A new method for the reconstruction of rational functions

Xiao Liu

University of Oxford

Based on e-print: 2306.12262

DESY-HU Theory Seminars 13 July 2023, online

I. Introduction

- II. The method
- **III. Examples**
- **IV. Summary and outlook**

High precision particle physics

Era of Precision

- Theoretical predictions & experimental measurements
- Test particle physics Standard Model & probe signals of New Physics
- Higher order corrections urgently needed

*Figure from [Apollinari, Alonso, Bruning, et al, 2015]

13 July 2023

Xiao Liu, University of Oxford

High precision particle physics

State-of-the-art

- NLO revolution [Ossola, Papadopoulos and Pittau, Nucl. Phys. B, 2007] ...
- NNLO QCD:
 - $pp \rightarrow \gamma \gamma \gamma$ [Chawdhry, Czakon, Mitov, et al, JHEP, 2020]
 - $pp \rightarrow \gamma \gamma j$ [Chawdhry, Czakon, Mitov, et al, JHEP, 2021]
 - $pp \rightarrow Wb\overline{b}$ [Hartanto, Pncelet, Popescu and Zoia, Phys. Rev. D, 2022]
- Mixed QCD-electroweak
 - $pp \rightarrow Z$ [Buccioni, Caola, Delto, et al, Phys. Lett. B, 2020]
 - $pp \rightarrow W$ [Behring, Buccioni, Caola, et al, Phys. Rev. D, 2021]
 - $pp \rightarrow l^- l^+$ [Buccioni, Caola, Chawdhry, et al, JHEP 2022]
- NNNLO QCD
 - $pp \rightarrow H$ [Anastasiou, Duhr, Dulat, et al, Phys. Rev. Lett., 2015] [Mistlberger, JHEP 2018]
 - $pp \rightarrow l^- l^+$ [Duhr, Dulat and Mistlberger, Phys. Rev. Lett., 2020] [Duhr, Dulat and Mistlberger, JHEP, 2020] [Duhr, Mistlberger, JHEP, 2022]

High precision particle physics

> Multiloop scattering amplitudes

• Construct the amplitude

13 July 2023

$$\mathcal{A} = \sum c_i I_i$$

• *I_i*: scalar Feynman integrals in dimensional regularization

$$I(\vec{\nu}) = \int \prod_{i=1}^{L} \frac{\mathrm{d}^{D}\ell_{i}}{\mathrm{i}\pi^{D/2}} \frac{\mathcal{D}_{K+1}^{-\nu_{K+1}} \cdots \mathcal{D}_{N}^{-\nu_{N}}}{(\mathcal{D}_{1} + \mathrm{i}0)^{\nu_{1}} \cdots (\mathcal{D}_{K} + \mathrm{i}0)^{\nu_{K}}}$$

- Compute the scalar integrals: reduction + computation
 - reduction: express all the scalar integrals in terms of a smaller set of independent integrals (master integrals)

$$I_i = \sum_j b_{ij} M_j$$

• computation: compute the master integrals as expansions in the dimensional regulator $\epsilon = (4 - D)/2$

$$M_j = \sum_{l=-2L} d_{jk} \epsilon^k$$

Xiao Liu, University of Oxford

Feynman integrals

> Integration-by-parts (IBP) identities [Chetyrkin and Tkachov, Nucl. Phys. B,

$$0 = \int \prod_{i=1}^{L} \frac{\mathrm{d}^{D}\ell_{i}}{\mathrm{i}\pi^{D/2}} \frac{\partial}{\partial\ell_{j}^{\mu}} \left(\frac{v_{k}^{\mu}}{\mathcal{D}_{1}^{\nu_{1}}\cdots\mathcal{D}_{m}^{\nu_{m}}} \right)$$

- Translation invariance of space-time
- Example: one-loop tadpole

1981]

- I(v) can be reduced to I(1)
- *I*(1): master integral

13 July 2023

• Number of master integrals is finite. [Smirnov and Petukhov, Lett. Math. Phys., 2011]

Feynman integrals

- Laporta's algorithm [Laporta, Int. J. Mod. Phys. A, 2000]
 - consider IBP identities with numerical indices, rather than symbolic
 - construct a linear system
 - Gaussian elimination
- Computer programs
 - AIR [Anastasiou and Lazopoulos, JHEP, 2004]
 - FIRE [Smirnov, JHEP, 2008] [Smirnov, Smirnov, Comput. Phys. Commun., 2013] [Smirnov, Comput. Phys. Commun., 2015] [Smirnov and Chuharev, Comput. Phys. Commun., 2020]
 - Reduze [Studerys, Comput. Phys. Commun., 2010] [Manteuffel and Studerus, e-Print: 1201.4330]
 - Kira [Maierhofer, Usovitsch and Uwer, Comput. Phys. Commun., 2018] [Klappert, Lange, Maierhofer and Usovitsch, Comput. Phys. Commun., 2021]
 - LiteRed [Lee, 2012] [Lee, 2014]

13 July 2023

• NeatIBP [Wu, Boehm, Ma, et al, 2305.08783]

Finite field techniques

Finite field arithmetic [Manteuffel and Schabinger, Phys. Lett. B, 2015] [Peraro, JHEP, 2016]

- Motivation: intermediate expression swelling
- Solution: numerical sampling + reconstruction
- Finite fields
 - $Z_p = \{\overline{0}, \overline{1}, \dots, \overline{p-1}\}$ for a prime number p
 - for any $\bar{a} \neq \bar{0}$, there is a unique element \bar{b} , such that $\bar{a}\bar{b} = \bar{1}$

• $\bar{a}^{-1} \coloneqq \bar{b}$

• extension to rational numbers

•
$$\frac{a}{b} \to \overline{a}\overline{b}^{-1}$$

- examples: $1/3 \mod 7 = 5$, $2/7 \mod 101 = 58$
- Rational numbers reconstruction: Chinese Remainder Theorem + Wang's algorithm [Wang, 1981]

Finite field techniques

- Univariate
 - polynomials: Newton's interpolation formula

$$f(x) = a_0 + (x - x_0) \left(a_1 + (x - x_1) \left(a_2 + (x - x_2) \left(\dots + (x - x_{R-1}) a_R \right) \right) \right)$$

• rational functions: Thiele's interpolation formula

$$f(x) = a_0 + (x - x_0) \left(a_1 + (x - x_1) \left(a_2 + (x - x_2) \left(\dots + \frac{x - x_{R-1}}{a_R} \right)^{-1} \right)^{-1} \right)^{-1}$$

• x_0, x_1, \dots, x_R : interpolations

- a_0, a_1, \dots, a_R : unknown parameters to be determined
- a_j can be determined from $f(x_j)$ and a_0, \dots, a_{j-1}

Finite field techniques

- Multivariate polynomials: recursively applying Newton's formula
- Multivariate rational functions
 - recursively applying Thiele's formula \rightarrow too many samples required
 - semi-sparse: univariate rational functions + multivariate polynomials
 - $\vec{x} \rightarrow \vec{x}t + \vec{a}$

$$f(\vec{x}) \to h(t, \vec{x}) = \frac{\sum_{r=0}^{R} p_r(\vec{x}) t^r}{1 + \sum_{r=1}^{R'} q_r(\vec{x}) t^r}$$

- $p_r(\vec{x}), q_r(\vec{x})$: degree-*r* homogeneous polynomials
- $(t_0, \vec{x}_0), (t_1, \vec{x}_0), \dots \rightarrow h(t, \vec{x}_0) \rightarrow p_r(\vec{x}_0), q_r(\vec{x}_0)$
- $(t_0, \vec{x}_1), (t_1, \vec{x}_1), \dots \rightarrow h(t, \vec{x}_1) \rightarrow p_r(\vec{x}_1), q_r(\vec{x}_1)$
- ...
- $h(t, \vec{x}) \rightarrow f(\vec{x})$

13 July 2023

• Programs: FiniteFlow [Peraro, JHEP, 2019] FireFly [Klappert and Lange, Comput. Phys. Commun., 2020]

Summary

Refined IBP systems:

Syzygy equations [Gluza, Kajda and Kosower, Phys. Rev. D, 2011] [Larsen and Zhang, Phys. Rev. D, 2016]

block-triangular systems [Guan, XL, Ma,

Chin.Phys.C, 2020]

More powerful linear solver:

13 July 2023

Kira [Maierhofer, Usovitsch and Uwer, Comput. Phys. Commun., 2018] RATRACER [Magerya, e-Print: 2211.03572]

Better interpolation methods [Klappert and Lange, Comput.Phys.Commun. 2020] [Belitsky, Smirnov, Yakovlev, 2023.02511]

more compact ansatz[Badger, Hansen, Chicherin, et al, JHEP 2021][Laurentis, Page, JHEP 2022][Abreu, Laurentis, Ita, et al, 2305.17056] the method in this talk

Xiao Liu, University of Oxford

I. Introduction

II. The method

III. Examples

IV. Summary and outlook

A simple observation

- Traditional strategy: reconstructing functions individually & neglecting common structures
- Example

$$f_i(x) = \left(\frac{1+x}{1-x}\right)^{i-1}, \quad i \in [1, 100]$$

- approximately 200 samples using Thiele's interpolation formula
- linear relations

13 July 2023

$$(1-x)f_{i+1}(x) - (1+x)f_i(x) = 0, \quad i \in [1,99]$$

• ansatz + linear fit \rightarrow 4 samples

$$(a_i + b_i x)f_{i+1}(x) + (c_i + d_i x)f_i(x) = 0$$

• Linear relations \rightarrow common structures utilized \rightarrow number of samples reduced

General description

- Goal: all n 1 independent relations among k-variate functions $f_1(\vec{x}), \dots, f_n(\vec{x})$
- Ansatz

$$Q_1(\vec{x})f_1(\vec{x}) + \dots + Q_n(\vec{x})f_n(\vec{x}) = 0$$

- $Q_i(\vec{x})$: polynomial of $\vec{x} \Rightarrow$ specifying monomials $x_1^{\alpha_1} \cdots x_k^{\alpha_k}$
- Definition 1:

$$P(\{x_{i_1}, ..., x_{i_l}\}, m) := \{x_{i_1}^{\alpha_1} \cdots x_{i_l}^{\alpha_l} | \sum \alpha_i \le m\}$$

- $P(\{x_1\}, 2) = \{1, x_1, x_1^2\}; P(\{x_2, x_3\}, 1) = \{1, x_2, x_3\}$
- Definition 2:

13 July 2023

$$P_1 \times P_2 := \{ p_1 p_2 \, | \, p_1 \in P_1, p_2 \in P_2 \}$$

• $P(\{x_1\}, 2) \times P(\{x_2, x_3\}, 1) = \{1, x_1, x_1^2, x_2, x_1x_2, x_1^2x_2, x_3, x_1x_3, x_1^2x_3\}$

• $P(\{x_{i_1}, \dots, x_{i_l}\}, m_1) \times P(\{x_{i_1}, \dots, x_{i_l}\}, m_2) = P(\{x_{i_1}, \dots, x_{i_l}\}, m_1 + m_2)$

The method

- Division of variables \vec{x} into r subsets S_1, \dots, S_r (comments in next slide)
 - $S_1 = \{x_1\}, S_2 = \{x_2, x_3\}$
- For a specific $Q_i(\vec{x})$, given integers $\vec{z} = \{z_1, ..., z_r\}$

$$M(\vec{z}) := P(S_1, z_1) \times \cdots \times P(S_r, z_r)$$

- $M(2,1) = P(S_1,2) \times P(S_2,1) = \{1, x_1, x_1^2, x_2, x_1x_2, x_1^2x_2, x_3, x_1x_3, x_1^2x_3\}$
- $M(\vec{z}_1) \times M(\vec{z}_2) = M(\vec{z}_1 + \vec{z}_2)$
- In practice: use the same \vec{z} for all the *Q*'s
- Algorithm from [Guan, XL, Ma, Chin.Phys.C, 2020]
 - 1. start with $\sum z_i = 0$;
 - 2. for each solution of \vec{z} , make the ansatz and fit the unknowns
 - 3. test the number of independent relations: if sufficient, terminate; otherwise increase ∑z_i by 1 and go back to step 2.

The method

- Redundant relations: relations from \vec{z} will be redundantly obtained from \vec{z}' if $z_i \le z'_i$ for any i
 - $z_1 = 1, z_2 = 0: (x_1 1)f_1 + (3x_1 + 2)f_2 + \dots = 0$
 - $z_1 = 1, z_2 = 1: (x_1x_2 x_2)f_1 + (3x_1x_2 + 2x_2)f_2 + \dots = 0$
- Solution: eliminate "solvable" monomials
 - $z_1 = 1, z_2 = 0$: x_1 of f_1 is "solved", $x_1f_1 = f_1 + (-3x_1 2)f_2 + \cdots$
 - $z_1 = 1, z_2 = 1$: x_1 and $x_1 x_2$ of f_1 should be "solvable"
 - in general, eliminate $\Lambda_i(\vec{z}) \times M(\vec{z}' \vec{z})$ for all possible \vec{z}
- Comment on the variables division
 - any division works: $S_1 = \{x_1, ..., x_k\}; S_1 = \{x_1\}, ..., S_k = \{x_k\}; ...$
 - but the number of samples can vary significantly
 - do some tests to gain insights

Summary

- Summary
 - build a generator of the numerical samples for the target functions
 - e.g., IBP system + linear solver
 - find the system of all the independent linear relations over a finite field
 - various ansatz of $Q_1(\vec{x})f_1(\vec{x}) + \dots + Q_n(\vec{x})f_n(\vec{x}) = 0$
 - linear fit = samples ($N_{sample} \sim N_{unknown}$) + dense system ($N_{sample} \times N_{unknown}$)
 - solve the linear system to obtain explicit solutions
 - traditional rational functions reconstruction strategy
 - additional finite fields (knowledge from the first finite field) + rational numbers reconstruction

- I. Introduction
- II. The method

III. Examples

IV. Summary and outlook

• Reduction coefficients of Feynman integrals or amplitudes

$$\mathcal{A} = f_1 \mathcal{M}_1 + \dots + f_n \mathcal{M}_n$$

- a common set of denominators reflecting the singularities
- auxiliary function $f_{n+1} = 1$

Xiao Liu, University of Oxford

- Topology (a): two-loop amplitude of the mixed QCD-electroweak correction to $pp \rightarrow Z + j$ [Bargiela, Caola, Chawdhry, **XL**, to appear]
- Setup
 - $m_Z^2 = 1, m_W^2 = 7/9$
 - remaining: $\{\epsilon, s_{12}, s_{13}\}$
 - 56 master integrals \Rightarrow 56 rational functions
 - LiteRed + FiniteFlow
- Details
 - $S_1 = \{\epsilon\}, S_2 = \{s_{12}, s_{13}\}$
 - $z_1 + z_2 = 6$

- 1+2 finite fields with 64-bit prime numbers
- samples: $18326 \times 3 \rightarrow 2199 + 1561 \times 2 \Rightarrow$ a factor of 10.3
- computational cost: $4.6h \rightarrow 0.44h + 0.03h \Rightarrow a \text{ factor of } 9.8$

\vec{z}	N _{unknown}	N _{sample}	N _{relation}	N2 _{sample}
{0,0}	57	58	0	
{1,0}	114	115	0	
{0,1}	171	172	1	4
{2,0}	171	172	0	
{1,1}	340	341	0	
{0,2}	339	340	1	9
{3,0}	228	229	0	
{2,2}	1014	1015	1	31
{2,3}	1680	1681	20	1394
{3,3}	2198	2199	33	1561
summary		2199	56	1561

13 July 2023

Xiao Liu, University of Oxford

- Number of samples
 - explicit reduction coefficients: total degree 40 for numerator and 39 for denominator
 - linear relations: total degree 6
 - $N_1 = 2199, N_2 = 1561 \ll N_0 = 18326$
- Performance of the systems
 - IBP system (34336 equations): **0.3s** per phase-space point
 - Our system (56 equations): 7.5×10^{-4} s per phase-space point
 - 400 times faster $\Rightarrow t_{sol} = 0.03h \ll t_{sam} = 0.44h$

- Topology (b): an integral with rank-6 numerator
- Setup
 - $p_4^2 = 1$
 - remaining: $\{\epsilon, s_{12}, s_{13}\}$
 - 83 master integrals \Rightarrow 83 rational functions
 - NeatIBP + FiniteFlow
- Details
 - $S_1 = \{\epsilon\}, S_2 = \{s_{12}, s_{13}\}$
 - $z_1 + z_2 = 8$

- 1+2 finite fields
- samples: $48574 \times 3 \rightarrow 6010 + 4599 \times 2 \Rightarrow$ a factor of 9.6
- computational cost: $78.5h \rightarrow 8.03h + 0.12h \Rightarrow a \text{ factor of } 9.6$

- Number of samples
 - explicit reduction coefficients: total degree 56 for numerator and 55 for denominator
 - linear relations: total degree 8
 - $N_1 = 6010, N_2 = 4599 \ll N_0 = 48574$
- Performance of the systems
 - IBP system (200074 equations): **1.9s** per phase-space point
 - Our system (83 equations): 2.4×10^{-3} s per phase-space point
 - 792 times faster $\Rightarrow t_{sol} = 0.12h \ll t_{sam} = 8.03h$

• Topology (c): differential equations of master integrals w.r.t. Mandelstam

variables [Kotikov, Phys. Lett. B, 1991] [Henn, Phys. Rev. Lett., 2013] : $\frac{\partial}{\partial s_{12}} \vec{M}, \frac{\partial}{\partial s_{13}} \vec{M}$

- Setup
 - $p_4^2 = 1$
 - remaining: $\{\epsilon, s_{12}, s_{13}\}$
 - 280 master integrals
 - LiteRed + FiniteFlow
- Details
 - $S_1 = \{\epsilon\}, S_2 = \{s_{12}, s_{13}\}$
 - $z_1 + z_2 \le 8$

- 1+5 finite fields
- samples: $391937 \times 6 \rightarrow 9612 + 6810 \times 5 \Rightarrow a \text{ factor of } 54$
- computational cost: $450728h^* \rightarrow 8369h + 180h \Rightarrow$ a factor of 53

- Number of samples
 - explicit reduction coefficients: total degree 102 for numerator and 103 for denominator
 - linear relations: total degree 8
 - $N_1 = 9612, N_2 = 6810 \ll N_0 = 391937$
- Performance of the systems
 - IBP system (3461628 equations): 690s per phase-space point
 - Our representative system (280 equations): 0.013s per phase-space point
 - 53077 times faster \Rightarrow $t_{sol} = 180h \ll t_{sam} = 8369h$

- Topology (d): differential equations with respect to internal squared masses
- Extensively involved in the auxiliary mass flow method [xL, Ma, Wang, Phys.Lett.B., 2018] [XL, Ma, Comput.Phys.Commun., 2023]
- Setup
 - $p_3^2 = p_4^2 = 1, s_{12} = 10, s_{13} = -22/9$
 - remaining: $\{\epsilon, m^2\}$
 - 336 master integrals
 - LiteRed + FiniteFlow
- Details
 - $S_1 = \{\epsilon\}, S_2 = \{m^2\}$
 - $z_1 + z_2 \le 5$

- 1+32 finite fields
- samples: $14362 \times 33 \rightarrow 1414 + 1248 \times 32 \Rightarrow$ a factor of 11.5
- computational cost: $3230h \rightarrow 281h + 59h \Rightarrow a \text{ factor of } 9.5$

- Number of samples
 - explicit reduction coefficients: total degree 144 for numerator and 143 for denominator
 - linear relations: total degree 5
 - $N_1 = 1414, N_2 = 1248 \ll N_0 = 14362$
- Performance of the systems
 - IBP system (625070 equations): 24.5s per phase-space point
 - Our representative system (336 equations): 0.019s per phase-space point
 - 1289 times faster, however number of complicated systems increases \Rightarrow

 $\frac{t_{\rm sol}=59\rm h}{t_{\rm sam}=281\rm h}\sim\frac{1}{5}$

- https://gitlab.com/xiaoliu222222/examples-for-rational-functions-reconstruction
 - explicit reduction coefficients & the linear system they satisfy

E Examples for rational function	ons reconstruction \oplus	□ □ □ ♀ Fork 0
3 Commits 🐉 1 Branch 🧷 0 Tags 🗔 67 MiB Pr	oject Storage	
Wiao Liu authored 2 weeks ago		e1b09927 [t]
main ∨ examples-for-rational-functions-reconst ■ README ● Add LICENSE	ruction / + →	Find file Edit ~ └ ~ Clone ~ o DevOps
Configure Integrations		
Name	Last commit	Last update
🗅 a	initialize	3 weeks ago
🗅 b	initialize	3 weeks ago
Ēι¢	initialize	3 weeks ago
🗅 d	initialize	3 weeks ago
M* README md	update readme	2 weeks ado

- I. Introduction
- II. The method
- **III. Examples**
- **IV. Summary and outlook**

Summary and Outlook

- A new method for the reconstruction of rational functions is proposed, which works by exploiting all the independent linear relations among the target functions.
- Better scaling behavior
 - improvement factor: univariate \leq 2-variate \leq 3-variate
- The current form of the method is not so good to solve problems with more than 3 variables → linear fit becomes dominant and sometimes prohibitive
 - refined ansatz for the relations: sparse or semi-sparse?
 - refined choice of auxiliary functions, rather than a naïve $f_{n+1}(x) = 1$
- $t_{sol} \ll t_{sam}$ in most cases \Rightarrow improvements in the generators
 - for cases where $t_{sol} \ge t_{sam}$, refined approach to grouping the functions

