IBP reduction with modular arithmetic and Rational Tracer

Vitaly Magerya

Institute for Theoretical Physics (ITP), Karlsruhe Institute of Technology (KIT)

DESY Zeuthen / HU Berlin Theory Seminar June 22, 2023

Integration-By-Parts reduction

An IBP integral family with L loop momenta l_i , and E external momenta p_i , is the set of Feynman integrals

$$I_{\underbrace{\nu_1,\nu_2,\dots,\nu_N}_{\text{"indices"}}} \equiv \int \underbrace{\frac{\mathrm{d}^d l_1 \cdots \mathrm{d}^d l_L}{D_1^{\nu_1} \cdots D_N^{\nu_N}}}_{\text{"denominators"}}, \qquad \begin{cases} D_i \equiv \left(l_j \pm p_k \pm \dots\right)^2 - m_i^2 + i0, \\ N \equiv L (L+1)/2 + LE. \end{cases}$$

The idea: shifting any l_k by any vector v should not change I:

$$\lim_{\alpha\to 0} \frac{\partial}{\partial \alpha} I(l_k \to l_k + \alpha v) = \int \mathrm{d}^d \, l_1 \cdots \mathrm{d}^d \, l_L \frac{\partial}{\partial l_k^\mu} \frac{v^\mu}{D_1^{\nu_1} \dots D_N^{\nu_N}} \stackrel{!}{=} 0, \quad \forall \, k, v.$$

These are the *IBP relations*. We use them to:

- * reduce $I_{\nu_1...\nu_N}$ to combinations of master integrals, [Chetyrkin, Tkachov '81]
 - * the number of master integrals is finite;

[Smirnov, Petukhov '04]

- * evaluate the master integrals via
 - * differential equations (analytically, numerically), [Kotikov '91, '91; Henn '13]
 - * or dimensional recurrence relations. [Tarasov '96; Lee '10]

Solving IBP relations is a *major bottleneck* in cutting edge calculations.

IBP relations example

Consider a *massless triangle* topology:

$$I_{a,b,c} \equiv \underbrace{\int_{a,b,c}^{n} \frac{1}{p_{2}}}_{p_{2}} = \int \frac{\mathrm{d}^{d} l}{\left(l_{1}^{2}\right)^{a} \left((l_{1}-p_{1})^{2}\right)^{b} \left((l_{1}+p_{2})^{2}\right)^{c}},$$

where
$$p_1^2 = p_2^2 = 0$$
, and $p_1 \cdot p_2 = s/2$.

Choosing k = 1 and $v = \{p_1, p_2, p_3\}$ we get linear relations between $I_{a,b,c}$:

$$(b-a) I_{a,b,c} - csI_{a,b,c+1} - cI_{a-1,b,c+1} - bI_{a-1,b+1,c} + cI_{a,b-1,c+1} + aI_{a+1,b-1,c} = 0,$$

$$(a-c) I_{a,b,c} + bsI_{a,b+1,c} + cI_{a-1,b,c+1} + bI_{a-1,b+1,c} - bI_{a,b+1,c-1} - aI_{a+1,b,c-1} = 0,$$

$$(d-2a-b-c) I_{a,b,c} - cI_{a-1,b,c+1} - bI_{a-1,b+1,c} = 0,$$

$$\forall a, b, c.$$

Solving IBP relations "by hand" (with indices as symbolic variables) can be done in simpler cases. For more complicated problems use the *Laporta algorithm*: [Laporta '00]

- 1. Substitute integer values for the indices v_i into the IBP relations, obtaining a large linear system with many different $I_{v_1...v_N}$.
- 2. Define an ordering on $I_{\nu_1...\nu_N}$ from "simple" to "complex" integrals. * E.g. $I_{0,1,1} < I_{1,1,0} < I_{1,1,1} < I_{1,2,1} < I_{2,1,1}$, etc.
- 3. Perform *Gaussian elimination* on the linear system, eliminating the most "complex" integrals first.
- 4. A small number of "simple" integrals will remain uneliminated.
 - $\Rightarrow\,$ These are the master integrals. The rest will be expressed as their linear combinations.

After Gaussian elimination (2 operations):

(1	1/(6 - d)	1/(6 - d)													I 12,1,1	
.	s	-s													I _{1,2,1}	
1.		-s										-1	-1		I _{1,1,2}	1
1.			d-4									-1	-1		I _{1,1,1}	
.				-2		-1							d - 3		I_1,3,1	
.									-2					-5	I_1,1,3	
1.										-1	1				I_1,2,2	1
1.							s	-s			-				I_1,2,1	= 0
.							-1	-1						d – 2	I_1,1,2	
.							-1	-1				-5		1	I_1,1,1	
Ι.					_2	-1	Ĵ.	Ĵ				d – 3			I _{0,3,1}	1
					-2s	s						u = 5 s			I _{0,1,3}	
						-2						 1	1		I _{0,2,2}	
	-		-		2	-1					-25	1			I _{0,1,2}	
					-2	-1	÷		÷		-25	1	-1		I _{0,2,1}	
(.					•	•		•	•			1	-1	•	(I011 .	;

After Gaussian elimination (5 operations):

0 1	-2/(d - 6) -1 -s	d – 4							1	• • • • • •	-1 -1	-1 -1 d-3	-s	$ \begin{pmatrix} I_{2,1,1} \\ I_{1,2,1} \\ I_{1,1,2} \\ I_{1,1,1} \\ I_{-1,3,1} \\ I_{-1,1,3} \\ I_{-1,2,2} \\ I_{-1,2,1} \\ I_{-1,1,2} \end{pmatrix} $	= 0
		-	-	-2 -2s -2	-1 s -2 -1	-1	-1			s	$-s \\ d-3 \\ s \\ 1 \\ 1 \\ 1$	1 _1	1	$\begin{bmatrix} I_{-1,1,1} \\ I_{0,3,1} \\ I_{0,1,3} \\ I_{0,2,2} \\ I_{0,1,2} \\ I_{0,2,1} \\ I_{0,1,1} \end{bmatrix}$	

After Gaussian elimination (11 operations):

$\left \begin{array}{cccccccccccccccccccccccccccccccccccc$
$\left \begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
* *
· · · · · · · -1 -1 · · · · · · · · d-2
· · · · · · · -1 -1 · · · · -s · 1
\cdots \cdots -2 -1 \cdots \cdots $d-3$ \cdots
$\left[\begin{array}{cccccccccccccccccccccccccccccccccccc$
-2 -2 -1 $-2s$ $-2s$ 1 -1
(

After Gaussian elimination (62 operations):

	1 · 1 · 1	1	1	1	•	0				•	- - - -		2/(ds - 6s) 1/s 1/s 1/(4 - d) (d - 4)/4	2/(ds - 6s) 1/s 1/s 1/(4 - d) (3 - d)/2		$ \begin{bmatrix} I_{2,1,1} \\ I_{1,2,1} \\ I_{1,1,2} \\ I_{1,1,1} \\ I_{-1,3,1} \end{bmatrix} $	
1									1	1	0		(d - 4)/(2s)		s/2	I_1,1,3 I_1,2,2	
1							1	0					(u = 4)/(23)		(2 - d)/2	I_1,2,1	= 0
	• •				·		0	1							(2 - d)/2	I_1,1,2 I_1,1,1	
1						0	0	0	•	•			-S		3 – d	I _{0,3,1}	
1					1	0							(2 - d)/4 (4 - d)/2		1	I _{0,1,3}	
						0	÷	÷	÷			1	(4 - a)/2 (d - 5)/s	-1/s		I _{0,2,2}	
					0	ő					1	-	(d - 4)/(2s)	10		I _{0,1,2}	
l										•			1	-1	•)	I _{0,2,1} I _{0,1,1}	ļ

After Gaussian elimination (108 operations, $\sim N_{integrals}^2$):

		·	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	· · · · · ·								1	$\begin{array}{c} (12-4d)/(ds^2-6s^2) \\ (6-2d)/(s^2) \\ (6-2d)/(s^2) \\ (2d-6)/(ds-4s) \\ (d^2-5d+6)/(4s) \\ s/2 \\ (-d^2+7d-12)/(2s^2) \\ (2-d)/2 \\ (2-d)/2 \\ (d^2-3d)s \\ (d^2-5d+6)/(4s) \\ (d^2-7d+12)/(2s) \\ (-d^2+7d-12)/(2s) \\ (-d^2+7d-12)/(2s) \\ (-d^2+3d-18)/(s^2) \\ (-d^2+3d-18)/(s^2) \\ (-d^2+3d-18)/(s^2) \\ (d^2-3d)s \\ (d-3)/s \end{array}$	$ \begin{array}{c} (2_{2,1,1} \\ I_{1,2,2} \\ I_{1,1,2} \\ I_{1,1,2} \\ I_{1,1,3} \\ I_{-1,2,3} \\ I_{-1,2,2} \\ I_{-1,2,1} \\ I_{-1,1,3} \\ I_{-1,2,2} \\ I_{-1,2,1} \\ I_{-1,1,1} \\ I_{0,3,1} \\ I_{0,3,3} \\ I_{0,2,2} \\ I_{0,2,2} \\ I_{0,2,2} \\ I_{0,1,2} \\ I_{0,1,1} \end{array} = 0 $	\Leftrightarrow	$\left(\begin{array}{c}I_{2,1,1}\\I_{1,2,1}\\I_{1,2,1}\\I_{1,1,2}\\I_{1,1,1}\\I_{-1,3,1}\\I_{-1,3,1}\\I_{-1,2,2}\\I_{-1,2,1}\\I_{-1,2,2}\\I_{-1,2,1}\\I_{-1,1,2}\\I_{-1,1,1}\\I_{0,3,1}\\I_{0,1,3}\\I_{0,2,2}\\I_{0,1,2}\\I_{0,2,1}\end{array}\right)$	=	$ \begin{array}{l} \left(4(d-3))((d-6)s^2) \\ 2(d-3)(d-5)(s^2) \\ 2(d-3)(s^2) \\ -2(d-3)((d-4)s) \\ -(d-3)(d-2)/(4s) \\ -(d-3)(d-2)/(4s) \\ -(d-4)(d-3)/(2s) \\ -(2-d)/2 \\ -(2-d)/2 \\ -(2-d)/2 \\ (d-4)(d-3)/(2s^2) \\ (d-4)(d-3)/(2s^2) \\ (d-6)(d-3)/s^2 \\ -(d-3)/s \\ -(d-3)/s \end{array} \right) $	I _{0,1,1}
--	--	---	---------------------------------------	--	---------------------------------------	----------------------------	--	--	--	--	--	--	--	---	---	--	-------------------	--	---	---	--------------------

Rational function arithmetic, I

$$f(x,y) = \frac{2xy - y^2}{x - y} + \frac{y^3 - 3xy^2}{x^2 - y^2} = ?$$

Rational arithmetic symbolically:

Common denominator: Expand the numerator: Combine alike terms: Cancel common factors: Runtime:

Peak memory needed:

$$\begin{array}{l} ((2xy - y^2)(x + y) + y^3 - 3xy^2)/(x^2 - y^2) \\ (2x^2y - xy^2 + 2xy^2 - y^3 + y^3 - 3xy^2)/(x^2 - y^2) \\ (2x^2y - 2xy^2)/(x^2 - y^2) \\ 2xy/(x + y) \\ \mathscr{O}(N_{\text{initial monomials}}^2 N_{\text{digits per monomial}}) \\ \mathscr{O}(N_{\text{initial monomials}}^2 N_{\text{digits per monomial}}) \end{array}$$

IBP reduction as a bottleneck

Optimistic reduction time estimate (symbolic reduction):

To match LHC experimental precision the theory requires 2-loop corrections. For future colliders: 3-loop corrections. [Freitas '21]

	1 loop	2 loops	3 loops
4 legs	~100 diagrams	~2K diagrams	~50K diagrams
	3 families	24 families	219 families
	4 denominators	7+2 denominators	10+5 denominators
	2+ scales	2+ scales	2+ scales
5 legs	~1K diagrams	~30K diagrams	~800K diagrams
	12 families	180 families	2355 families
	5 denominators	8+3 denominators	11+7 denominators
	5+ scales	5+ scales	5+ scales

- * Lines in a Feynman diagram: $N_{\text{lines}} = 3L + E 2$.
- * Denominators per family: $N_{\text{denominators}} = L (L + 1)/2 + LE$.
- * Mass scales per family: $N_{\text{scales}} = E (E-1)/2 1 + N_{\text{massive legs + masses}}$.

Rational function arithmetic, II

Rational arithmetic via an anzatz-based interpolation:

Prepare an ansatz: Evaluate: Solve for c_i : Runtime, evaluation: Runtime, interpolation: Peak memory, needed: $\begin{array}{l} f(x,y) = c_1 xy/(x+c_2 y) \\ f(1,1) = 1, \ f(1,2) = 4/3 \\ c_1 = 2, \ c_2 = 1 \\ N_{\text{final monomials}} \times \mathscr{O}(N_{\text{initial monomials}} N_{\text{digits per monomial}}) \\ \mathscr{O}(N_{\text{final monomials}}^2 N_{\text{digits per final monomial}}) \\ \mathscr{O}(N_{\text{final monomials}}^2 N_{\text{digits per final monomial}}) \end{array}$

Same interpolation, but using *modular arithmetic*:

- \ast Interpolate keeping the values as integers modulo a prime numer P_1 .
- * Use rational number reconstruction to upgrade C_i from integers to rationals modulo P₁. [Wang '81; Monagan '04]
- * Repeat the same with primes P_2 , P_3 ,
- * Use the Chinese remainder theorem to get c_i modulo $P_1P_2P_3\cdots$.
- * Stop when c_i no longer change.
- * Runtime: same, but $N_{\text{digits per monomial}} \rightarrow N_{\text{digits per final monomial}}$ and *faster on a computer*: all operations are on small integers!

Function reconstruction algorithms

If an anzatz is unknown, multiple *reconstruction algorithms* are available:

- * Univariate case:
 - * Newton interpolation for dense polynomials.
 - * Number of evaluations $\sim N_{\rm maximal \ degree}.$
 - * Ben-Or/Tiwari for sparse polynomials.
 - * Number of evaluations $\sim 2N_{
 m monomials}.$
 - * Thiele interpolation for dense rationals.
 - * Number of evaluations $\sim 2N_{\text{maximal degree}}$.
- * Multivariate case:
 - * Newton applied recursively in each variable for dense polynomials.
 - * Number of evaluations $\sim (N_{
 m maximal \ degree})^{N_{
 m scales}}$.
 - Zippel (~ recursive Newton with prunning) + early termination for sparse polynomials. [Zippel '90; Kaltofen, Lee '03]
 - *~ Number of evaluations $\lesssim N_{\rm scales}\,N_{\rm maximal\,degree}\,N_{\rm monomials}.$
 - * Multivariate Ben-Or/Tiwari for sparse polynomials. [Go '06]
 - * Number of evaluations $\sim 2N_{
 m monomials}.$
 - First Thiele, then Zippel and/or Ben-Or/Tiwari for multivariate rationals (the FIREFLY library). [Klappert, Lange '19; Klappert, Klein, Lange '20]

[Newton 1675; Peraro '16]

[Ben-Or, Tiwari '88]

Performance of IBP via modular reconstruction

Total time for modular *reconstruction* of the IBP system solution:

* To minimize the reconstruction time, only reduce expressions for whole amplitudes, not individual integrals.

Total time for *evaluation* of the IBP system solution:

* The evaluation can be naturally parallelized.

Available software

IBP solvers not using modular arithmetic:

- * LITERED (useful Mathematica functions, required by FIRE). [Lee '13]
- * FORCER (for massless 2-point functions). [Ruijl, Ueda, Vermaseren '17]

Status unknown:

* CRUSHER (a private implementation).

IBP solvers that use modular arithmetic:

- * FINRED (a private implementation).
- * FIRE6.
 - * Does not provide multivariate reconstruction.
- * KIRA when used with FIREFLY.

[Klappert, Lange, Maierhöfer, Usovitsch '20; Klappert, Klein, Lange '20]

- * FINITEFLOW (a library for arbitrary computations).
- * CARAVEL (a library for amplitude computations). [Cordero, Sotnikov et al '20] ... and others.

Now also introducing: **RATRACER** (with KIRA and FIREFLY).

[Marquard, Seidel]

[von Manteuffel et al]

[Smirnov, Chuharev '19]

[V.M. '22]

[Peraro '19]

Improving IBP reduction time

Strategies to improve the reduction time:

- 1. Use modular arithmetic & rational function reconstruction methods.
- 2. Make the result smaller:
 - 2.1 Reduce whole amplitudes (not individual integrals).
 - 2.2 Choose master integrals that minimize the result size.
 - * Use *d-factorizing bases* that ensure the factorization of *d* in the denominators of IBP coefficients. [Usovitsch '20; Smirnov, Smirnov '20]
 - * Consider quasi-finite bases. [von Manteuffel, Panzer, Schabinger '14]
 - * Consider uniform transcendentality bases, if possible. [Bendle et al '19]
 - 2.3 Construct a smaller ansatz for the result. [Abreu et al '19; De Laurentis, Page '22]
 - 2.4 Set some of the variables to fixed numbers.
 - * E.g. reduce with m_H^2/m_t^2 set to 12/23.
 - * Or perform IBP reduction separately for each phase-space point, and interpolate in between. [Jones, Kerner et al '18; Chen, Heinrich et al '19, '20]
- 3. Improve the *evaluation performance*:
 - 3.1 Combine IBP relations (using syzygies) to eliminate integrals with raised (or lowered) indices. [Gluza, Kajda, Kosower '10; Scahbinger '11]
 - 3.2 Just solve the equations faster?

Optimizing the modular Gaussian elimination

When performing Gaussian elimination one needs to:

- * Represent the equations as a sparse matrix data structure.
 - * Keep the equations sorted.
 - * Keep terms in each equation sorted.
 - * Adjust the layout (and maybe reallocate memory) after each operation.
 - * This is not much work, but so is modular arithmetic!

IBP solvers using modular arithmetics will:

- * Recreate the same data structures, same memory allocations, in the same order during each evaluation, many times.
 - * Only the modular values change between evaluations.
- * Spend relatively little time on actual modular arithmetic.
 - * Because it is so fast!

How to speed this up? Eliminate the data structure overhead:

- * *Record the list of arithmetic operations* performed during the first evaluation (*"a trace"*).
- * Simply *replay this list* for subsequent evaluations.

Rational traces

For $I_{a,b,c}(s,d) \equiv -$

the trace of the IBP solution might look like:

t0 = var 'd't1 = int 4t2 = sub t0 t1t3 = int 1t4 = var 's't5 = neg t4t6 = int 6t7 = sub t0 t6t8 = int -1t9 = int 2t10 = int -2t11 = sub t0 t9t12 = int 3t13 = sub t0 t12t14 = mul t4 t10t15 = neginv t5t16 = mul t4 t15t17 = sub t8 t16t18 = mul t5 t16t19 = neginv t17t20 = mul t7 t19[...]

 $b - p_1$

 $-p_2$

t54 = addmul t53 t27 t44t55 = mul t25 t44t56 = addmul t55 t25 t44 t57 = mul t23 t44 t58 = addmul t57 t23 t44 t59 = mul t20 t58t60 = mul t16 t59save t60 as CO[I[1,1,2],I[0,1,1]] save t59 as CO[I[1,2,1],I[0,1,1]] save t58 as CO[I[2,1,1],I[0,1,1]] save t56 as CO[I[1,1,1],I[0,1,1]] save t54 as CO[I[-1,1,3],I[0,1,1] save t52 as CO[I[-1,2,2],I[0,1,1] save t51 as CO[I[-1,3,1],I[0,1,1] save t46 as CO[I[0,1,3],I[0,1,1]] save t49 as CO[I[0,2,2],I[0,1,1]] save t47 as CO[I[-1,1,2],I[0,1,1] save t46 as CO[I[0,3,1],I[0,1,1]] save t42 as CO[I[-1,2,1],I[0,1,1] save t44 as CO[I[0,1,2],I[0,1,1]] save t44 as CO[I[0.2.1].I[0.1.1]] save t45 as CO[I[-1,1,1],I[0,1,1]

Rational traces

For $I_{a,b,c}(s,d) \equiv -\frac{b}{c} \int_{a}^{a} p_1$ the *trace* of the IBP solution might look like:

RATRACER ("Rational Tracer"): a program for *solving systems of linear equations* using modular arithmetic based on rational traces. [V.M. '22]

- * Can trace the solution of arbitrary systems of linear equations: IBP relations, dimensional recurrence relations, amplitude definitions, etc.
- * Can trace arbitrary rational expressions.
- * Can optimize and transform traces.
- * Uses FIREFLY for reconstruction. [Klappert, Klein, Lange '20, '19]
- * Initially created for solving IBPs for massive 5-point 2-loop diagrams.
- * Available at github.com/magv/ratracer.

Intended usage:

- 1. Use KIRA (or LITERED, or custom code) to export IBP relations.
- 2. Use RATRACER to load them and solve them.

RATRACER benchmarks

For IBP reduction of every integral (i.e. not single amplitudes):

	Evaluation speedup vs. KIRA+FIREFLY	$rac{t_{ m reconstruction}}{t_{ m evaluation}}$	Total speedup vs. KIRA+FIREFLY	Total speedup vs. KIRA+FERMAT	Total speedup vs. Fire6
	20	3.3	5.2	1.2	∞?
	7.8	1/3.3	6.0	37	∞?
	26	25	1.7	1/3.3	1.8
222	9.6	8.8	5.2	2.6	8.8

Resulting performance:

[github.com/magv/ibp-benchmark]

- * Consistent ~10x speedup in modular evaluation over KIRA+FIREFLY.
- * Up to ~5x speedup in total reduction time over KIRA+FIREFLY for complicated examples, 1x-30x over KIRA+FERMAT, ∞x over FIRE6.

Trace optimizations

Given a trace, RATRACER can optimize it using:

* Constant propagation:

	(t11						(t11	=	int	2
ł	t12	=	int	3		\Rightarrow	{t12	=	int	3
	(t13	=	mul	t11	t12		(t13	=	int	6

* Trivial operation simplification:

(t11	=	int	-1		\Rightarrow	(t11	=	int	-1
(t12	=	mul	t11	t7	\rightarrow	(t12	=	neg	t7

* Common subexpression elimination:

(t11	=	add	t5	t7	\rightarrow	∫t11	=	add	t5	t7
lt12	=	add	t5	t7	\rightarrow	lt12	=	t11		

* Dead code elimination:

∫t11 =				\rightarrow	{nop []
<u>l</u> [,	t11	is	unused]	\rightarrow	[[]

* Especially useful if a user wants to select a subset of the outputs.

* "Finalization":

 $\begin{cases} t11 = add \ t5 \ t6 \\ t12 = add \ t11 \ t7 \\ [\dots, \ t11 \ is \ unused] \end{cases} \implies \begin{cases} t11 = add \ t5 \ t6 \\ t11 = add \ t11 \ t7 \\ [\dots] \end{cases}$

* Needed to minimize the temporary memory needed for the evaluation.

Given a trace, RATRACER can:

- * Set some of the variables to expressions or numbers.
 - * E.g. set mh2 to "12/23*mt2", d to "4-2*eps", or s to "13600".
 - * No need to remake the IBP system just to set a variable to a number.
- * Select any subset of the outputs, and drop operations that don't contribute to them (via dead code elimination).
 - * Can be used to split the trace into parts.
 - * Each part can be reconstructed separately (e.g. on a different machine).
 - * See master-wise and sector-wise reduction in other solvers.
- * Expand the result into a series in any variable.
 - * By evaluating the trace while treating each value as a series, and saving the trace of that evaluation.
 - * Done before the reconstruction, so one less variable to reconstruct in, but potentially more expressions (depending on the truncation order).
 - * In practice only few leading orders in ε are needed, so expand in ε up to e.g. $\mathscr{O}(\varepsilon^0)$, and don't waste time on reconstructing the higher orders.

Truncated series expansion

For
$$I_{a,b,c}(s,d) \equiv -\underbrace{b}_{c} \underbrace{a}_{p_2}^{p_1}$$
 before expansion:

- * Variables to reconstruct in: *s* and *d*.
- * Trace outputs: "CO[I[1,1,1],I[0,1,1]]", etc:

$$I_{1,1,1} = CO[I[1,1,1],I[0,1,1]] I_{0,1,1}.$$

After expansion in ε to $\mathscr{O}(\varepsilon^0)$:

- * Variables to reconstruct in: only s.
- * Trace outputs: "ORDER[CO[I[1,1,1],I[0,1,1],eps^-1]", etc:

$$\begin{split} I_{1,1,1} &= \text{ORDER} \left[\text{CO} \left[\text{I} \left[1, 1, 1 \right], \text{I} \left[0, 1, 1 \right], \text{eps}^{-1} \right] \varepsilon^{-1} I_{0,1,1} \right. \\ &+ \text{ORDER} \left[\text{CO} \left[\text{I} \left[1, 1, 1 \right], \text{I} \left[0, 1, 1 \right], \text{eps}^{-0} \right] \varepsilon^{0} I_{0,1,1}. \end{split}$$

* Might be slower to evaluate, but fewer evaluations are needed. \Rightarrow The more complicated the problem, the higher the speedup.

$h - v_1$	Expansion:	-	$\mathscr{O}(\varepsilon^0)$	$\mathscr{O}(\varepsilon^1)$	$\mathscr{O}(\varepsilon^2)$
	Operations:	61	40	73	87
<i>c</i> ↓ − <i>P</i> ₂	Outputs:	15	13	26	33

$h - v_1$	Expansion:	-	$\mathscr{O}(\varepsilon^0)$	$\mathscr{O}(\varepsilon^1)$	$\mathscr{O}(\varepsilon^2)$
	Operations:	61	40	73	87
c ₩P2 =	Outputs:	15	13	26	33

RATRACER + series expansion benchmarks

	probe time speedup						
	$\mathscr{O}(\varepsilon^0)$	$\mathscr{O}(\varepsilon^1)$	$\mathcal{O}(\varepsilon^2)$	$\mathcal{O}(\varepsilon^0)$	$\mathscr{O}(\varepsilon^1)$	$\mathcal{O}(\varepsilon^2)$	
	1/1.3	1/1.5	1/1.8	3.2	2.4	1.9	
m2 m1	1/2.0	1/2.5	1/3.0	2.7	1.4	1/1.3	
	1/1.4	1/2.4	1/2.9	2.3	1.7	1.4	
222	1/1.0	1/1.6	1/2.1	4.3	2.3	1.6	

[github.com/magv/ibp-benchmark]

Resulting performance:

- * A ~3x speedup with ε expansion up to $\mathscr{O}(\varepsilon^0)$.
- * The higher the expansion, the less the benefit.

Guessing the denominators

The *denominators of IBP coefficients factorize* into few unique factors. If some candidate factors are known, then we can find the powers of those factors in each coefficient: [Abreu et al '18; Heller, von Manteuffel '21]

- 1. Choose a factor to search for, e.g. (d-6).
- 2. Set all variables to random values, e.g. d = 95988281, s = 75579811. $\Rightarrow (d-6) = 95988275 = 5^2 \cdot 103 \cdot 37277$.
- 3. Evaluate the IBP solution using these numbers.

* E.g. CO $[I_{2,1,1}, I_{0,1,1}] = \frac{383953112}{548314574947073136171275} = \frac{2^3 \cdot 1117 \cdot 42967}{5^2 \cdot 103 \cdot 37277 \cdot 75579811^2}$. 4. Find common prime factors, identify their powers.

* CO[$I_{2,1,1}, I_{0,1,1}$] ~ $(d-6)^{-1} s^{-2}$.

Automated implementation: toos/guessfactors from RATRACER. To find the set of possible factors:

- \star Reconstruct a simpler subset of the coefficients. (A few per sector).
- \Rightarrow Easy with RATRACER, just select individual outputs.

Once the factors are found, *speedup the reconstruction* by dividing them out from the expressions.

* I.e. reconstruct CO [$I_{2,1,1}$, $I_{0,1,1}$]/ $(d-6)/s^2$, not just CO [$I_{2,1,1}$, $I_{0,1,1}$].

Usage for IBP reduction

1. Use KIRA to generate the IBP equations.

```
$ cat >config/integralfamilies.yaml <<EOF</pre>
                                                               $ cat >export-equations.yaml <<EOF</pre>
integralfamilies:
                                                               jobs:
  - name: "I"
                                                                - reduce_sectors:
    loop_momenta: [1]
                                                                   reduce:
    top_level_sectors: [b111]
                                                                    - {sectors: [b111], r: 4, s: 1}
    propagators:
                                                                   select_integrals:
                                                                    select_mandatory_recursively:
                                                                     - {sectors: [b111], r: 4, s: 1}
      - ["l-p1", 0]
      - ["1+p2", 0]
                                                                   run_symmetries: true
                                                                   run_initiate: input
$ cat >config/kinematics.yaml <<EOF</pre>
kinematics:
                                                               $ kira export-equations.yaml
 outgoing_momenta: [p1, p2]
kinematic_invariants: [[s, 2]]
scalarproduct_rules:
 - [[p1,p1], 0]
  - [[p2,p2], 0]
 - [[p1,p2], "s/2"]
# symbol to replace by one; s
FOF
```

2. Use RATRACER to create a trace with the solution.

```
load-equations input_kira/I/SYSTEM_I_0000000007.kira.gz \
load-equations input_kira/I/SYSTEM_I_0000000006.kira.gz \
solve-equations choose-equation-outputs --maxr=4 --maxs=1 \
optimize finalize save-trace I.trace.gz
```

3. Optionally expand the outputs into a series in ε .

```
$ ratracer \
    set d '4-2*eps' load-trace I.trace.gz \
    to-series eps 0 \
    optimize finalize save-trace I.eps0.trace.gz
```

4. Use RATRACER (+FIREFLY) to reconstruct the solution.

```
$ ratracer \
    load-trace I.eps0.trace.gz \
    reconstruct --to=I.solution.txt --threads=8 --inmem
```

Usage as a library

RATRACER is built to support custom user-defined traces. Any rational algorithm can be turned into a trace (via the C++ API).

Usage:

```
#include <ratracer.h>
int main() {
   Tracer tr = tracer_init();
   Value x = tr.var(tr.input("x"));
   Value y = tr.var(tr.input("y"));
   Value x sor =
       tr.pow(x, 2);
   Value expr =
        tr.add(x sgr, tr.mulint(v, 3));
   /* expr = x^2 + 3y */
   tr.add_output(expr, "expr");
   tr.save("example.trace.gz");
   return 0:
}
```

API:

```
struct Value { uint64_t id; uint64_t val; };
struct Tracer {
    Value var(size t idx):
    Value of int(int64 t x):
    Value of_fmpz(const fmpz_t x);
    bool is_zero(const Value &a);
    bool is_minus1(const Value &a);
    Value mul(const Value &a, const Value &b);
    Value mulint(const Value &a, int64 t b);
    Value add(const Value &a, const Value &b);
    Value addint(const Value &a, int64_t b);
    Value sub(const Value &a, const Value &b);
    Value addmul(const Value &a.
                  const Value &b1,
                  const Value &b2):
    Value inv(const Value &a):
    Value neginv(const Value &a);
    Value neg(const Value &a):
    Value pow(const Value &base, long exp);
    Value div(const Value &a, const Value &b);
    void assert int(const Value &a, int64 t n);
    void add output(const Value &src, const char *name);
    size_t input(const char *name, size_t len);
    size_t input(const char *name);
    int save(const char *path);
    void clear();
};
Tracer tracer_init();
```

Problem:

- $\ast~$ The size of a trace is proportional to the number of operations.
 - $\star~$ I.e. $\sim N_{\rm integrals}^2$ for sparse IBP systems.
 - \Rightarrow Megabytes to gigabytes for 2-loop 5-point massive problems.
- * Computer memory is expensive and limited.

Solution:

- 1. Always keep the trace on disk, never load it fully into memory.
 - * Compress it on disk for storage (via ZSTD, GZIP, BZIP2, or LZMA).
- 2. During the evaluation read the trace piece by piece.
- 3. During the optimization make sure the algorithms have bounded memory usage.
- \Rightarrow Multi-GB traces are supported easily in RATRACER.
- \Rightarrow Multi-TB traces—less so.

RATRACER future plans

For very large examples:

- * The *main memory speed becomes the bottleneck* for the modular evaluation:
 - $\Rightarrow~$ Investigate optimizing traces to improve memory access patterns.
- * The initial trace contrsuction and optimization is slow:
 - \Rightarrow Work more on benchmarking & optimization of the trace construction.

For other examples RATRACER speeds up the evaluation enough that the *modular reconstruction in FIREFLY becomes the bottleneck*:

- * Reduce the overhead in FIREFLY to speed up simpler examples.
- * Improve paralelizability in FIREFLY to help with complicated examples.
- \Rightarrow Ongoing collaboration with FIREFLY authors.

Beyond guessing the denominators:

* Investigate smaller ansätze for the results (via e.g. partial fractioning).

[[]Abreu et al '19; De Laurentis, Page '22]

Summary

Solving IBP equation systems faster:

- * Use modular arithmetic & rational reconstruction methods.
- * Spend time on choosing better master basis.
- * IBP-reduce amplitudes, not individual integrals.
- * Expand the coefficients into a series in arepsilon up to the needed order.
- * Guess the denominators of the coefficients.

RATRACER provides:

- * Practical & fast modular reconstruction of solutions to linear systems.
 - * Reconstruction of arbitrary rational expressions too.
- * Trace optimization, transformation, slicing and dicing.
- \star Coefficient expansion in ε (and not only).
- * Denominator guessing.
- * Source code & bug tracker at github.com/magv/ratracer.
 - * Benchmark code & results at github.com/magv/ibp-benchmark.
- * TODO: faster evaluation, faster reconstruction, more tricks.