ATL-PHYS-PUB-2022-009
precent-level precision & °a3, —_ ——
T faRSe S, IO
10° = ‘? ! A't;: vniogag o0
10’ : l-“? LD- Aoj v ‘QO : '§°A :‘ o ﬂ
- Atleast NNLO QCD corrections 1 :: a%) g2 & ma 3.0 L
an W .o‘ = ?“-"‘u;;ln p~ ‘,Q"P ' 0 u
generally required (plus NLO EW, 10-* ;i :: o o b “% hag ™ g
. 102 L I  fi 2 o=
parton shower, resummation, etc.) . B o g i o| |1 alo u‘“a;
10 B ! s oo
PP Jets ¥ w z tt t VW 7YY H  Hjj VH Vy iV tiH liwwv v"rrr_ yyyz:f VVii

Automatic higher order perturbative calculation is highly demanded

Note: Automatic NLO correction obtained 15 years ago: MadGraph, Helac, etc
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