Reclassifying Feynman Integrals as Special Functions

Yan-Qing Ma (Peking University) yqma@pku.edu.cn

DESY-Humboldt University Theorie-Seminar, 2023/11/09

Outline

I. Introduction to Feynman integrals

- **II. Analytical computation**
- **III. Semi-analytical computation**
- **IV. Feynman integrals as special functions**
- V. Summary and outlook

Quantum field theory

> The only way to combine quantum and relativity

- Uncertainty principle: Large energy probed at short time
- Relativity: Energy can produce mass and particles, thus multi-particle system

> The foundational theoretical framework of physics

- Particle physics, nuclear physics
- Many-body quantum system, cold atom physics
- Gravitational waves

• ...

Path integral formula for QFT

Green functions:

$$\langle \Omega | T \mathcal{O}(\hat{\phi}) | \Omega \rangle = \frac{\int \mathcal{D}\phi \mathcal{O}(\phi) e^{\mathbf{i}S[\phi]}}{\int \mathcal{D}\phi e^{\mathbf{i}S[\phi]}}$$

Definition of path integral

$$\mathcal{D}\phi \sim \prod_{x} \int d\phi_x$$

- Integrate over fields at each spacetime point
- Divergent due to infinite number of spacetime points

Two ways to compute QFT (path integrals)

Numerical computation via Monte Carlo

Nonperturbative lattice QFT

Expanding to asymptotic series

• Perturbative QFT

 $\int \mathcal{D}\phi \mathcal{O}(\phi) e^{\mathrm{i}S[\phi]}$

Complementary to each other

Solving QFT nonperturbatively

> Discretize spacetime: reduction to finite degrees of freedom > Imaginary time ($t \rightarrow i \tau$): avoidance of oscillatory behavior

Computing path integrals via Monte Carlo simulation

Solving QFT nonperturbatively

Difficulties

- Computational complexity scales as $O(Q^4)$, hard for high energy Q physics
- Hard for time-dependent observables, like scattering processes

Solving QFT perturbatively

Perturbation: expanding interacting terms as small numbers

$$\mathcal{L} = \mathcal{L}_0 + \mathcal{L}_I \qquad \int \mathcal{D}\phi \Big(1 + \mathbf{i} \int \mathrm{d}^4 x \mathcal{L}_I(\phi) + \cdots \Big) e^{\mathbf{i} \int \mathrm{d}^4 x (\mathcal{L}_0 + J\phi)}$$

- Valid only if coupling is small!
- Integration over fields: Gaussian integrals, can be worked out
- Result in lots of Feynman diagrams

Perturbative QFT computation

- 1. Generate Feynman amplitudes
 - Feynman diagrams and Feynman rules

2. Calculate Feynman loop integrals (FIs)

Amplitudes: linear combinations of FIs with rational coefficients

3. Perform phase-space integrations

- Monte Carlo simulation with IR subtractions
- Relating to loop integrals via reverse unitarity

$$\int \frac{\mathrm{d}^D p}{(2\pi)^D} (2\pi) \delta_+(p^2) = \int \frac{\mathrm{d}^D p}{(2\pi)^D} \left(\frac{\mathrm{i}}{p^2 + \mathrm{i}0^+} + \frac{-\mathrm{i}}{p^2 - \mathrm{i}0^+} \right)$$

Definition of Feynman integrals

> A family of Feynman integrals

$$I_{\vec{\nu}}(D,\vec{s}) = \int \prod_{i=1}^{L} \frac{\mathrm{d}^{D}\ell_{i}}{\mathrm{i}\pi^{D/2}} \frac{\mathcal{D}_{K+1}^{-\nu_{K+1}} \cdots \mathcal{D}_{N}^{-\nu_{N}}}{(\mathcal{D}_{1} + \mathrm{i}0^{+})^{\nu_{1}} \cdots (\mathcal{D}_{K} + \mathrm{i}0^{+})^{\nu_{K}}}$$

$$\mathcal{D}_{\alpha} = A_{\alpha i j} \ell_i \cdot \ell_j + B_{\alpha i j} \ell_i \cdot p_j + C_{\alpha}$$

- ℓ_1, \dots, ℓ_L : loop momenta; p_1, \dots, p_E : external momenta;
- *A*, *B*: integers; *C*: linear combination of \vec{s} (including masses)
- $\mathcal{D}_1, \dots, \mathcal{D}_K$: inverse propagators; ν_1, \dots, ν_K : integers
- $\mathcal{D}_{K+1}, \dots, \mathcal{D}_N$: irreducible scalar products; v_{K+1}, \dots, v_N : non-negative integers
- *D*: dimensional regularization, avoid infinities (originated from path integrals)

Nature of FIs

Remnants of path integrals

• After integrated out fields, integration over the position/momentum of fields remains

> Complexity of path integrals \Rightarrow complexity of FIs

- Resurgence theory: the perturbative series can eventually recover all nonperturbative information of quantum field theory
- Simpler for small number of loops
- Should be extremely hard as the number of loops increasing

Challenges of computing FIs

Long-standing challenging problem

• One-loop computation: satisfactory approach existed as early as 1970s

't Hooft, Veltman, NPB (1979)

• Multi-loop computation: challenging the field for more than 40 years

Difficulties of computing FIs

- Analytical: known special functions are insufficient to express multi-loop FIs
- Numerical: (from path integrals) UV, IR, integrable singularities, ...

Outline

I. Introduction to Feynman integrals

II. Analytical computation

III. Semi-analytical computation

IV. Feynman integrals as special functions

V. Summary and outlook

Integration-by-parts: example

• A family of FIs:
$$F(n) = \int \frac{\mathrm{d}^D \ell}{(2\pi)^D} \frac{1}{(\ell^2 - \Delta)^n}$$

> Vanishing on the big hypersphere with radius R

Lagrange, Gauss, Green, Ostrogradski, 1760s-1830s 't Hooft, Veltman, NPB (1972)

$$\int \frac{\mathrm{d}^D \ell}{(2\pi)^D} \frac{\partial}{\partial \ell^{\mu}} \left[\frac{\ell^{\mu}}{(\ell^2 - \Delta)^n} \right] \stackrel{\text{l}}{=} \int_{\partial} \frac{\mathrm{d}^{D-1} S_{\mu}}{(2\pi)^D} \left[\frac{\ell^{\mu}}{(\ell^2 - \Delta)^n} \right] \stackrel{\text{l}}{=} 0.$$

- Integrand: fixed power in R; Measure: R^{D-1}
- Thus vanishing in dimensional regularization

Relations between FIs

$$0 = \int_{\ell} \left[\frac{D}{(\ell^2 - \Delta)^n} - n \int_{\ell} \frac{2(\ell^2 - \Delta) + 2\Delta}{(\ell^2 - \Delta)^{n+1}} \right] = (D - 2n)F(n) - 2n\Delta F(n+1)$$
$$F(n+1) = \frac{1}{-\Delta} \frac{n - \frac{D}{2}}{n}F(n)$$

• All FIs in this family can be expressed by F(1)

General IBP equations

> Dimensional regularization: vanish at boundary

't Hooft, Veltman, NPB (1972) Chetyrkin, Tkachov, NPB (1981)

• Linear equation:
$$\sum_{\vec{\nu'}} Q^{\vec{\nu}jk}_{\vec{\nu'}}(D,\vec{s}) I_{\vec{\nu'}}(D,\vec{s}) = 0$$

- *Q*: polynomials in *D*, \vec{s}
- Plenty of linear equations can be easily obtained by varying: \vec{v} , *j*, *k*

IBP reduction

> A family of FIs form a FINITE-dim. linear space

Proved by: Smirnov, Petukhov, 1004.4199

- Bases of the linear space called master integrals (MIs)
- IBPs reduce plenty of FIs to much less MIs

$$I_{\vec{\nu}} = \sum_{i=1}^{M} c_i I_i$$

> Solving IBP eqs. based on Laporta's algorithm:

Laporta, 0102033

- Automatic, any-loop order
- Public codes: AIR, FIRE, LiteRed, Reduze, Kira, FiniteFlow, NeatIBP, Blade...
- Many more private codes

Differential equations: example

> Due to IBP: DEs of MIs

Boundary Condition

$$\begin{bmatrix} I_{11}|_{m^2 \to 0} = (-s)^{D/2-2} \Gamma(2-D/2) \frac{\Gamma(D/2-1)^2}{\Gamma(D-2)} \\ I_{10} \end{bmatrix}$$

DEs method

> Step 1: Set up \vec{s} -DEs of MIs

Kotikov, PLB(1991)

- Differentiate MIs w.r.t. invariants \vec{s} , such as m^2 , $p_i \cdot p_j$
- IBP relations result in:

$$\frac{\partial}{\partial s_i} \boldsymbol{I}(\epsilon, \vec{s}) = A_i(\epsilon, \vec{s}) \boldsymbol{I}(\epsilon, \vec{s})$$

- *A_i*: matrix with rational elements
- > Step 2: Calculate boundary condition at a given value of \vec{s}

> Step 3: Solve DEs either analytically or numerically

Canonical form

> In some cases, choosing proper basis

Henn, 1304.1806

$$\frac{\partial}{\partial s_i} \boldsymbol{I}'(\epsilon, \vec{s}) = \epsilon A'_i(\vec{s}) \boldsymbol{I}'(\epsilon, \vec{s})$$

\succ Solution after expanding ϵ : Multiple Polylogarithms

$$G(a_1, a_2, \cdots, a_n; z) := \int_0^z \frac{\mathrm{d}t}{t - a_1} G(a_2, \cdots, a_n; t),$$
$$G(\overbrace{0, \cdots, 0}^n; z) := \frac{1}{n!} \log^n z, \quad G(; z) := 1.$$

- Properties well-known, easy to obtain numerical values
- Many cutting-edge problems have been solved in this way!

Beyond Multiple Polylogarithms

Elliptic functions

• Appear as early as equal mass sunrise diagram!

More complicated functions exist, like defined by Calabi-Yau manifold

- Not well-studied mathematical objects
- Hard to obtain numerical values

Studying these mathematical objects: a hot topic

Outline

I. Introduction to Feynman integrals

II. Analytical computation

III. Semi-analytical computation

IV. Feynman integrals as special functions

V. Summary and outlook

Auxiliary mass terms

>Auxiliary FIs

$$I_{\vec{\nu}}^{\mathrm{aux}}(D,\vec{s},\eta) = \int \prod_{i=1}^{L} \frac{\mathrm{d}^{D}\ell_{i}}{\mathrm{i}\pi^{D/2}} \frac{\mathcal{D}_{K+1}^{-\nu_{K+1}} \cdots \mathcal{D}_{N}^{-\nu_{N}}}{(\mathcal{D}_{1} - \lambda_{1}\eta + \mathrm{i}0^{+})^{\nu_{1}} \cdots (\mathcal{D}_{K} - \lambda_{K}\eta + \mathrm{i}0^{+})^{\nu_{K}}}$$

- $\lambda_i \ge 0$ (typically 0 or 1), an auxiliary mass if $\lambda_i > 0$
- Analytical function of η
- Physical result obtained by (causality)

$$I_{\vec{\nu}}(D,\vec{s}) \equiv \lim_{\eta \to i0^{-}} I_{\vec{\nu}}^{\mathrm{aux}}(D,\vec{s},\eta)$$

• 1) Setup η -DEs; 2) Calculate boundary conditions; 3) Solve η -DEs

$\gg \eta$ -DEs for MIs in auxiliary family using IBP

$$\frac{\partial}{\partial \eta} \vec{I}^{\text{aux}}(D, \vec{s}, \eta) = A(D, \vec{s}, \eta) \vec{I}^{\text{aux}}(D, \vec{s}, \eta)$$

X. Liu, YQM, C. Y. Wang, 1711.09572

Xiao Liu, Oxford U.

Chen-Yu Wang, MPP

Boundary values at $\eta \to \infty$

\succ Nonzero integration regions as $\eta \to \infty$

- Linear combinations of loop momenta: $\mathcal{O}(\sqrt{|\eta|})$ or $\mathcal{O}(1)$
- \succ Simplify propagators at $\eta \rightarrow \infty$
 - ℓ_L is the $\mathcal{O}(\sqrt{|\eta|})$ part of loop momenta
 - ℓ_S is the $\mathcal{O}(1)$ part of loop momenta
 - p is linear combination of external momenta

$$\frac{1}{(\ell_{\rm L}+\ell_{\rm S}+p)^2-m^2-\kappa\,\eta}\sim\frac{1}{\ell_{\rm L}^2-\kappa\,\eta}$$

• Unchange if $\ell_L = 0$ and $\kappa = 0$

Boundary FIs are simpler

- 1. Vacuum integrals
- 2. Simpler FIs with less denominators, if all loop momenta are $\mathcal{O}(1)$

Beneke, Smirnov, 9711391 Smirnov, 9907471

Tips: *Strategy of regions* is very powerful and useful. It is the rationale of effective field theory.

Flow of auxiliary mass

Solve ODEs of MIs

$$\frac{\partial}{\partial \eta} \vec{I}^{\mathrm{aux}}(D, \vec{s}, \eta) = A(D, \vec{s}, \eta) \vec{I}^{\mathrm{aux}}(D, \vec{s}, \eta)$$

- If $\vec{I}^{aux}(D, \vec{s}, \infty)$ is known, solving ODEs numerically to obtain $\vec{I}^{aux}(D, \vec{s}, i0^-)$
- A well-studied mathematical problem

Step1: Asymptotic expansion at $\eta = \infty$ Step2: Taylor expansion at analytical points Step3: Asymptotic expansion at $\eta = 0$

• Efficient to get high precision : ODEs, known singularity structure

Iterative strategy: FIs with less denominators

> For boundary FIs with less denominators:

X. Liu, YQM, 2107.01864

 Calculate them again use AMF method, even simpler boundary FIs as input (besides vacuum integrals)

• Eventually, leaving only (single-mass) vacuum integrals as input

Iterative strategy: vacuum integrals

Zhi-Feng Liu, Zhejiang U.

- *L*-loop vacuum integrals expressed by (L-1)-loop p-integrals
- Using AMFLow: L-loop vacuum integrals reduced to (L-1)-loop vacuum integrals

Zero input; valid to any loop

AMFlow: Package

Download

Liu, YQM, 2201.11669

Link: <u>https://gitlab.com/multiloop-pku/amflow</u>

Nam e	Last commit	Last update
🗅 diffeq_solver	update	5 months ago
🗅 examples	update	3 months ago
D ibp_interface	fix_a_bug_for_mpi_version	1 week ago
C AMFlow.m	fix mass mode	2 months ago
M+ CHANGELOG.md	update changelog	1 week ago
₩ FAQ.md	update	6 months ago
😜 LICENSE.md	test	7 months ago
M README.md	update	3 months ago
b options_summary	update	3 months ago

➢ Feature

The first package that can calculate any FI (with any number of loops, any *D* and *s*) to arbitrary precision, *given sufficient resource*

Phenomenological applications

Compute FIs point by point using AMFlow?

- Easy to implement and to parallelize
- But ignoring the fact that the value of FIs at two nearby points have small difference
- Not an efficient way

AMFlow+kinematic DEs

Information of kinematic DEs

$$\frac{\partial}{\partial s_i} \boldsymbol{I}(\epsilon, \vec{s}) = A_i(\epsilon, \vec{s}) \boldsymbol{I}(\epsilon, \vec{s})$$

- Tell how FIs change in the kinematic space
- Very efficient when two points are close to each other

> Tips

- Zero-dim.: a number computed by AMFlow
- One-dim.: series solutions to cover all interested regions
- Low dim.: a grid (of series solutions)
- High dim.: importance sampling

Outline

I. Introduction to Feynman integrals

- **II. Analytical computation**
- **III. Semi-analytical computation**

IV. Feynman integrals as special functions

V. Summary and outlook

Short summary

> Analytical computation

• In general involving not well-studied special functions, which are hard to obtain numerical values

Semi-analytical computation

- General enough to deal with any FI
- Can obtain numerical values to arbitrary precision

> Can we define MIs as special functions?

• What are still missing for this purpose?

Special functions

> Typically require the following conditions:

- 1. Having both integral and differential representations
- 2. Clear singularities and branching cuts
- 3. Availability of expansions to Taylor series or asymptotic series

Facilitate the exploration of global and local properties, as well as efficient evaluation

1. Integral and differential representations

> Integral representation: Yes

Differential representation: Yes

- Have DEs w.r.t. kinematic variables, boundary conditions provided by AMFlow
- Note: no differential equations w.r.t. ϵ , it should be thought as a parameter

➤ Wish list

• Choosing better MIs, so that DEs are simple, no spurious poles; the method must be systematic, applicable to general cases beyond MPLs

2. Singularities and branching cuts

Singularities: Yes

- Determined by Landau equations, but are hard to solve
- Subset of poles in DEs; spurious poles can be checked by solving DEs going around it

> Branching cuts: maybe

- Clear for simple cases, by studying the Feynman prescription $i 0^+$
- No good method for general case, especially when there are cut propagators $1/\mathcal{D} \to \delta(\mathcal{D})$
- Bottom line: compute many points around a singularity using AMFlow, comparing with running using DEs

➤ Wish list

- A better way to determine singularities: solving Landau equations or other ways
- A better way to identify branching cuts

3. Taylor or asymptotic series

> Yes

• Can do the expansion at any points using DEs

Efficiency

• Depending on the complexity of DEs, helpful to have better MIs

Bonus

 \blacktriangleright Exhausting relations among coefficients of ϵ expansion

$$oldsymbol{I}(\epsilon,ec{s}\) = \sum_i oldsymbol{I}^{(i)}(ec{s}\)\epsilon^i$$

- More relations exists after expansion, how to systematically find these relations?
- A famous example, one-loop 5-point function expressed by 4-point functions
- Bottom line: PSLQ fit with high-precision input using AMFlow

Relations to not well-studied special functions

• Instead of using other special functions to study FIs, using FIs to study these special functions

- > Solving QFT perturbatively: important for many fields
- > One of the main challenges: FIs computation
- > Analytical computation of FIs: fruitful, but has clear obstacles
- Semi-analytical computation of FIs: general enough
- Constructive to define FIs as special functions

Outlook

Plenty things to do

- $(1)\ \mbox{Systematical way to choose better MIs}$
- **2** Systematical way to determine singularities
- **③** Systematical way to identify branching cuts
- (4) Systematical way to find relations after ϵ expansion
- **5** Improve the efficiency of IBP reduction: the main bottleneck for many problems

Thank you!

Era of precision physics at the LHC

> High-precision data

- Many observables probed at precent-level precision
- At least NNLO QCD corrections generally required (plus NLO EW, parton shower, resummation, etc.)

Automatic higher order perturbative calculation is highly demanded

Note: Automatic NLO correction obtained 15 years ago: MadGraph, Helac, etc