IBP reduction with modular arithmetic and Rational Tracer

Vitaly Magerya
Institute for Theoretical Physics (ITP), Karlsruhe Institute of Technology (KIT)

DESY Zeuthen / HU Berlin Theory Seminar June 22, 2023

Integration-By-Parts reduction

An IBP integral family with L loop momenta l_{i}, and E external momenta p_{i}, is the set of Feynman integrals

The idea: shifting any l_{k} by any vector v should not change I :

$$
\lim _{\alpha \rightarrow 0} \frac{\partial}{\partial \alpha} I\left(l_{k} \rightarrow l_{k}+\alpha v\right)=\int \mathrm{d}^{d} l_{1} \cdots \mathrm{~d}^{d} l_{L} \frac{\partial}{\partial l_{k}^{\mu}} \frac{v^{\mu}}{D_{1}^{v_{1}} \ldots D_{N}^{v_{N}}} \stackrel{!}{=} 0, \quad \forall k, v .
$$

These are the IBP relations. We use them to:

* reduce $I_{v_{1} \ldots v_{N}}$ to combinations of master integrals, [Chetyrkin, Tkachov '81] * the number of master integrals is finite; [Smirnov, Petukhov '04]
* evaluate the master integrals via
* differential equations (analytically, numerically), [Kotikov '91, '91; Henn '13]
* or dimensional recurrence relations. [Tarasov '96; Lee '10]

Solving IBP relations is a major bottleneck in cutting edge calculations.

IBP relations example

Consider a massless triangle topology:

$$
I_{a, b, c} \equiv \sum_{\sum_{p_{2}}}^{h_{p_{2}}^{-p_{1}} l_{p_{1}}^{p_{1}} \equiv \int \frac{\mathrm{~d}^{d} l}{\left(l_{1}^{2}\right)^{a}\left(\left(l_{1}-p_{1}\right)^{2}\right)^{b}\left(\left(l_{1}+p_{2}\right)^{2}\right)^{c}}, ~}
$$

$$
\text { where } p_{1}^{2}=p_{2}^{2}=0, \text { and } p_{1} \cdot p_{2}=s / 2
$$

Choosing $k=1$ and $v=\left\{p_{1}, p_{2}, p_{3}\right\}$ we get linear relations between $I_{a, b, c}$:

$$
\begin{gathered}
(b-a) I_{a, b, c}-c s I_{a, b, c+1}-c I_{a-1, b, c+1}-b I_{a-1, b+1, c}+c I_{a, b-1, c+1}+a I_{a+1, b-1, c}=0, \\
(a-c) I_{a, b, c}+b s I_{a, b+1, c}+c I_{a-1, b, c+1}+b I_{a-1, b+1, c}-b I_{a, b+1, c-1}-a I_{a+1, b, c-1}=0, \\
(d-2 a-b-c) I_{a, b, c}-c I_{a-1, b, c+1}-b I_{a-1, b+1, c}=0, \\
\forall a, b, c .
\end{gathered}
$$

Laporta algorithm

Solving IBP relations "by hand" (with indices as symbolic variables) can be done in simpler cases. For more complicated problems use the Laporta algorithm:
[Laporta '00]

1. Substitute integer values for the indices v_{i} into the IBP relations, obtaining a large linear system with many different $I_{\nu_{1} \ldots v_{N}}$.
2. Define an ordering on $I_{\nu_{1} \ldots v_{N}}$ from "simple" to "complex" integrals.

$$
* \text { E.g. } I_{0,1,1}<I_{1,1,0}<I_{1,1,1}<I_{1,2,1}<I_{2,1,1} \text {, etc. }
$$

3. Perform Gaussian elimination on the linear system, eliminating the most "complex" integrals first.
4. A small number of "simple" integrals will remain uneliminated.
\Rightarrow These are the master integrals. The rest will be expressed as their linear combinations.

IBP reduction example

$$
I_{a, b, c} \equiv \sqrt{a}_{p_{2}}^{p_{1}}, \quad p_{1}^{2}=p_{2}^{2}=0, \quad p_{1} \cdot p_{2}=s / 2
$$

After Gaussian elimination (2 operations):

IBP reduction example

$$
I_{a, b, c} \equiv \int_{c}^{b} \sqrt{a}_{p_{2}}^{p_{1}}, \quad p_{1}^{2}=p_{2}^{2}=0, \quad p_{1} \cdot p_{2}=s / 2
$$

After Gaussian elimination (5 operations):

IBP reduction example

$$
I_{a, b, c} \equiv \sqrt{a}_{p_{2}}^{p_{1}}, \quad p_{1}^{2}=p_{2}^{2}=0, \quad p_{1} \cdot p_{2}=s / 2
$$

After Gaussian elimination (11 operations):

IBP reduction example

$$
I_{a, b, c} \equiv \sqrt{a}_{p_{2}}^{p_{1}}, \quad p_{1}^{2}=p_{2}^{2}=0, \quad p_{1} \cdot p_{2}=s / 2
$$

After Gaussian elimination (62 operations):

IBP reduction example

$$
p_{1}^{2}=p_{2}^{2}=0, \quad p_{1} \cdot p_{2}=s / 2 .
$$

$$
\begin{gathered}
(d-6) I_{2,1,1}-I_{1,2,1}-I_{1,1,2}=0 \\
s I_{1,2,1}-s I_{1,1,2}=0 \\
s I_{1,1,2}+I_{0,2,1}+I_{0,1,2}=0 \\
(d-4) I_{1,1,1}-I_{0,2,1}-I_{0,1,2}=0 \\
-2 I_{-1,3,1}-I_{-1,2,2}+(d-3) I_{0,2,1}=0 \\
-2 I_{-1,1,1}-s I_{0,1,1}=0 \\
-I_{0,3,1}+I_{0,1,3}=0 \\
s I_{-1,2}-s I_{-1,1,2}=0 \\
-I_{-1,2,1}-I_{-1,1,2}+(d-2) I_{0,1,1}=0 \\
-I_{-1,1,1}-I_{-1,1,2}-s I_{0,1,2}+I_{0,1,1}=0 \\
-I_{-1,2,2}-2 I_{-1,1,3}+(d-3) I_{0,1,2}=0 \\
s I_{-1,2,2}-2 s I_{-1,1,3}+s I_{0,1,2}=0 \\
-2 I_{-1,2,2}-s I_{0,2,2}+I_{0,2,1}+I_{0,1,2}=0 \\
-I_{-1,2,2}-2 I_{-1,1,3}-2 s I_{0,1,3}+I_{0,1,2}=0 \\
-I_{0,2,1}+I_{0,1,2}=0
\end{gathered}
$$

After Gaussian elimination (108 operations, $\sim N_{\text {integrals }}^{2}$):

Rational function arithmetic, I

$$
f(x, y)=\frac{2 x y-y^{2}}{x-y}+\frac{y^{3}-3 x y^{2}}{x^{2}-y^{2}}=?
$$

Rational arithmetic symbolically:
Common denominator: $\quad\left(\left(2 x y-y^{2}\right)(x+y)+y^{3}-3 x y^{2}\right) /\left(x^{2}-y^{2}\right)$
Expand the numerator: $\quad\left(2 x^{2} y-x y^{2}+2 x y^{2}-y^{3}+y^{3}-3 x y^{2}\right) /\left(x^{2}-y^{2}\right)$
Combine alike terms: $\left(2 x^{2} y-2 x y^{2}\right) /\left(x^{2}-y^{2}\right)$
Cancel common factors: $2 x y /(x+y)$
Runtime:
Peak memory needed:
$\mathscr{O}\left(N_{\text {initial monomials }}^{2} N_{\text {digits per monomial }}\right)$
$\mathscr{O}\left(N_{\text {initial monomials }}^{2} N_{\text {digits per monomial }}\right)$

IBP reduction as a bottleneck

Optimistic reduction time estimate (symbolic reduction):
$T \sim \frac{1}{\text { performance }} N_{\text {families }} \underbrace{N_{\text {integrals per family }}^{2}}_{\left(N_{\text {denominators }}\right)^{N_{\text {lines }}}} \underbrace{N_{\text {monomials per term }}^{2}}_{\exp \left(N_{\text {scales }}\right)} N_{\text {digits per monomial }}^{T_{\text {operation }}}$
To match LHC experimental precision the theory requires 2-loop corrections.
For future colliders: 3-loop corrections.

	1 loop	2 loops	3 loops
4 legs	~ 100 diagrams	$\sim 2 \mathrm{~K}$ diagrams	$\sim 50 \mathrm{~K}$ diagrams
	3 families	24 families	219 families
	4 denominators	$7+2$ denominators	$10+5$ denominators
	2+ scales	$2+$ scales	$2+$ scales
5 legs	$\sim 1 \mathrm{~K}$ diagrams	$\sim 30 \mathrm{~K}$ diagrams	$\sim 800 \mathrm{~K}$ diagrams
	12 families	180 families	2355 families
	5 denominators	$8+3$ denominators	$11+7$ denominators
	$5+$ scales	$5+$ scales	$5+$ scales

* Lines in a Feynman diagram: $N_{\text {lines }}=3 L+E-2$.
* Denominators per family: $N_{\text {denominators }}=L(L+1) / 2+L E$.
* Mass scales per family: $N_{\text {scales }}=E(E-1) / 2-1+N_{\text {massive legs }+ \text { masses }}$.

Rational function arithmetic, II

Rational arithmetic via an anzatz-based interpolation:
Prepare an ansatz: $\quad f(x, y)=c_{1} x y /\left(x+c_{2} y\right)$
Evaluate: $\quad f(1,1)=1, f(1,2)=4 / 3$
Solve for c_{i} : $c_{1}=2, c_{2}=1$
Runtime, evaluation: $\quad N_{\text {final monomials }} \times \mathcal{O}\left(N_{\text {initial monomials }} N_{\text {digits per monomial }}\right)$
Runtime, interpolation: $\mathscr{O}\left(N_{\text {final monomials }}^{2} N_{\text {digits per final monomial }}\right)$
Peak memory, needed: $\mathscr{O}\left(N_{\text {final monomials }}^{2} N_{\text {digits per final monomial }}\right)$
Same interpolation, but using modular arithmetic:

* Interpolate keeping the values as integers modulo a prime numer P_{1}.
* Use rational number reconstruction to upgrade c_{i} from integers to rationals modulo P_{1}.
* Repeat the same with primes P_{2}, P_{3}, \ldots.
* Use the Chinese remainder theorem to get c_{i} modulo $P_{1} P_{2} P_{3} \cdots$.
* Stop when c_{i} no longer change.
* Runtime: same, but $N_{\text {digits per monomial }} \rightarrow N_{\text {digits per final monomial }}$, and faster on a computer: all operations are on small integers!

Function reconstruction algorithms

If an anzatz is unknown, multiple reconstruction algorithms are available:

* Univariate case:
* Newton interpolation for dense polynomials.
[Newton 1675; Peraro '16]
* Number of evaluations $\sim N_{\text {maximal degree }}$.
* Ben-Or/Tiwari for sparse polynomials.
* Number of evaluations $\sim 2 N_{\text {monomials }}$.
* Thiele interpolation for dense rationals.
* Number of evaluations $\sim 2 N_{\text {maximal degree }}$.
* Multivariate case:
* Newton applied recursively in each variable for dense polynomials.
* Number of evaluations $\sim\left(N_{\text {maximal degree }}\right)^{N_{\text {scales }}}$.
* Zippel (\sim recursive Newton with prunning) + early termination for sparse polynomials.
[Zippel '90; Kaltofen, Lee '03]
* Number of evaluations $\lesssim N_{\text {scales }} N_{\text {maximal degree }} N_{\text {monomials }}$.
* Multivariate Ben-Or/Tiwari for sparse polynomials.
* Number of evaluations $\sim 2 N_{\text {monomials }}$.
* First Thiele, then Zippel and/or Ben-Or/Tiwari for multivariate rationals (the Firefly library).
[Klappert, Lange '19; Klappert, Klein, Lange '20]

Performance of IBP via modular reconstruction

Total time for modular reconstruction of the IBP system solution:

* To minimize the reconstruction time, only reduce expressions for whole amplitudes, not individual integrals.

Total time for evaluation of the IBP system solution:

* The evaluation can be naturally parallelized.

Available software

IBP solvers not using modular arithmetic:

* LiteRed (useful Mathematica functions, required by Fire).
[Lee '13]
* Forcer (for massless 2-point functions).
[Ruijl, Ueda, Vermaseren '17]
Status unknown:
* Crusher (a private implementation).

IBP solvers that use modular arithmetic:

* Finred (a private implementation).
[von Manteuffel et al]
[Smirnov, Chuharev '19]
* Does not provide multivariate reconstruction.
* Kira when used with FireFly.
[Klappert, Lange, Maierhöfer, Usovitsch '20; Klappert, Klein, Lange '20]
* FiniteFlow (a library for arbitrary computations).
[Peraro '19]
* Caravel (a library for amplitude computations). [Cordero, Sotnikov et al '20]
... and others.
Now also introducing: Ratracer (with Kira and FireFly).

Improving IBP reduction time

Strategies to improve the reduction time:

1. Use modular arithmetic \& rational function reconstruction methods.
2. Make the result smaller:
2.1 Reduce whole amplitudes (not individual integrals).
2.2 Choose master integrals that minimize the result size.

* Use d-factorizing bases that ensure the factorization of d in the denominators of IBP coefficients.
[Usovitsch '20; Smirnov, Smirnov '20]
* Consider quasi-finite bases. [von Manteuffel, Panzer, Schabinger '14]
* Consider uniform transcendentality bases, if possible. [Bendle et al '19]
2.3 Construct a smaller ansatz for the result. [Abreu et al '19; De Laurentis, Page '22]
2.4 Set some of the variables to fixed numbers.
* E.g. reduce with m_{H}^{2} / m_{t}^{2} set to $12 / 23$.
* Or perform IBP reduction separately for each phase-space point, and interpolate in between. [Jones, Kerner et al '18; Chen, Heinrich et al '19, '20]

3. Improve the evaluation performance:
3.1 Combine IBP relations (using syzygies) to eliminate integrals with raised (or lowered) indices.
[Gluza, Kajda, Kosower '10; Scahbinger '11]
3.2 Just solve the equations faster?

Optimizing the modular Gaussian elimination

When performing Gaussian elimination one needs to:

* Represent the equations as a sparse matrix data structure.
* Keep the equations sorted.
* Keep terms in each equation sorted.
* Adjust the layout (and maybe reallocate memory) after each operation.
* This is not much work, but so is modular arithmetic!

IBP solvers using modular arithmetics will:

* Recreate the same data structures, same memory allocations, in the same order during each evaluation, many times.
* Only the modular values change between evaluations.
* Spend relatively little time on actual modular arithmetic.
* Because it is so fast!

How to speed this up? Eliminate the data structure overhead:

* Record the list of arithmetic operations performed during the first evaluation ("a trace").
* Simply replay this list for subsequent evaluations.

Rational traces

For $I_{a, b, c}(s, d) \equiv \underbrace{b / p_{2}}_{c}$

the trace of the IBP solution might look like:

```
t0 = var 'd'
t1 = int 4
t2 = sub t0 t1
t3 = int 1
t4 = var 's'
t5 = neg t4
t6 = int 6
t7 = sub t0 t6
t8 = int -1
t9 = int 2
t10 = int -2
t11 = sub t0 t9
t12 = int 3
t13 = sub t0 t12
t14 = mul t4 t10
t15 = neginv t5
t16 = mul t4 t15
t17 = sub t8 t16
t18 = mul t5 t16
t19 = neginv t17
t20 = mul t7 t19
[...]
```

```
t54 = addmul t53 t27 t44
t55 = mul t25 t44
t56 = addmul t55 t25 t44
t57 = mul t23 t44
t58 = addmul t57 t23 t44
t59 = mul t20 t58
t60 = mul t16 t59
save t60 as CO[I[1,1,2],I[0,1,1]]
save t59 as CO[I[1,2,1],I[0,1,1]]
save t58 as CO[I[2,1,1],I[0,1,1]]
save t56 as CO[I[1,1,1],I[0,1,1]]
save t54 as CO[I[-1,1,3],I[0,1,1]
save t52 as CO[I[-1,2,2],I[0,1,1]
save t51 as CO[I[-1,3,1],I[0,1,1]
save t46 as CO[I[0,1,3],I[0,1,1]]
save t49 as CO[I[0,2,2],I[0,1,1]]
save t47 as CO[I[-1,1,2],I[0,1,1]
save t46 as CO[I[0,3,1],I[0,1,1]]
save t42 as CO[I[-1,2,1],I[0,1,1]
save t44 as CO[I[0,1,2],I[0,1,1]]
save t44 as CO[I[0,2,1],I[0,1,1]]
save t45 as CO[I[-1,1,1],I[0,1,1]
```


Rational traces

RATRACER overview

Ratracer ("Rational Tracer"): a program for solving systems of linear
equations using modular arithmetic based on rational traces.

* Can trace the solution of arbitrary systems of linear equations: IBP relations, dimensional recurrence relations, amplitude definitions, etc.
* Can trace arbitrary rational expressions.
* Can optimize and transform traces.
* Uses FireFly for reconstruction.
* Initially created for solving IBPs for massive 5-point 2-loop diagrams.
* Available at github.com/magv/ratracer.

Intended usage:

1. Use KIRA (or LiteRed, or custom code) to export IBP relations.
2. Use Ratracer to load them and solve them.

RATRACER benchmarks

For IBP reduction of every integral (i.e. not single amplitudes):

	Evaluation speedup vs. KIRA+FIREFLY	$\frac{t_{\text {reconstruction }}^{t_{\text {evaluation }}}}{}$	Total speedup vs. KIRA+FIREFLY	Total speedup vs. KIRA+FERMAT	Total speedup vs. FIRE6

[github.com/magv/ibp-benchmark]
Resulting performance:

* Consistent $\sim 10 x$ speedup in modular evaluation over KIRA+FIreFLy.
* Up to $\sim 5 x$ speedup in total reduction time over Kira+FIREFLy for complicated examples, 1x-30x over Kira+Fermat, ∞x over Fire6.

Trace optimizations

Given a trace, Ratracer can optimize it using:

* Constant propagation:

$$
\left\{\begin{array} { l }
{ \mathrm { t } 1 1 = \text { int } 2 } \\
{ \mathrm { t } 1 2 = \text { int } 3 } \\
{ \mathrm { t } 1 3 = \text { mul t11 t12 } }
\end{array} \Rightarrow \left\{\begin{array}{l}
\mathrm{t} 11=\text { int } 2 \\
\mathrm{t} 12=\text { int } 3 \\
\mathrm{t} 13=\text { int } 6
\end{array}\right.\right.
$$

* Trivial operation simplification:

$$
\left\{\begin{array} { l }
{ \mathrm { t } 1 1 = \text { int } - 1 } \\
{ \mathrm { t } 1 2 = \text { mul t11 } \mathrm { t } 7 }
\end{array} \quad \Rightarrow \left\{\begin{array}{l}
\mathrm{t} 11=\text { int }-1 \\
\mathrm{t} 12=\text { neg t7 }
\end{array}\right.\right.
$$

* Common subexpression elimination:

$$
\left\{\begin{array} { l }
{ \mathrm { t } 1 1 = \text { add } \mathrm { t } 5 \mathrm { t } 7 } \\
{ \mathrm { t } 1 2 = \text { add } \mathrm { t } 5 \mathrm { t } 7 }
\end{array} \quad \Rightarrow \left\{\begin{array}{l}
\mathrm{t} 11=\text { add } \mathrm{t} 5 \mathrm{t} 7 \\
\mathrm{t} 12=\mathrm{t} 11
\end{array}\right.\right.
$$

* Dead code elimination:

$$
\left\{\begin{array} { l }
{ \mathrm { t } 1 1 = \text { add } \mathrm { t } 5 \mathrm { t } 7 } \\
{ [\ldots , \mathrm { t } 1 1 \text { is unused }] }
\end{array} \Rightarrow \left\{\begin{array}{l}
\text { nop } \\
{[\ldots . .]}
\end{array}\right.\right.
$$

* Especially useful if a user wants to select a subset of the outputs.
* "Finalization":

$$
\left\{\begin{array} { l }
{ \mathrm { t } 1 1 = \text { add } \mathrm { t } 5 \mathrm { t } 6 } \\
{ \mathrm { t } 1 2 = \text { add } \mathrm { t } 1 1 \mathrm { t } 7 } \\
{ [\ldots , \text { t11 is unused }] }
\end{array} \Rightarrow \left\{\begin{array}{l}
\mathrm{t} 11=\text { add } \mathrm{t} 5 \mathrm{t} 6 \\
\mathrm{t} 11=\text { add } \mathrm{t} 11 \mathrm{t} 7 \\
{[\ldots]}
\end{array}\right.\right.
$$

* Needed to minimize the temporary memory needed for the evaluation.

Trace transformations

Given a trace, Ratracer can:

* Set some of the variables to expressions or numbers.
* E.g. set mh2 to " $12 / 23 * \mathrm{mt2}$ ", d to " $4-2 * e p s$ ", or s to " 13600 ".
* No need to remake the IBP system just to set a variable to a number.
* Select any subset of the outputs, and drop operations that don't contribute to them (via dead code elimination).
* Can be used to split the trace into parts.
* Each part can be reconstructed separately (e.g. on a different machine).
* See master-wise and sector-wise reduction in other solvers.
* Expand the result into a series in any variable.
* By evaluating the trace while treating each value as a series, and saving the trace of that evaluation.
* Done before the reconstruction, so one less variable to reconstruct in, but potentially more expressions (depending on the truncation order).
* In practice only few leading orders in ε are needed, so expand in ε up to e.g. $\mathscr{O}\left(\varepsilon^{0}\right)$, and don't waste time on reconstructing the higher orders.

Truncated series expansion

For $I_{a, b, c}(s, d) \equiv \underbrace{b}_{c} \sqrt{a}_{p_{2}}^{p_{1}}$ before expansion:

* Variables to reconstruct in: s and d.
* Trace outputs: "CO[I[1, 1, 1] , I [0, 1, 1]]", etc:

$$
I_{1,1,1}=\operatorname{CO}[I[1,1,1], I[0,1,1]] I_{0,1,1} .
$$

After expansion in ε to $\mathscr{O}\left(\varepsilon^{0}\right)$:

* Variables to reconstruct in: only s.
* Trace outputs: "ORDER $[\operatorname{CO}[I[1,1,1], I[0,1,1]$, eps^-1]", etc:

$$
\begin{aligned}
I_{1,1,1} & =\operatorname{ORDER}\left[\operatorname{CO}\left[\mathrm{I}[1,1,1], \mathrm{I}[0,1,1], \mathrm{eps}^{\wedge}-1\right] \varepsilon^{-1} I_{0,1,1}\right. \\
& +\operatorname{ORDER}\left[\operatorname{CO}\left[\mathrm{I}[1,1,1], \mathrm{I}[0,1,1], \mathrm{eps}^{\wedge} 0\right] \varepsilon^{0} I_{0,1,1} .\right.
\end{aligned}
$$

* Might be slower to evaluate, but fewer evaluations are needed.
\Rightarrow The more complicated the problem, the higher the speedup.

Truncated series expansion: the graph

$\sim_{c}^{b} p_{1}$| Expansion: | - | $\mathscr{O}\left(\varepsilon^{0}\right)$ | $\mathscr{O}\left(\varepsilon^{1}\right)$ | $\mathscr{O}\left(\varepsilon^{2}\right)$ |
| ---: | :---: | :---: | :---: | :---: |
| | Operations: | 61 | 40 | 73 |
| Outputs: | 15 | 13 | 26 | 33 |

Truncated series expansion: the graph

	Expansion:	-	$\left(\varepsilon^{0}\right)$	O(ε^{1})	O(ε^{2})
	Operations:	61	40	73	87
	Outputs:	15	13	26	33

Truncated series expansion: the graph

	Expansion:	-	O($\left(\varepsilon^{0}\right)$	O($\left(\varepsilon^{1}\right)$	O($\left(\varepsilon^{2}\right)$
	Operations:	61	40	73	87
	Outputs:	15	13	26	33

Truncated series expansion: the graph

$\sim_{c}^{b} p_{1}$| Expansion: | - | $\mathscr{O}\left(\varepsilon^{0}\right)$ | $\mathscr{O}\left(\varepsilon^{1}\right)$ | $\mathscr{O}\left(\varepsilon^{2}\right)$ |
| :--- | :---: | :---: | :---: | :---: |
| | Operations: | 61 | 40 | 73 |
| Outputs: | 15 | 13 | 26 | 33 |

RATRACER + series expansion benchmarks

	probe time speedup		total time speedup			
	$\mathscr{O}\left(\varepsilon^{0}\right)$	$\mathscr{O}\left(\varepsilon^{1}\right)$	$\mathscr{O}\left(\varepsilon^{2}\right)$	$\mathscr{O}\left(\varepsilon^{0}\right)$	$\mathscr{O}\left(\varepsilon^{1}\right)$	$\mathscr{O}\left(\varepsilon^{2}\right)$
	$1 / 1.3$	$1 / 1.5$	$1 / 1.8$	3.2	2.4	1.9

[github.com/magv/ibp-benchmark]
Resulting performance:

* A $\sim 3 x$ speedup with ε expansion up to $\mathscr{O}\left(\varepsilon^{0}\right)$.
* The higher the expansion, the less the benefit.

Guessing the denominators

The denominators of IBP coefficients factorize into few unique factors. If some candidate factors are known, then we can find the powers of those factors in each coefficient:
[Abreu et al '18; Heller, von Manteuffel '21]

1. Choose a factor to search for, e.g. $(d-6)$.
2. Set all variables to random values, e.g. $d=95988281, s=75579811$.

$$
\Rightarrow(d-6)=95988275=5^{2} \cdot 103 \cdot 37277
$$

3. Evaluate the IBP solution using these numbers.

$$
\text { * E.g. } \mathrm{CO}\left[I_{2,1,1}, I_{0,1,1}\right]=\frac{383953112}{548314574947073136171275}=\frac{2^{3} \cdot 1117 \cdot 42967}{5^{2} \cdot 103 \cdot 37277 \cdot 75579811^{2}}
$$

4. Find common prime factors, identify their powers.

$$
* \operatorname{CO}\left[I_{2,1,1}, I_{0,1,1}\right] \sim(d-6)^{-1} s^{-2}
$$

Automated implementation: toos/guessfactors from Ratracer.
To find the set of possible factors:

* Reconstruct a simpler subset of the coefficients. (A few per sector).
\Rightarrow Easy with RatRACER, just select individual outputs.
Once the factors are found, speedup the reconstruction by dividing them out from the expressions.
* l.e. reconstruct $\operatorname{CO}\left[I_{2,1,1}, I_{0,1,1}\right] /(d-6) / s^{2}$, not just $\mathrm{CO}\left[I_{2,1,1}, I_{0,1,1}\right]$.

Usage for IBP reduction

1. Use KIRA to generate the IBP equations.

\$ cat >config/integralfamilies.yaml <<EOF
integralfamilies:

- name: "I"
loop_momenta: [1]
top_level_sectors: [b111]
propagators:
- ["1", 0]
- ["1-p1", 0]
- ["1+p2", 0]

EOF
\$ cat >config/kinematics.yaml <<EOF
kinematics:
outgoing_momenta: [p1, p2]
kinematic_invariants: [[s, 2]]
scalarproduct_rules:

- [[p1,p1], 0]
- [[p2,p2], 0]
- [[p1,p2], "s/2"]
\# symbol_to_replace_by_one: s
EOF

2. Use RATRACER to create a trace with the solution.
\$ ratracer
load-equations input_kira/I/SYSTEM_I_0000000007.kira.gz \} load-equations input_kira/I/SYSTEM_I_0000000006.kira.gz \} solve-equations choose-equation-outputs --maxr $=4 \quad-$-maxs $=1$ \} optimize finalize save-trace I.trace.gz
3. Optionally expand the outputs into a series in ε.
\$ ratracer
set d '4-2*eps' load-trace I.trace.gz \}
to-series eps 0 \}
optimize finalize save-trace I.eps0.trace.gz
4. Use Ratracer (+FIREFLY) to reconstruct the solution.
\$ ratracer
load-trace I.eps0.trace.gz
reconstruct --to=I.solution.txt --threads=8 --inmem

Usage as a library

RATRACER is built to support custom user-defined traces.
 Any rational algorithm can be turned into a trace (via the C++ API).

```
Usage:
#include <ratracer.h>
int main() {
    Tracer tr = tracer_init();
    Value x = tr.var(tr.input("x"));
    Value y = tr.var(tr.input("y"));
    Value x_sqr =
        tr.pow(x, 2);
    Value expr =
        tr.add(x_sqr, tr.mulint(y, 3));
    /* expr = x^2 + 3y */
    tr.add_output(expr, "expr");
    tr.save("example.trace.gz");
    return 0;
}
```

```
API:
struct Value { uint64_t id; uint64_t val; };
struct Tracer {
    Value var(size_t idx);
    Value of_int(int64_t x);
    Value of_fmpz(const fmpz_t x);
    bool is_zero(const Value &a);
    bool is_minus1(const Value &a);
    Value mul(const Value &a, const Value &b);
    Value mulint(const Value &a, int64_t b);
    Value add(const Value &a, const Value &b);
    Value addint(const Value &a, int64_t b);
    Value sub(const Value &a, const Value &b);
    Value addmul(const Value &a,
            const Value &b1,
            const Value &b2);
    Value inv(const Value &a);
    Value neginv(const Value &a);
    Value neg(const Value &a);
    Value pow(const Value &base, long exp);
    Value div(const Value &a, const Value &b);
    void assert_int(const Value &a, int64_t n);
    void add_output(const Value &src, const char *name);
    size_t input(const char *name, size_t len);
    size_t input(const char *name);
    int save(const char *path);
    void clear();
};
Tracer tracer_init();
```


Problems with big traces

Problem:

* The size of a trace is proportional to the number of operations.
* I.e. $\sim N_{\text {integrals }}^{2}$ for sparse IBP systems.
\Rightarrow Megabytes to gigabytes for 2-loop 5-point massive problems.
* Computer memory is expensive and limited.

Solution:

1. Always keep the trace on disk, never load it fully into memory.

* Compress it on disk for storage (via Zstd, GzıP, BzıP2, or LzMA).

2. During the evaluation read the trace piece by piece.
3. During the optimization make sure the algorithms have bounded memory usage.
\Rightarrow Multi-GB traces are supported easily in Ratracer.
\Rightarrow Multi-TB traces-less so.

RATRACER future plans

For very large examples:

* The main memory speed becomes the bottleneck for the modular evaluation:
\Rightarrow Investigate optimizing traces to improve memory access patterns.
* The initial trace contrsuction and optimization is slow:
\Rightarrow Work more on benchmarking \& optimization of the trace construction.
For other examples Ratracer speeds up the evaluation enough that the modular reconstruction in FIREFLY becomes the bottleneck:
* Reduce the overhead in FireFly to speed up simpler examples.
* Improve paralelizability in FIREFLy to help with complicated examples.
\Rightarrow Ongoing collaboration with FireFly authors.
Beyond guessing the denominators:
* Investigate smaller ansätze for the results (via e.g. partial fractioning).
[Abreu et al '19; De Laurentis, Page '22]

Summary

Solving IBP equation systems faster:

* Use modular arithmetic \& rational reconstruction methods.
* Spend time on choosing better master basis.
* IBP-reduce amplitudes, not individual integrals.
* Expand the coefficients into a series in ε up to the needed order.
* Guess the denominators of the coefficients.

Ratracer provides:

* Practical \& fast modular reconstruction of solutions to linear systems.
* Reconstruction of arbitrary rational expressions too.
* Trace optimization, transformation, slicing and dicing.
* Coefficient expansion in ε (and not only).
* Denominator guessing.
* Source code \& bug tracker at github.com/magv/ratracer.
* Benchmark code \& results at github.com/magv/ibp-benchmark.
* TODO: faster evaluation, faster reconstruction, more tricks.

