Asymptotic Expansions for Feynman Integrals

Henrik J. Munch

University of Padova

Theory Seminar Zeuthen, 20/7/2023

Work in collaboration with

Saiei J. Matsubara-Heo

Nobuki Takayama

- Talk mainly based on Restrictions of Pfaffian Systems for Feynman Integrals [2305.01585]
- + WIP (HJM et al. [2312.?????])

Table of Contents

1 Lightning intro to Feynman integrals

2 Holomorphic restriction of DEQs

3 Logarithmic restriction of DEQs

4 Example: Bhabha scattering

5 Conclusion and outlook

Lightning intro to Feynman integrals

From model to prediction

Quantum Field Theory model: $\mathcal{L} \sim-\frac{1}{2}(\partial \varphi)^{2}+\frac{\lambda}{4!} \varphi^{4}$

From model to prediction

Quantum Field Theory model: $\mathcal{L} \sim-\frac{1}{2}(\partial \varphi)^{2}+\frac{\lambda}{4!} \varphi^{4}$
\square
Perturbative amplitude: $\mathcal{A} \sim \sum$ Feynman diagrams

From model to prediction

Quantum Field Theory model: $\mathcal{L} \sim-\frac{1}{2}(\partial \varphi)^{2}+\frac{\lambda}{4!} \varphi^{4}$

Perturbative amplitude: $\mathcal{A} \sim \sum$ Feynman diagrams

Cross section: $\sigma \sim \int|\mathcal{A}|^{2}$

From model to prediction

Quantum Field Theory model: $\mathcal{L} \sim-\frac{1}{2}(\partial \varphi)^{2}+\frac{\lambda}{4!} \varphi^{4}$

Bottleneck: Multi-loop and multi-scale diagrams

Cross section: $\sigma \sim \int|\mathcal{A}|^{2}$

Feynman integrals

Given a Feynman diagram

Feynman integrals

Given a Feynman diagram

we associate a family of Feynman integrals

$$
I_{\nu_{1} \ldots \nu_{n}}\left(p_{i}, m_{i}\right)=\int \frac{\mathrm{d}^{\mathrm{D}} k_{1} \wedge \cdots \wedge \mathrm{~d}^{\mathrm{D}} k_{L}}{D_{1}^{\nu_{1}} \cdots D_{n}^{\nu_{n}}}
$$

Feynman integrals

Given a Feynman diagram

we associate a family of Feynman integrals

$$
I_{\nu_{1} \ldots \nu_{n}}\left(p_{i}, m_{i}\right)=\int \frac{\mathrm{d}^{\mathrm{D}} k_{1} \wedge \cdots \wedge \mathrm{~d}^{\mathrm{D}} k_{L}}{D_{1}^{\nu_{1}} \cdots D_{n}^{\nu_{n}}}
$$

in terms of propagators

$$
D_{i}=q_{i}(p, k)^{2}-m_{i}^{2}, \quad q_{i}=\sum_{a} \pm k_{a}+\sum_{b} \pm p_{b}
$$

Computing Feynman integrals via DEQs

- Consider some integral family $I_{\vec{\nu}}$ for $\vec{\nu} \in \mathbb{Z}^{n}$

Computing Feynman integrals via DEQs

- Consider some integral family $I_{\vec{\nu}}$ for $\vec{\nu} \in \mathbb{Z}^{n}$
- \exists finite set of independent master integrals \vec{I} with special values of $\vec{\nu}$

Computing Feynman integrals via DEQs

- Consider some integral family $I_{\vec{\nu}}$ for $\vec{\nu} \in \mathbb{Z}^{n}$
- \exists finite set of independent master integrals \vec{I} with special values of $\vec{\nu}$
- Other integrals in the family related to \vec{I} via integration-by-parts identities

Computing Feynman integrals via DEQs

- Consider some integral family $I_{\vec{\nu}}$ for $\vec{\nu} \in \mathbb{Z}^{n}$
- \exists finite set of independent master integrals \vec{I} with special values of $\vec{\nu}$
- Other integrals in the family related to \vec{I} via integration-by-parts identities
- Get master integrals \vec{I} from solving a Pfaffian system

$$
\partial_{i} \vec{I}(z)=P_{i}(z) \cdot \vec{I}(z)
$$

Kinematic variables: $z=\left(z_{1}, \ldots, z_{N}\right)$
Rational matrices: $P_{i}(z)$

Solving the DEQs

- Have powerful methods to solve the Pfaffian system

$$
\partial_{i} \vec{I}(z)=P_{i}(z) \cdot \vec{I}(z)
$$

when \vec{I} can be expressed in terms of multiple polylogarithms

Solving the DEQs

- Have powerful methods to solve the Pfaffian system

$$
\partial_{i} \vec{I}(z)=P_{i}(z) \cdot \vec{I}(z)
$$

when \vec{I} can be expressed in terms of multiple polylogarithms

$$
I(z) \sim \sum_{\vec{w}} \operatorname{rat}(z) G(\vec{w} \mid z), \quad G\left(w_{1}, \ldots, w_{k} \mid z\right)=\int_{0}^{z} \frac{\mathrm{~d} t}{t-w_{1}} G\left(w_{2}, \ldots, w_{k} \mid t\right)
$$

Solving the DEQs

- Have powerful methods to solve the Pfaffian system

$$
\partial_{i} \vec{I}(z)=P_{i}(z) \cdot \vec{I}(z)
$$

when \vec{I} can be expressed in terms of multiple polylogarithms

$$
I(z) \sim \sum_{\vec{w}} \operatorname{rat}(z) G(\vec{w} \mid z), \quad G\left(w_{1}, \ldots, w_{k} \mid z\right)=\int_{0}^{z} \frac{\mathrm{~d} t}{t-w_{1}} G\left(w_{2}, \ldots, w_{k} \mid t\right)
$$

- But, at $L>1$ loops and several mass scales, we encounter
\qquad
\qquad

Then it is much harder to solve the Pfaffian system!

Solving the DEQs

- Have powerful methods to solve the Pfaffian system

$$
\partial_{i} \vec{I}(z)=P_{i}(z) \cdot \vec{I}(z)
$$

when \vec{I} can be expressed in terms of multiple polylogarithms

$$
I(z) \sim \sum_{\vec{w}} \operatorname{rat}(z) G(\vec{w} \mid z), \quad G\left(w_{1}, \ldots, w_{k} \mid z\right)=\int_{0}^{z} \frac{\mathrm{~d} t}{t-w_{1}} G\left(w_{2}, \ldots, w_{k} \mid t\right)
$$

- But, at $L>1$ loops and several mass scales, we encounter

■ Elliptics

- Modular forms
- Integrals over Calabi-Yau manifolds

Then it is much harder to solve the Pfaffian system!

Solving the DEQs

- Have powerful methods to solve the Pfaffian system

$$
\partial_{i} \vec{I}(z)=P_{i}(z) \cdot \vec{I}(z)
$$

when \vec{I} can be expressed in terms of multiple polylogarithms

$$
I(z) \sim \sum_{\vec{w}} \operatorname{rat}(z) G(\vec{w} \mid z), \quad G\left(w_{1}, \ldots, w_{k} \mid z\right)=\int_{0}^{z} \frac{\mathrm{~d} t}{t-w_{1}} G\left(w_{2}, \ldots, w_{k} \mid t\right)
$$

- But, at $L>1$ loops and several mass scales, we encounter
- Elliptics
- Modular forms
- Integrals over Calabi-Yau manifolds
- Then it is much harder to solve the Pfaffian system!

Asymptotic expansions

- Alternative strategy: Asymptotic expansion

$$
\vec{I} \sim \sum_{n, m} \vec{I}^{(n, m)}\left(z_{2}, \ldots, z_{N}\right) z_{1}^{n} \log ^{m}\left(z_{1}\right)
$$

given $z_{1} \ll 1$ (small mass, threshold, collinear ...)

Book recommendation

Asymptotic expansions

- Alternative strategy: Asymptotic expansion

$$
\vec{I} \sim \sum_{n, m} \vec{I}^{(n, m)}\left(z_{2}, \ldots, z_{N}\right) z_{1}^{n} \log ^{m}\left(z_{1}\right)
$$

given $z_{1} \ll 1$ (small mass, threshold, collinear ...)

- Many previously succesful studies [Beneke, Davies, Harlander, Kudashkin, Lee, Mastrolia, Melnikov, Mishima, Passera, Pozzorini, Primo, Remiddi, Schonwald, Schubert, Seidensticker, Smirnov, Smirnov, Steinhauser, Wasow, Wever, Zhang ...] Book recommendation: [Haraoka '20]

Asymptotic expansions

- Alternative strategy: Asymptotic expansion

$$
\vec{I} \sim \sum_{n, m} \vec{I}^{(n, m)}\left(z_{2}, \ldots, z_{N}\right) z_{1}^{n} \log ^{m}\left(z_{1}\right)
$$

given $z_{1} \ll 1$ (small mass, threshold, collinear ...)

- Many previously succesful studies [Beneke, Davies, Harlander, Kudashkin, Lee, Mastrolia, Melnikov, Mishima, Passera, Pozzorini, Primo, Remiddi, Schonwald, Schubert, Seidensticker, Smirnov, Smirnov, Steinhauser, Wasow, Wever, Zhang ...] Book recommendation: [Haraoka '20]
- Our approach:

1. Solve simpler Pfaffian system for $\vec{I}^{(0,0)}\left(z_{2}, \ldots\right)$
2. Get $\vec{I}^{(n, m)}\left(z_{2}, \ldots\right)$ from recursion relations

Holomorphic restriction of DEQs

What is a restriction?

Restriction \leftrightarrow localizing PDEs to a specific region in the space of variables

What is a restriction?

Restriction \leftrightarrow localizing PDEs to a specific region in the space of variables

- Terminology from the field of \mathcal{D}-modules (algebraic study of PDEs)

What is a restriction?

Restriction \leftrightarrow localizing PDEs to a specific region in the space of variables

- Terminology from the field of \mathcal{D}-modules (algebraic study of PDEs)
- In physics language: Study PDEs near $m^{2}=0, s=4 m^{2}, p^{2} \rightarrow \infty \ldots$

What is a restriction?

Restriction \leftrightarrow localizing PDEs to a specific region in the space of variables

- Terminology from the field of \mathcal{D}-modules (algebraic study of PDEs)
- In physics language: Study PDEs near $m^{2}=0, s=4 m^{2}, p^{2} \rightarrow \infty \ldots$

Example: PDE for 1-loop Bhabha scattering

What is a restriction?

Restriction \leftrightarrow localizing PDEs to a specific region in the space of variables

- Terminology from the field of \mathcal{D}-modules (algebraic study of PDEs)
- In physics language: Study PDEs near $m^{2}=0, s=4 m^{2}, p^{2} \rightarrow \infty \ldots$

Example: Holomorphic solution at $m^{2}=0$

Two issues to adress

Consider $z_{1} \rightarrow 0$ limit of a Pfaffian system

$$
\partial_{i} \vec{I}(z)=P_{i}(z) \cdot \vec{I}(z), \quad i=1,2 .
$$

Suppose $P_{1}(z)$ has a pole at $z_{1}=0$.

Two issues to adress

Consider $z_{1} \rightarrow 0$ limit of a Pfaffian system

$$
\partial_{i} \vec{I}(z)=P_{i}(z) \cdot \vec{I}(z), \quad i=1,2 .
$$

Suppose $P_{1}(z)$ has a pole at $z_{1}=0$.

Rank jumps

Two issues to adress

Consider $z_{1} \rightarrow 0$ limit of a Pfaffian system

$$
\partial_{i} \vec{I}(z)=P_{i}(z) \cdot \vec{I}(z), \quad i=1,2 .
$$

Suppose $P_{1}(z)$ has a pole at $z_{1}=0$.

Rank jumps

- The number of master integrals changes at $z_{1} \rightarrow 0$

Two issues to adress

Consider $z_{1} \rightarrow 0$ limit of a Pfaffian system

$$
\partial_{i} \vec{I}(z)=P_{i}(z) \cdot \vec{I}(z), \quad i=1,2 .
$$

Suppose $P_{1}(z)$ has a pole at $z_{1}=0$.

Rank jumps

- The number of master integrals changes at $z_{1} \rightarrow 0$
- New relations among master integrals must hence arise at $z_{1} \rightarrow 0$

Two issues to adress

Consider $z_{1} \rightarrow 0$ limit of a Pfaffian system

$$
\partial_{i} \vec{I}(z)=P_{i}(z) \cdot \vec{I}(z), \quad i=1,2 .
$$

Suppose $P_{1}(z)$ has a pole at $z_{1}=0$.

Rank jumps

- The number of master integrals changes at $z_{1} \rightarrow 0$
- New relations among master integrals must hence arise at $z_{1} \rightarrow 0$
- What is the new rank? How to systematically find these relations?

Two issues to adress

Consider $z_{1} \rightarrow 0$ limit of a Pfaffian system

$$
\partial_{i} \vec{I}(z)=P_{i}(z) \cdot \vec{I}(z), \quad i=1,2 .
$$

Suppose $P_{1}(z)$ has a pole at $z_{1}=0$.

Rank jumps

- The number of master integrals changes at $z_{1} \rightarrow 0$
- New relations among master integrals must hence arise at $z_{1} \rightarrow 0$
- What is the new rank? How to systematically find these relations?

Basis

Two issues to adress

Consider $z_{1} \rightarrow 0$ limit of a Pfaffian system

$$
\partial_{i} \vec{I}(z)=P_{i}(z) \cdot \vec{I}(z), \quad i=1,2 .
$$

Suppose $P_{1}(z)$ has a pole at $z_{1}=0$.

Rank jumps

- The number of master integrals changes at $z_{1} \rightarrow 0$
- New relations among master integrals must hence arise at $z_{1} \rightarrow 0$
- What is the new rank? How to systematically find these relations?

Basis

- We suppose to know some basis $\vec{I}\left(z_{1}, z_{2}\right)$ for generic z

Two issues to adress

Consider $z_{1} \rightarrow 0$ limit of a Pfaffian system

$$
\partial_{i} \vec{I}(z)=P_{i}(z) \cdot \vec{I}(z), \quad i=1,2 .
$$

Suppose $P_{1}(z)$ has a pole at $z_{1}=0$.

Rank jumps

- The number of master integrals changes at $z_{1} \rightarrow 0$
- New relations among master integrals must hence arise at $z_{1} \rightarrow 0$
- What is the new rank? How to systematically find these relations?

Basis

- We suppose to know some basis $\vec{I}\left(z_{1}, z_{2}\right)$ for generic z
- How to find a basis $\vec{J}\left(z_{2}\right)$ at $z_{1} \rightarrow 0$?

Before adressing these issues: Bring to normal form

Consider $z_{1} \rightarrow 0$ limit of a Pfaffian system

$$
\partial_{i} \vec{I}(z)=P_{i}(z) \cdot \vec{I}(z), \quad i=1,2 .
$$

Suppose $P_{1}(z)$ has a pole at $z_{1}=0$.

Before adressing these issues: Bring to normal form

Consider $z_{1} \rightarrow 0$ limit of a Pfaffian system

$$
\partial_{i} \vec{I}(z)=P_{i}(z) \cdot \vec{I}(z), \quad i=1,2 .
$$

Suppose $P_{1}(z)$ has a pole at $z_{1}=0$.
We assume that the system is in normal form

$$
\begin{aligned}
& P_{1}(z)=\sum_{n=-1}^{\infty} P_{1, n}\left(z_{2}\right) z_{1}^{n} \\
& P_{2}(z)=\sum_{n=0}^{\infty} P_{2, n}\left(z_{2}\right) z_{1}^{n}
\end{aligned}
$$

Before adressing these issues: Bring to normal form

Consider $z_{1} \rightarrow 0$ limit of a Pfaffian system

$$
\partial_{i} \vec{I}(z)=P_{i}(z) \cdot \vec{I}(z), \quad i=1,2 .
$$

Suppose $P_{1}(z)$ has a pole at $z_{1}=0$.
We assume that the system is in normal form

$$
\begin{aligned}
& P_{1}(z)=\sum_{n=-1}^{\infty} P_{1, n}\left(z_{2}\right) z_{1}^{n} \\
& P_{2}(z)=\sum_{n=0}^{\infty} P_{2, n}\left(z_{2}\right) z_{1}^{n}
\end{aligned}
$$

Done via Moser reduction

Before adressing these issues: Bring to normal form

Consider $z_{1} \rightarrow 0$ limit of a Pfaffian system

$$
\partial_{i} \vec{I}(z)=P_{i}(z) \cdot \vec{I}(z), \quad i=1,2 .
$$

Suppose $P_{1}(z)$ has a pole at $z_{1}=0$.
We assume that the system is in normal form

$$
\begin{aligned}
& P_{1}(z)=\sum_{n=-1}^{\infty} P_{1, n}\left(z_{2}\right) z_{1}^{n} \\
& P_{2}(z)=\sum_{n=0}^{\infty} P_{2, n}\left(z_{2}\right) z_{1}^{n}
\end{aligned}
$$

Done via Moser reduction

- Completely algorithmic (gauge transformations)

Before adressing these issues: Bring to normal form

Consider $z_{1} \rightarrow 0$ limit of a Pfaffian system

$$
\partial_{i} \vec{I}(z)=P_{i}(z) \cdot \vec{I}(z), \quad i=1,2 .
$$

Suppose $P_{1}(z)$ has a pole at $z_{1}=0$.
We assume that the system is in normal form

$$
\begin{aligned}
& P_{1}(z)=\sum_{n=-1}^{\infty} P_{1, n}\left(z_{2}\right) z_{1}^{n} \\
& P_{2}(z)=\sum_{n=0}^{\infty} P_{2, n}\left(z_{2}\right) z_{1}^{n}
\end{aligned}
$$

Done via Moser reduction

- Completely algorithmic (gauge transformations)
- Not computationally costly w.r.t. one pole $z_{1}=0$

Issue 1) Rank jump

Solutions $\vec{I}(z)$ to

$$
\partial_{i} \vec{I}(z)=P_{i}(z) \cdot \vec{I}(z), \quad i=1,2
$$

that are holomorphic at $z_{1} \rightarrow 0$ take the form

$$
\vec{I}(z)=\sum_{n=0}^{\infty} \vec{I}^{(n)}\left(z_{2}\right) z_{1}^{n}
$$

Inserting all 3 expansions into the Pfaffian system:

Issue 1) Rank jump

Solutions $\vec{I}(z)$ to

$$
\partial_{i} \vec{I}(z)=P_{i}(z) \cdot \vec{I}(z), \quad i=1,2
$$

that are holomorphic at $z_{1} \rightarrow 0$ take the form

$$
\vec{I}(z)=\sum_{n=0}^{\infty} \vec{I}^{(n)}\left(z_{2}\right) z_{1}^{n}
$$

Recall

$$
P_{1}(z)=\sum_{n=-1}^{\infty} P_{1, n}\left(z_{2}\right) z_{1}^{n}, \quad P_{2}(z)=\sum_{n=0}^{\infty} P_{2, n}\left(z_{2}\right) z_{1}^{n}
$$

Issue 1) Rank jump

Solutions $\vec{I}(z)$ to

$$
\partial_{i} \vec{I}(z)=P_{i}(z) \cdot \vec{I}(z), \quad i=1,2
$$

that are holomorphic at $z_{1} \rightarrow 0$ take the form

$$
\vec{I}(z)=\sum_{n=0}^{\infty} \vec{I}^{(n)}\left(z_{2}\right) z_{1}^{n}
$$

Recall

$$
P_{1}(z)=\sum_{n=-1}^{\infty} P_{1, n}\left(z_{2}\right) z_{1}^{n}, \quad P_{2}(z)=\sum_{n=0}^{\infty} P_{2, n}\left(z_{2}\right) z_{1}^{n}
$$

Inserting all 3 expansions into the Pfaffian system:

$$
\text { PDE: } \quad \partial_{2} \vec{I}^{(0)}\left(z_{2}\right)=P_{2,0}\left(z_{2}\right) \cdot \vec{I}^{(0)}\left(z_{2}\right)
$$

Rank jump: $\quad P_{1,-1}\left(z_{2}\right) \cdot \vec{I}^{(0)}\left(z_{2}\right)=0$

Issue 1) Rank jump

Holomorphic restriction:

$$
\begin{aligned}
& \text { PDE: } \quad \partial_{2} \vec{I}^{(0)}\left(z_{2}\right)=P_{2,0}\left(z_{2}\right) \cdot \vec{I}^{(0)}\left(z_{2}\right) \\
& \text { Rank jump: } \quad P_{1,-1}\left(z_{2}\right) \cdot \vec{I}^{00}\left(z_{2}\right)=0
\end{aligned}
$$

Issue 1) Rank jump

Holomorphic restriction:

$$
\begin{aligned}
& \text { PDE: } \quad \partial_{2} \vec{I}^{(0)}\left(z_{2}\right)=P_{2,0}\left(z_{2}\right) \cdot \vec{I}^{(0)}\left(z_{2}\right) \\
& \text { Rank jump: } \quad P_{1,-1}\left(z_{2}\right) \cdot \vec{I}^{(0)}\left(z_{2}\right)=0
\end{aligned}
$$

The rank jump relations are IBPs that hold in the integrand limit $z_{1} \rightarrow 0$ Example: Master integrals for 1-loop Bhabha box:

Issue 1) Rank jump

Holomorphic restriction:

$$
\begin{aligned}
& \text { PDE: } \quad \partial_{2} \vec{I}^{(0)}\left(z_{2}\right)=P_{2,0}\left(z_{2}\right) \cdot \vec{I}^{(0)}\left(z_{2}\right) \\
& \text { Rank jump: } \quad P_{1,-1}\left(z_{2}\right) \cdot \vec{I}^{(0)}\left(z_{2}\right)=0
\end{aligned}
$$

The rank jump relations are IBPs that hold in the integrand limit $z_{1} \rightarrow 0$
Example: Master integrals for 1-loop Bhabha box:

$$
\vec{I}\left(z_{1}, z_{2}\right)=\left[I_{1000}, I_{0101}, I_{1010}, I_{0111}, I_{1111}\right]^{T}
$$

Issue 1) Rank jump

Holomorphic restriction:

$$
\begin{aligned}
& \text { PDE: } \quad \partial_{2} \vec{I}^{(0)}\left(z_{2}\right)=P_{2,0}\left(z_{2}\right) \cdot \vec{I}^{(0)}\left(z_{2}\right) \\
& \text { Rank jump: } \quad P_{1,-1}\left(z_{2}\right) \cdot \vec{I}^{(0)}\left(z_{2}\right)=0
\end{aligned}
$$

The rank jump relations are IBPs that hold in the integrand limit $z_{1} \rightarrow 0$
Example: Master integrals for 1-loop Bhabha box:

$$
\vec{I}\left(z_{1}, z_{2}\right)=\left[I_{1000}, I_{0101}, I_{1010}, I_{0111}, I_{1111}\right]^{T}
$$

Say $z_{1}=m^{2} /(-s)$. As $z_{1} \rightarrow 0$, the rank jump relation gives

$$
I_{1000}=0, \quad I_{0111}=(\mathrm{IBP} \text { coefficient }) \times I_{0101}
$$

Issue 2) Basis

Holomorphic restriction:

$$
\begin{aligned}
& \text { PDE: } \quad \partial_{2} \vec{I}^{(0)}\left(z_{2}\right)=P_{2,0}\left(z_{2}\right) \cdot \vec{I}^{00}\left(z_{2}\right) \\
& \text { Rank jump: } \quad P_{1,-1}\left(z_{2}\right) \cdot \vec{I}^{00}\left(z_{2}\right)=0
\end{aligned}
$$

Let's re-write this system in a minimal basis.

Issue 2) Basis

Holomorphic restriction:

$$
\text { PDE: } \quad \partial_{2} \vec{I}^{(0)}\left(z_{2}\right)=P_{2,0}\left(z_{2}\right) \cdot \vec{I}^{(0)}\left(z_{2}\right)
$$

Rank jump: $\quad P_{1,-1}\left(z_{2}\right) \cdot \vec{I}^{(0)}\left(z_{2}\right)=0$
Let's re-write this system in a minimal basis.
Define

$$
R=\operatorname{RowReduce}\left[P_{1,-1}\right], \quad \vec{I}^{(0)}=\left[I_{1}, I_{2}, \ldots\right]^{T}
$$

RowReduce includes deleting zero-rows. I_{i} are dummy symbols.

Issue 2) Basis

Holomorphic restriction:

$$
\text { PDE: } \quad \partial_{2} \vec{I}^{(0)}\left(z_{2}\right)=P_{2,0}\left(z_{2}\right) \cdot \vec{I}^{(0)}\left(z_{2}\right)
$$

Rank jump: $\quad P_{1,-1}\left(z_{2}\right) \cdot \vec{I}^{(0)}\left(z_{2}\right)=0$
Let's re-write this system in a minimal basis.
Define

$$
R=\operatorname{RowReduce}\left[P_{1,-1}\right], \quad \vec{I}^{(0)}=\left[I_{1}, I_{2}, \ldots\right]^{T}
$$

RowReduce includes deleting zero-rows. I_{i} are dummy symbols.

Basis is found by solving

$$
R \cdot \vec{I}^{(0)}=0
$$

for independent I_{i} (neglect prefactors and linear combinations)

Issue 2) Basis

Collect independent $I_{i} \subset \vec{I}^{(0)}$ into a basis vector $\vec{J}\left(z_{2}\right)$:

$$
\vec{J}=\left[I_{i_{1}}, I_{i_{2}}, \ldots\right]^{T}
$$

Issue 2) Basis

Collect independent $I_{i} \subset \vec{I}^{(0)}$ into a basis vector $\vec{J}\left(z_{2}\right)$:

$$
\vec{J}=\left[I_{i_{1}}, I_{i_{2}}, \ldots\right]^{T}
$$

Rectangular basis matrix B :

$$
\begin{gathered}
\overrightarrow{J=B \cdot T^{00},}, \quad B_{j j} \in\{0,1\} \\
{\left[\begin{array}{lll}
:
\end{array}\right]=\left[\begin{array}{lll}
\cdots & \cdots & \cdots
\end{array}\right]\left[\begin{array}{c}
\vdots \\
\vdots \\
\vdots
\end{array}\right]}
\end{gathered}
$$

Issue 2) Basis

Collect independent $I_{i} \subset \vec{I}^{(0)}$ into a basis vector $\vec{J}\left(z_{2}\right)$:

$$
\vec{J}=\left[I_{i_{1}}, I_{i_{2}}, \ldots\right]^{T}
$$

Rectangular basis matrix B :

$$
\begin{gathered}
\vec{J}=B \cdot \vec{I}^{(0)}, \quad B_{i j} \in\{0,1\} \\
{\left[\begin{array}{c}
\cdot \\
\cdot
\end{array}\right]=\left[\begin{array}{ccc}
\cdots & \cdots & \cdots \\
\cdots & \cdots & \cdots
\end{array}\right] \cdot\left[\begin{array}{c}
\vdots \\
\vdots \\
\vdots
\end{array}\right]}
\end{gathered}
$$

Both issues now resolved. But, what does the Pfaffian system look like for \vec{J} ?

Pfaffian system for \vec{J}

Seek the Pfaffian matrix $Q_{2}\left(z_{2}\right)$ in

$$
\partial_{2} \vec{J}=Q_{2} \cdot \vec{J}
$$

Pfaffian system for \vec{J}

Seek the Pfaffian matrix $Q_{2}\left(z_{2}\right)$ in

$$
\partial_{2} \vec{J}=Q_{2} \cdot \vec{J}
$$

Recall the two matrices R and B from

$$
R=\operatorname{RowReduce}\left[P_{1,-1}\right], \quad \vec{J}=B \cdot \vec{I}^{(0)}
$$

Pfaffian system for \vec{J}

Seek the Pfaffian matrix $Q_{2}\left(z_{2}\right)$ in

$$
\partial_{2} \vec{J}=Q_{2} \cdot \vec{J}
$$

Recall the two matrices R and B from

$$
R=\operatorname{RowReduce}\left[P_{1,-1}\right], \quad \vec{J}=B \cdot \vec{I}^{(0)}
$$

Join R and B into a block matrix M :

$$
M=\left[\begin{array}{c}
B \\
\hline R
\end{array}\right] \quad \Longrightarrow \quad M \cdot \vec{I}^{(0)}=\left[\begin{array}{c}
\vec{J} \\
\hline 0 \\
\vdots \\
0
\end{array}\right]
$$

Pfaffian system for \vec{J}

Seek the Pfaffian matrix $Q_{2}\left(z_{2}\right)$ in

$$
\partial_{2} \vec{J}=Q_{2} \cdot \vec{J}
$$

Pfaffian system for \vec{J}

Seek the Pfaffian matrix $Q_{2}\left(z_{2}\right)$ in

$$
\partial_{2} \vec{J}=Q_{2} \cdot \vec{J}
$$

Inserting

$$
\vec{I}^{(0)}=M^{-1} \cdot\left[\frac{\vec{J}}{\mathbf{0}}\right]
$$

into

$$
\partial_{2} \vec{I}^{(0)}=P_{2,0} \cdot \vec{I}^{(0)}
$$

Pfaffian system for \vec{J}

Seek the Pfaffian matrix $Q_{2}\left(z_{2}\right)$ in

$$
\partial_{2} \vec{J}=Q_{2} \cdot \vec{J}
$$

Inserting

$$
\vec{I}^{(0)}=M^{-1} \cdot\left[\frac{\vec{J}}{\mathbf{0}}\right]
$$

into

$$
\partial_{2} \vec{I}^{(0)}=P_{2,0} \cdot \vec{I}^{(0)}
$$

yields a gauge transformation of $P_{2,0}$:

$$
\left(\partial_{2} M+M \cdot P_{2,0}\right) \cdot M^{-1}=\left[\begin{array}{c|c}
Q_{2} & \star \\
\hline \mathbf{0} & \star
\end{array}\right]
$$

Example: 1-loop Bhabha box integral

Kinematics:

$$
p_{1}^{2}=p_{2}^{2}=p_{3}^{2}=p_{4}^{2}=m^{2}, \quad s=p_{12}^{2}, \quad t=p_{23}^{2}
$$

Master integrals:

$$
\vec{I}\left(z_{1}, z_{2}\right)=\left[I_{1000}, I_{0101}, I_{1010}, I_{0111}, I_{1111}\right]^{T}
$$

Variables $z_{1}=\frac{m^{2}}{-s}$ and $z_{2}=\frac{t}{s}$. Consider holomorphic limit $z_{1} \rightarrow 0$ on $\partial_{i} \vec{I}=P_{i} \cdot \vec{I}$

Example: 1-loop Bhabha box integral

Kinematics:

$$
p_{1}^{2}=p_{2}^{2}=p_{3}^{2}=p_{4}^{2}=m^{2}, \quad s=p_{12}^{2}, \quad t=p_{23}^{2}
$$

Master integrals:

$$
\vec{I}\left(z_{1}, z_{2}\right)=\left[I_{1000}, I_{0101}, I_{1010}, I_{0111}, I_{1111}\right]^{T}
$$

Variables $z_{1}=\frac{m^{2}}{-s}$ and $z_{2}=\frac{t}{s}$. Consider holomorphic limit $z_{1} \rightarrow 0$ on $\partial_{i} \vec{I}=P_{i} \cdot \vec{I}$

$$
R=\left[\begin{array}{ccccc}
1 & \cdot & . & . & \cdot \\
\cdot & 1 & \cdot & \frac{z-c}{1-2 \epsilon} & \cdot
\end{array}\right], \quad B=\left[\begin{array}{ccccc}
\cdot & 1 & \cdot & \cdot & \cdot \\
\cdot & \cdot & 1 & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & 1
\end{array}\right]
$$

Example: 1-loop Bhabha box integral

Kinematics:

$$
p_{1}^{2}=p_{2}^{2}=p_{3}^{2}=p_{4}^{2}=m^{2}, \quad s=p_{12}^{2}, \quad t=p_{23}^{2}
$$

Master integrals:

$$
\vec{I}\left(z_{1}, z_{2}\right)=\left[I_{1000}, I_{0101}, I_{1010}, I_{0111}, I_{1111}\right]^{T}
$$

Variables $z_{1}=\frac{m^{2}}{-s}$ and $z_{2}=\frac{t}{s}$. Consider holomorphic limit $z_{1} \rightarrow 0$ on $\partial_{i} \vec{I}=P_{i} \cdot \vec{I}$

$$
R=\left[\begin{array}{ccccc}
1 & \cdot & \cdot & \cdot & \cdot \\
\cdot & 1 & \cdot & \frac{z_{2} \epsilon}{1-2 \epsilon} & \cdot
\end{array}\right], \quad B=\left[\begin{array}{ccccc}
\cdot & 1 & \cdot & \cdot & \cdot \\
\cdot & \cdot & 1 & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & 1
\end{array}\right]
$$

Gauge transformation of $P_{2,0}$ with $M=\left[\frac{B}{R}\right] \Longrightarrow 3 \times 3$ Pfaffian matrix $Q_{2}\left(z_{2}\right)$ for the massless box

Logarithmic restriction of DEQs

Taking stock

- Have so far looked at holomorphic solutions $\vec{I}\left(z_{1} \rightarrow 0, z_{2}\right)$ to

$$
\begin{aligned}
& \partial_{1} \vec{I}=P_{1} \cdot \vec{I} \\
& \partial_{2} \vec{I}=P_{2} \cdot \vec{I}
\end{aligned}
$$

- Computational strategy: Repeated use of the

Taking stock

- Have so far looked at holomorphic solutions $\vec{I}\left(z_{1} \rightarrow 0, z_{2}\right)$ to

$$
\begin{aligned}
\partial_{1} \vec{I} & =P_{1} \cdot \vec{I} \\
\partial_{2} \vec{I} & =P_{2} \cdot \vec{I}
\end{aligned}
$$

- Let's generalize to logarithmically singular solutions at $z_{1} \rightarrow 0$:

$$
\vec{I}\left(z_{1}, z_{2}\right) \quad \sim \sum_{n, m} \vec{I}^{(n, m)}\left(z_{2}\right) \times z_{1}^{n} \times \log ^{m}\left(z_{1}\right)
$$

Taking stock

- Have so far looked at holomorphic solutions $\vec{I}\left(z_{1} \rightarrow 0, z_{2}\right)$ to

$$
\begin{aligned}
\partial_{1} \vec{I} & =P_{1} \cdot \vec{I} \\
\partial_{2} \vec{I} & =P_{2} \cdot \vec{I}
\end{aligned}
$$

- Let's generalize to logarithmically singular solutions at $z_{1} \rightarrow 0$:

$$
\vec{I}\left(z_{1}, z_{2}\right) \quad \sim \sum_{n, m} \vec{I}^{(n, m)}\left(z_{2}\right) \times z_{1}^{n} \times \log ^{m}\left(z_{1}\right)
$$

- Computational strategy: Repeated use of the restriction method

Eigenvalues of $P_{1,-1}$

Recall the residue matrix $P_{1,-1}$ from

$$
P_{1}\left(z_{1}, z_{2}\right)=\sum_{n=-1}^{\infty} P_{1, n}\left(z_{2}\right) z_{1}^{n}
$$

Eigenvalues of $P_{1,-1}$

Recall the residue matrix $P_{1,-1}$ from

$$
P_{1}\left(z_{1}, z_{2}\right)=\sum_{n=-1}^{\infty} P_{1, n}\left(z_{2}\right) z_{1}^{n}
$$

Eigenvalues of $P_{1,-1}$:

$$
\operatorname{Spec}\left[P_{1,-1}\right]=\{\underbrace{\lambda_{1}, \lambda_{1}, \ldots}_{\Lambda_{1}}, \underbrace{\lambda_{2}, \lambda_{2}, \ldots}_{\Lambda_{2}}\}
$$

where Λ_{i} is the multiplicity of eigenvalue λ_{i}

Eigenvalues of $P_{1,-1}$

Recall the residue matrix $P_{1,-1}$ from

$$
P_{1}\left(z_{1}, z_{2}\right)=\sum_{n=-1}^{\infty} P_{1, n}\left(z_{2}\right) z_{1}^{n}
$$

Eigenvalues of $P_{1,-1}$:

$$
\operatorname{Spec}\left[P_{1,-1}\right]=\{\underbrace{\lambda_{1}, \lambda_{1}, \ldots}_{\Lambda_{1}}, \underbrace{\lambda_{2}, \lambda_{2}, \ldots}_{\Lambda_{2}}\}
$$

where Λ_{i} is the multiplicity of eigenvalue λ_{i}

Fact: In dimensional regularization $\mathrm{D}=4-2 \epsilon$,

$$
\lambda_{i}=a_{i}+b_{i} \epsilon, \quad a_{i}, b_{i} \in \mathbb{Q} .
$$

l.e. no z_{2} dependence

General form of the asymptotic series

Asymptotic series decomposes into a sum over unique eigenvalues [Haraoka '20]:

$$
\vec{I}\left(z_{1}, z_{2}\right)=\sum_{\lambda \in \operatorname{Spec}\left[P_{1,-1}\right]} z_{1}^{\lambda} \times \sum_{m=0}^{M_{\lambda}} \vec{I}^{(\lambda, m)}\left(z_{1}, z_{2}\right) \times \log ^{m}\left(z_{1}\right)
$$

General form of the asymptotic series

Asymptotic series decomposes into a sum over unique eigenvalues [Haraoka '20]:

$$
\vec{I}\left(z_{1}, z_{2}\right)=\sum_{\lambda \in \operatorname{Spec}\left[P_{1,-1}\right]} z_{1}^{\lambda} \times \sum_{m=0}^{M_{\lambda}} \vec{I}^{(\lambda, m)}\left(z_{1}, z_{2}\right) \times \log ^{m}\left(z_{1}\right)
$$

$\vec{I}^{(\lambda, m)}\left(z_{1}, z_{2}\right)$ is holomorphic in z_{1} :

$$
\vec{I}^{(\lambda, m)}\left(z_{1}, z_{2}\right)=\sum_{n=0}^{\infty} \vec{I}^{(\lambda, n, m)}\left(z_{2}\right) \times z_{1}^{n}
$$

scaling familiar from

General form of the asymptotic series

Asymptotic series decomposes into a sum over unique eigenvalues [Haraoka '20]:

$$
\vec{I}\left(z_{1}, z_{2}\right)=\sum_{\lambda \in \operatorname{Spec}\left[P_{1,-1}\right]} z_{1}^{\lambda} \times \sum_{m=0}^{M_{\lambda}} \vec{I}^{(\lambda, m)}\left(z_{1}, z_{2}\right) \times \log ^{m}\left(z_{1}\right)
$$

$\vec{I}^{(\lambda, m)}\left(z_{1}, z_{2}\right)$ is holomorphic in z_{1} :

$$
\vec{I}^{(\lambda, m)}\left(z_{1}, z_{2}\right)=\sum_{n=0}^{\infty} \vec{I}^{(\lambda, n, m)}\left(z_{2}\right) \times z_{1}^{n}
$$

$M_{\lambda} \in \mathbb{N}$ depends on the Jordan decomposition of $P_{1,-1}$

General form of the asymptotic series

Asymptotic series decomposes into a sum over unique eigenvalues [Haraoka '20]:

$$
\vec{I}\left(z_{1}, z_{2}\right)=\sum_{\lambda \in \operatorname{Spec}\left[P_{1,-1}\right]} z_{1}^{\lambda} \times \sum_{m=0}^{M_{\lambda}} \vec{I}^{(\lambda, m)}\left(z_{1}, z_{2}\right) \times \log ^{m}\left(z_{1}\right)
$$

$\vec{I}^{(\lambda, m)}\left(z_{1}, z_{2}\right)$ is holomorphic in z_{1} :

$$
\vec{I}^{(\lambda, m)}\left(z_{1}, z_{2}\right)=\sum_{n=0}^{\infty} \vec{I}^{(\lambda, n, m)}\left(z_{2}\right) \times z_{1}^{n}
$$

$M_{\lambda} \in \mathbb{N}$ depends on the Jordan decomposition of $P_{1,-1}$
z_{1}^{λ} scaling familiar from method of regions

Strategy

$$
\begin{gathered}
\vec{I}\left(z_{1}, z_{2}\right)=\sum_{\lambda \in \operatorname{Spec}\left[P_{1,-1}\right]} z_{1}^{\lambda} \times \sum_{m=0}^{M_{\lambda}} \vec{I}^{(\lambda, m)}\left(z_{1}, z_{2}\right) \times \log ^{m}\left(z_{1}\right) \\
\vec{I}^{(\lambda, m)}\left(z_{1}, z_{2}\right)=\sum_{n=0}^{\infty} \vec{I}^{(\lambda, n, m)}\left(z_{2}\right) \times z_{1}^{n}
\end{gathered}
$$

Strategy

$$
\begin{gathered}
\vec{I}\left(z_{1}, z_{2}\right)=\sum_{\lambda \in \operatorname{Spec}\left[P_{1,-1}\right]} z_{1}^{\lambda} \times \sum_{m=0}^{M_{\lambda}} \vec{I}^{(\lambda, m)}\left(z_{1}, z_{2}\right) \times \log ^{m}\left(z_{1}\right) \\
\vec{I}^{(\lambda, m)}\left(z_{1}, z_{2}\right)=\sum_{n=0}^{\infty} \vec{I}^{(\lambda, n, m)}\left(z_{2}\right) \times z_{1}^{n}
\end{gathered}
$$

Strategy to compute this series:

Strategy

$$
\begin{gathered}
\vec{I}\left(z_{1}, z_{2}\right)=\sum_{\lambda \in \operatorname{Spec}\left[P_{1,-1}\right]} z_{1}^{\lambda} \times \sum_{m=0}^{M_{\lambda}} \vec{I}^{(\lambda, m)}\left(z_{1}, z_{2}\right) \times \log ^{m}\left(z_{1}\right) \\
\vec{I}^{(\lambda, m)}\left(z_{1}, z_{2}\right)=\sum_{n=0}^{\infty} \vec{I}^{(\lambda, n, m)}\left(z_{2}\right) \times z_{1}^{n}
\end{gathered}
$$

Strategy to compute this series:
■ For each λ, solve a Pfaffian system for $\vec{I}^{(\lambda, 0,0)}\left(z_{2}\right)$ by the restriction method

Strategy

$$
\begin{gathered}
\vec{I}\left(z_{1}, z_{2}\right)=\sum_{\lambda \in \operatorname{Spec}\left[P_{1,-1}\right]} z_{1}^{\lambda} \times \sum_{m=0}^{M_{\lambda}} \vec{I}^{(\lambda, m)}\left(z_{1}, z_{2}\right) \times \log ^{m}\left(z_{1}\right) \\
\vec{I}^{(\lambda, m)}\left(z_{1}, z_{2}\right)=\sum_{n=0}^{\infty} \vec{I}^{(\lambda, n, m)}\left(z_{2}\right) \times z_{1}^{n}
\end{gathered}
$$

Strategy to compute this series:

- For each λ, solve a Pfaffian system for $\vec{I}^{(\lambda, 0,0)}\left(z_{2}\right)$ by the restriction method
\square l.e. find matrices $\left\{R^{(\lambda)}, B^{(\lambda)}, M^{(\lambda)}\right\} \Longrightarrow \partial_{2} \vec{J}^{(\lambda)}=Q_{2}^{(\lambda)} \cdot \vec{J}^{(\lambda)}$

Strategy

$$
\vec{I}\left(z_{1}, z_{2}\right)=\sum_{\lambda \in \operatorname{Spec}\left[P_{1,-1}\right]} z_{1}^{\lambda} \times \sum_{m=0}^{M_{\lambda}} \vec{I}^{(\lambda, m)}\left(z_{1}, z_{2}\right) \times \log ^{m}\left(z_{1}\right)
$$

$$
\vec{I}^{(\lambda, m)}\left(z_{1}, z_{2}\right)=\sum_{n=0}^{\infty} \vec{I}^{(\lambda, n, m)}\left(z_{2}\right) \times z_{1}^{n}
$$

Strategy to compute this series:

- For each λ, solve a Pfaffian system for $\vec{I}(\lambda, 0,0)\left(z_{2}\right)$ by the restriction method
- I.e. find matrices $\left\{R^{(\lambda)}, B^{(\lambda)}, M^{(\lambda)}\right\} \Longrightarrow \partial_{2} \vec{J}^{(\lambda)}=Q_{2}^{(\lambda)} \cdot \vec{J}^{(\lambda)}$
- $\vec{I}^{(\lambda, n, m)}\left(z_{2}\right)$ for $n, m>0$ from recursion relations (see extra slides)

Rank jump

Holomorphic case:

$$
R=\operatorname{RowReduce}\left[P_{1,-1}\right]
$$

Rank jump

Holomorphic case:

$$
R=\operatorname{RowReduce}\left[P_{1,-1}\right]
$$

Fix an eigenvalue λ. Logarithmic case:

$$
R^{(\lambda)}=\operatorname{RowReduce}\left[\left(P_{1,-1}-\lambda \mathbf{1}\right)^{M_{\lambda}+1}\right]
$$

Rank jump

Holomorphic case:

$$
R=\operatorname{RowReduce}\left[P_{1,-1}\right]
$$

Fix an eigenvalue λ. Logarithmic case:

$$
R^{(\lambda)}=\operatorname{RowReduce}\left[\left(P_{1,-1}-\lambda \mathbf{1}\right)^{M_{\lambda}+1}\right]
$$

Rank jump:

$$
R^{(\lambda)} \cdot \vec{I}^{(\lambda, 0,0)}=0
$$

$\#\{$ Independent functions $\}=\Lambda=$ eigenvalue multiplicty of λ

Basis

Dummy symbols

$$
\vec{I}^{(\lambda, 0,0)}=\left[I_{1}^{(\lambda)}, I_{2}^{(\lambda)}, \ldots\right]^{T}
$$

found by solving

Basis

Dummy symbols

$$
\vec{I}^{(\lambda, 0,0)}=\left[I_{1}^{(\lambda)}, I_{2}^{(\lambda)}, \ldots\right]^{T}
$$

Basis found by solving

$$
R^{(\lambda)} \cdot \vec{I}^{(\lambda, 0,0)}=0
$$

for independent $\vec{J}(\lambda)=\left[I_{i_{1}}^{(\lambda)}, I_{i_{2}}^{(\lambda)}, \ldots, I_{i_{\Lambda}}^{(\lambda)}\right]^{T}$

Basis

Dummy symbols

$$
\vec{I}^{(\lambda, 0,0)}=\left[I_{1}^{(\lambda)}, I_{2}^{(\lambda)}, \ldots\right]^{T}
$$

Basis found by solving

$$
R^{(\lambda)} \cdot \vec{I}^{(\lambda, 0,0)}=0
$$

for independent $\vec{J}(\lambda)=\left[I_{i_{1}}^{(\lambda)}, I_{i_{2}}^{(\lambda)}, \ldots, I_{i_{\Lambda}}^{(\lambda)}\right]^{T}$

Rectangular basis matrix $B^{(\lambda)}$:

$$
\vec{J}^{(\lambda)}=B^{(\lambda)} \cdot \vec{I}^{(\lambda, 0,0)}, \quad B_{i j}^{(\lambda)} \in\{0,1\}
$$

Pfaffian system for $\vec{J}^{(\lambda)}$

How to get the $\Lambda \times \Lambda$ Pfaffian matrix $Q_{2}^{(\lambda)}\left(z_{2}\right)$ in

$$
\partial_{2} \vec{J}^{(\lambda)}=Q_{2}^{(\lambda)} \cdot \vec{J}^{(\lambda)} ?
$$

Pfaffian system for $\vec{J}(\lambda)$

How to get the $\Lambda \times \Lambda$ Pfaffian matrix $Q_{2}^{(\lambda)}\left(z_{2}\right)$ in

$$
\partial_{2} \vec{J}^{(\lambda)}=Q_{2}^{(\lambda)} \cdot \vec{J}^{(\lambda)} ?
$$

Join rank jump and basis matrices into

$$
M^{(\lambda)}=\left[\frac{B^{(\lambda)}}{R^{(\lambda)}}\right] \quad \Longrightarrow \quad M^{(\lambda)} \cdot \vec{I}^{(\lambda, 0,0)}=\left[\begin{array}{c}
\vec{J}^{(\lambda)} \\
0 \\
\vdots \\
0
\end{array}\right]
$$

Pfaffian system for $\vec{J}(\lambda)$

How to get the $\Lambda \times \Lambda$ Pfaffian matrix $Q_{2}^{(\lambda)}\left(z_{2}\right)$ in

$$
\partial_{2} \vec{J}^{(\lambda)}=Q_{2}^{(\lambda)} \cdot \vec{J}^{(\lambda)} ?
$$

Join rank jump and basis matrices into

$$
M^{(\lambda)}=\left[\frac{B^{(\lambda)}}{R^{(\lambda)}}\right] \quad \Longrightarrow \quad M^{(\lambda)} \cdot \vec{I}^{(\lambda, 0,0)}=\left[\begin{array}{c}
\vec{J}^{(\lambda)} \\
0 \\
\vdots \\
0
\end{array}\right]
$$

Gauge transformation of $P_{2,0}$:

$$
\left(\partial_{2} M^{(\lambda)}+M^{(\lambda)} \cdot P_{2,0}\right) \cdot\left(M^{(\lambda)}\right)^{-1}=\left[\begin{array}{c|c}
Q_{2}^{(\lambda)} & \star \\
\hline \mathbf{0} & \star
\end{array}\right]
$$

Summarizing the algorithm for computing $\vec{I}^{(\lambda, n, m)}$

Step 0: Bring P_{1}, P_{2} to normal form.
For each unique $\lambda \in \operatorname{Spec}\left[P_{1,-1}\right]$, do

1. Construct $M^{(\lambda)}=\left[\frac{B^{(\lambda)}}{R^{(\lambda)}}\right]$.
2. Get Q_{2} from $\left(\partial_{2} M^{(\lambda)}+M^{(\lambda)} \cdot P_{2,0}\right) \cdot\left(M^{(\lambda)}\right)^{-1}=\left[\begin{array}{c|c}Q_{2}^{(\lambda)} & \star \\ \hline \mathbf{0} & \star\end{array}\right]$
3. Solve $\partial_{2} \vec{J}^{(\lambda)}=Q_{2} \cdot \vec{J}^{(\lambda)}$
4. Insert $\vec{J}^{(\lambda)}$ into $\vec{I}^{(\lambda, 0,0)}=\left(M^{(\lambda)}\right)^{-1} \cdot\left[\frac{\vec{J}^{(\lambda)}}{0}\right]$
5. Get $\vec{I}(\lambda, n, m)$ from recursion relations (see extra slides)

Example: Bhabha scattering

1-loop: Eigenvalues

Eigenvalues:

$$
\operatorname{Spec}\left[P_{1,-1}\right]=\{\underbrace{0,0,0}_{\Lambda_{1}=3}, \underbrace{-\epsilon,-\epsilon}_{\Lambda_{2}=2}\}
$$

- $\lambda_{1}=0: \quad 3 \times 3$ Pfaffian system for the massless box
- $\lambda_{2}=-\epsilon: 2 \times 2$ Pfaffian system contributing with logs

1-loop: Pfaffian sub-systems

$\lambda_{1}=0$

$$
Q_{2}^{\left(\lambda_{1}\right)}=\left[\begin{array}{ccc}
-\frac{\epsilon}{z_{2}} & 0 & 0 \\
0 & 0 & 0 \\
\frac{2(1-2 \epsilon)}{z_{2}^{2}\left(z_{2}+1\right)} & \frac{2(2 \epsilon-1)}{z_{2}\left(z_{2}+1\right)} & \frac{-z_{2}-\epsilon-1}{z_{2}\left(z_{2}+1\right)}
\end{array}\right]
$$

Can easily be ϵ-factorized [Henn]
$\lambda_{1}=-\epsilon$

$$
Q_{2}^{\left(\lambda_{2}\right)}=\left[\begin{array}{cc}
0 & 0 \\
\frac{\epsilon-1}{z_{2}^{2}} & \frac{-1}{z_{2}}
\end{array}\right]
$$

Can be solved exactly in z_{2}

WIP: 2-loops [Henn, Smimov]

Eigenvalues:

$$
\operatorname{Spec}\left[P_{1,-1}\right]=\{\underbrace{0, \ldots, 0}_{\Lambda_{1}=8}, \underbrace{\lambda_{2}}_{\Lambda_{2}=1}, \underbrace{\lambda_{3}, \ldots, \lambda_{3}}_{\Lambda_{3}=7}, \underbrace{\lambda_{4}, \ldots, \lambda_{4}}_{\Lambda_{4}=7}\}
$$

- All 4 Pfaffian sub-systems are easily ϵ-factorized
- HPL letters: $\left\{z_{2}, z_{2}+1, z_{2}-1\right\}$

Conclusion and outlook

Conclusion and outlook

Conclusion

- Studied holomorphic and logarithmically singular limits of Pfaffian systems

Presented a computationally cheap method for obtaining

Outlook

Conclusion and outlook

Conclusion

- Studied holomorphic and logarithmically singular limits of Pfaffian systems
- Presented a computationally cheap method for obtaining asymptotic series

Outlook

Conclusion and outlook

Conclusion

- Studied holomorphic and logarithmically singular limits of Pfaffian systems
- Presented a computationally cheap method for obtaining asymptotic series

Outlook

- Boundary constants?

Momentum space representation of J

Conclusion and outlook

Conclusion

- Studied holomorphic and logarithmically singular limits of Pfaffian systems
- Presented a computationally cheap method for obtaining asymptotic series

Outlook

- Boundary constants?
- Momentum space representation of $\vec{J}(\lambda)$?

Conclusion and outlook

Conclusion

- Studied holomorphic and logarithmically singular limits of Pfaffian systems
- Presented a computationally cheap method for obtaining asymptotic series

Outlook

- Boundary constants?
- Momentum space representation of $\vec{J}(\lambda)$?
- Do all eigenvalues λ contribute to the result?

Conclusion and outlook

Conclusion

- Studied holomorphic and logarithmically singular limits of Pfaffian systems
- Presented a computationally cheap method for obtaining asymptotic series

Outlook

■ Boundary constants?

- Momentum space representation of $\vec{J}(\lambda)$?
- Do all eigenvalues λ contribute to the result?
- Try many more examples:
- 2-loop non-planar Bhabha scattering
- 2-loop μ-e scattering with massive e
- Threshold and collinear expansions
- Soft limit in gravity

Extra 1) Recursion relations

Shift power of $\log ^{m}\left(z_{1}\right)$.

$$
\begin{equation*}
\vec{I}^{(\lambda, 0, m)}=\left[\frac{P_{1,-1}-\lambda \mathbf{1}}{m}\right] \cdot \vec{I}^{(\lambda, 0, m-1)}, \quad 1 \leq m \leq M_{\lambda} \tag{1}
\end{equation*}
$$

with terminating condition

$$
\vec{I}^{\left(\lambda, 0, M_{\lambda}+1\right)}=0
$$

Shift power of z_{1}^{n}. Set $\Pi_{\lambda, n}=\left[P_{1,-1}-(\lambda+n) 1\right]^{-1}$.

$$
\begin{gather*}
\vec{I}^{(\lambda, n, m)}=\Pi_{\lambda, n} \cdot\left((m+1) \vec{I}^{(\lambda, n, m+1)}-\sum_{i=0}^{n-1} P_{1, n-i-1} \cdot \vec{I}^{(\lambda, i, m)}\right) \tag{2}\\
\vec{I}^{\left(\lambda, n, M_{\lambda}\right)}=-\Pi_{\lambda, n} \cdot \sum_{i=0}^{n-1} P_{1, n-i-1} \cdot \vec{I}^{\left(\lambda, i, M_{\lambda}\right)}
\end{gather*}
$$

Extra 2) Recursion flowchart [Haraoka '20]

N_{λ} : Max power of z_{1}^{n}. $\quad M_{\lambda}$: Max power of $\log ^{m}\left(z_{1}\right)$
$(0,0) \xrightarrow{(1)}$
$(0,1)$
$\xrightarrow{(1)}$
$\xrightarrow{(1)}$
$\left(0, M_{\lambda}-1\right) \quad \xrightarrow{(1)}$
$\left(0, M_{\lambda}\right)$

$$
\sqrt{\omega}
$$

$(1,0) \quad \stackrel{(2)}{\rightleftarrows}(1,1) \quad{ }^{(2)} \quad \cdots \quad \stackrel{(2)}{\rightleftarrows} \quad\left(1, M_{\lambda}-1\right) \quad \oiiint^{(2)} \quad\left(1, M_{\lambda}\right)$

$$
\sqrt{\omega}
$$

$$
\downarrow \underset{\omega}{\widehat{\omega}}
$$

$$
\left(N_{\lambda}, 0\right) \stackrel{(2)}{\rightleftarrows}\left(N_{\lambda}, 1\right) \stackrel{(2)}{\rightleftarrows} \cdots \quad \stackrel{(2)}{\rightleftarrows}\left(N_{\lambda}, M_{\lambda}-1\right) \stackrel{(2)}{\rightleftarrows}\left(N_{\lambda}, M_{\lambda}\right)
$$

