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Integration-By-Parts reduction
An IBP integral family with 𝐿 loop momenta 𝑙𝑖, and 𝐸 external momenta 𝑝𝑖,
is the set of Feynman integrals

𝐼𝜈1,𝜈2,…,𝜈𝑁􏿋􏻰􏻰􏻰􏻰􏻰􏿌􏻰􏻰􏻰􏻰􏻰􏿍
“indices”

≡ 􏾙
d𝑑 𝑙1⋯d𝑑 𝑙𝐿
𝐷𝜈1

1 ⋯𝐷𝜈𝑁
𝑁􏿋􏻰􏻰􏻰􏻰􏻰􏿌􏻰􏻰􏻰􏻰􏻰􏿍

“denominators”

,
⎧⎪⎨
⎪⎩
𝐷𝑖 ≡ 􏿴𝑙𝑗 ± 𝑝𝑘 ± … 􏿷

2
− 𝑚2

𝑖 + 𝑖0,
𝑁 ≡ 𝐿 (𝐿 + 1) /2 + 𝐿𝐸.

The idea: shifting any 𝑙𝑘 by any vector 𝑣 should not change 𝐼:

lim
𝛼→0

𝜕
𝜕𝛼𝐼(𝑙𝑘 → 𝑙𝑘 + 𝛼𝑣) = 􏾙d𝑑 𝑙1⋯d𝑑 𝑙𝐿

𝜕
𝜕𝑙𝜇𝑘

𝑣𝜇

𝐷𝜈1
1 …𝐷𝜈𝑁

𝑁

!= 0, ∀𝑘, 𝑣.

These are the IBP relations. We use them to:
* reduce 𝐼𝜈1…𝜈𝑁 to combinations of master integrals, [Chetyrkin, Tkachov ’81]

* the number of master integrals is finite; [Smirnov, Petukhov ’04]

* evaluate the master integrals via
* differential equations (analytically, numerically), [Kotikov ’91, ’91; Henn ’13]

* or dimensional recurrence relations. [Tarasov ’96; Lee ’10]

Solving IBP relations is a major bottleneck in cutting edge calculations.

https://doi.org/10.1016/0550-3213(81)90199-1
https://arxiv.org/pdf/1004.4199
https://doi.org/10.1016/0370-2693(91)90536-Y
https://doi.org/10.1016/0370-2693(91)90413-K
http://arxiv.org/abs/1304.1806
http://arxiv.org/abs/hep-th/9606018
http://arxiv.org/abs/1007.2256
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IBP relations example

Consider a massless triangle topology:

𝐼𝑎,𝑏,𝑐 ≡
𝑝1

𝑝2

𝑙1
𝑙 1−

𝑝 1

𝑙1 + 𝑝2

≡ 􏾙
d𝑑 𝑙

􏿴𝑙21􏿷
𝑎
􏿴(𝑙1 − 𝑝1)2􏿷

𝑏
􏿴(𝑙1 + 𝑝2)2􏿷

𝑐 ,

where 𝑝21 = 𝑝22 = 0, and 𝑝1 ⋅𝑝2 = 𝑠/2.

Choosing 𝑘 = 1 and 𝑣 = {𝑝1, 𝑝2, 𝑝3} we get linear relations between 𝐼𝑎,𝑏,𝑐:

(𝑏−𝑎) 𝐼𝑎,𝑏,𝑐−𝑐𝑠𝐼𝑎,𝑏,𝑐+1−𝑐𝐼𝑎−1,𝑏,𝑐+1−𝑏𝐼𝑎−1,𝑏+1,𝑐+𝑐𝐼𝑎,𝑏−1,𝑐+1+𝑎𝐼𝑎+1,𝑏−1,𝑐 = 0,

(𝑎−𝑐) 𝐼𝑎,𝑏,𝑐+𝑏𝑠𝐼𝑎,𝑏+1,𝑐+𝑐𝐼𝑎−1,𝑏,𝑐+1+𝑏𝐼𝑎−1,𝑏+1,𝑐−𝑏𝐼𝑎,𝑏+1,𝑐−1−𝑎𝐼𝑎+1,𝑏,𝑐−1 = 0,

(𝑑 − 2𝑎 − 𝑏 − 𝑐) 𝐼𝑎,𝑏,𝑐 − 𝑐𝐼𝑎−1,𝑏,𝑐+1 − 𝑏𝐼𝑎−1,𝑏+1,𝑐 = 0,

∀𝑎, 𝑏, 𝑐.
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Laporta algorithm

Solving IBP relations “by hand” (with indices as symbolic variables) can be
done in simpler cases. For more complicated problems use the Laporta
algorithm: [Laporta ’00]

1. Substitute integer values for the indices 𝜈𝑖 into the IBP relations,
obtaining a large linear system with many different 𝐼𝜈1…𝜈𝑁 .

2. Define an ordering on 𝐼𝜈1…𝜈𝑁 from “simple” to “complex” integrals.
* E.g. 𝐼0,1,1 < 𝐼1,1,0 < 𝐼1,1,1 < 𝐼1,2,1 < 𝐼2,1,1, etc.

3. Perform Gaussian elimination on the linear system, eliminating the
most “complex” integrals first.

4. A small number of “simple” integrals will remain uneliminated.
⇒ These are the master integrals. The rest will be expressed as their

linear combinations.

http://arxiv.org/abs/hep-ph/0102033
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IBP reduction example

𝐼𝑎,𝑏,𝑐 ≡
𝑝1

𝑝2
𝑎

𝑏

𝑐
, 𝑝21 = 𝑝22 = 0, 𝑝1 ⋅𝑝2 = 𝑠/2.

(𝑑 − 6) 𝐼2,1,1 − 𝐼1,2,1 − 𝐼1,1,2 = 0
𝑠 𝐼1,2,1 − 𝑠 𝐼1,1,2 = 0

𝑠 𝐼1,1,2 + 𝐼0,2,1 + 𝐼0,1,2 = 0
(𝑑 − 4) 𝐼1,1,1 − 𝐼0,2,1 − 𝐼0,1,2 = 0

−2 𝐼−1,3,1 − 𝐼−1,2,2 + (𝑑 − 3) 𝐼0,2,1 = 0
−2 𝐼−1,1,1 − 𝑠 𝐼0,1,1 = 0
−𝐼0,3,1 + 𝐼0,1,3 = 0

𝑠 𝐼−1,2,1 − 𝑠 𝐼−1,1,2 = 0
−𝐼−1,2,1 − 𝐼−1,1,2 + (𝑑 − 2) 𝐼0,1,1 = 0
−𝐼−1,2,1 − 𝐼−1,1,2 − 𝑠 𝐼0,1,2 + 𝐼0,1,1 = 0
−𝐼−1,2,2 − 2𝐼−1,1,3 + (𝑑 − 3) 𝐼0,1,2 = 0
𝑠 𝐼−1,2,2 − 2𝑠 𝐼−1,1,3 + 𝑠 𝐼0,1,2 = 0

−2 𝐼−1,2,2 − 𝑠 𝐼0,2,2 + 𝐼0,2,1 + 𝐼0,1,2 = 0
−𝐼−1,2,2 − 2 𝐼−1,1,3 − 2𝑠 𝐼0,1,3 + 𝐼0,1,2 = 0

−𝐼0,2,1 + 𝐼0,1,2 = 0

⟺

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑑 − 6 −1 −1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ 𝑠 −𝑠 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ −𝑠 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −1 −1 ⋅
⋅ ⋅ ⋅ 𝑑 − 4 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −1 −1 ⋅
⋅ ⋅ ⋅ ⋅ −2 ⋅ −1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝑑 − 3 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −2 ⋅ ⋅ ⋅ ⋅ ⋅ −𝑠
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −1 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝑠 −𝑠 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −1 −1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝑑 − 2
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −1 −1 ⋅ ⋅ ⋅ ⋅ −𝑠 ⋅ 1
⋅ ⋅ ⋅ ⋅ ⋅ −2 −1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝑑 − 3 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ −2𝑠 𝑠 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝑠 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −2 ⋅ ⋅ ⋅ ⋅ ⋅ −𝑠 1 1 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ −2 −1 ⋅ ⋅ ⋅ ⋅ −2𝑠 ⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 −1 ⋅

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝐼2,1,1
𝐼1,2,1
𝐼1,1,2
𝐼1,1,1
𝐼−1,3,1
𝐼−1,1,3
𝐼−1,2,2
𝐼−1,2,1
𝐼−1,1,2
𝐼−1,1,1
𝐼0,3,1
𝐼0,1,3
𝐼0,2,2
𝐼0,1,2
𝐼0,2,1
𝐼0,1,1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 0

After Gaussian elimination (2 operations):
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1/(6 − 𝑑) 1/(6 − 𝑑) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ 𝑠 −𝑠 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ −𝑠 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −1 −1 ⋅
⋅ ⋅ ⋅ 𝑑 − 4 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −1 −1 ⋅
⋅ ⋅ ⋅ ⋅ −2 ⋅ −1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝑑 − 3 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −2 ⋅ ⋅ ⋅ ⋅ ⋅ −𝑠
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −1 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝑠 −𝑠 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −1 −1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝑑 − 2
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −1 −1 ⋅ ⋅ ⋅ ⋅ −𝑠 ⋅ 1
⋅ ⋅ ⋅ ⋅ ⋅ −2 −1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝑑 − 3 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ −2𝑠 𝑠 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝑠 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −2 ⋅ ⋅ ⋅ ⋅ ⋅ −𝑠 1 1 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ −2 −1 ⋅ ⋅ ⋅ ⋅ −2𝑠 ⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 −1 ⋅

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝐼2,1,1
𝐼1,2,1
𝐼1,1,2
𝐼1,1,1
𝐼−1,3,1
𝐼−1,1,3
𝐼−1,2,2
𝐼−1,2,1
𝐼−1,1,2
𝐼−1,1,1
𝐼0,3,1
𝐼0,1,3
𝐼0,2,2
𝐼0,1,2
𝐼0,2,1
𝐼0,1,1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 0
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IBP reduction example

𝐼𝑎,𝑏,𝑐 ≡
𝑝1

𝑝2
𝑎

𝑏

𝑐
, 𝑝21 = 𝑝22 = 0, 𝑝1 ⋅𝑝2 = 𝑠/2.

(𝑑 − 6) 𝐼2,1,1 − 𝐼1,2,1 − 𝐼1,1,2 = 0
𝑠 𝐼1,2,1 − 𝑠 𝐼1,1,2 = 0

𝑠 𝐼1,1,2 + 𝐼0,2,1 + 𝐼0,1,2 = 0
(𝑑 − 4) 𝐼1,1,1 − 𝐼0,2,1 − 𝐼0,1,2 = 0

−2 𝐼−1,3,1 − 𝐼−1,2,2 + (𝑑 − 3) 𝐼0,2,1 = 0
−2 𝐼−1,1,1 − 𝑠 𝐼0,1,1 = 0
−𝐼0,3,1 + 𝐼0,1,3 = 0

𝑠 𝐼−1,2,1 − 𝑠 𝐼−1,1,2 = 0
−𝐼−1,2,1 − 𝐼−1,1,2 + (𝑑 − 2) 𝐼0,1,1 = 0
−𝐼−1,2,1 − 𝐼−1,1,2 − 𝑠 𝐼0,1,2 + 𝐼0,1,1 = 0
−𝐼−1,2,2 − 2𝐼−1,1,3 + (𝑑 − 3) 𝐼0,1,2 = 0
𝑠 𝐼−1,2,2 − 2𝑠 𝐼−1,1,3 + 𝑠 𝐼0,1,2 = 0

−2 𝐼−1,2,2 − 𝑠 𝐼0,2,2 + 𝐼0,2,1 + 𝐼0,1,2 = 0
−𝐼−1,2,2 − 2 𝐼−1,1,3 − 2𝑠 𝐼0,1,3 + 𝐼0,1,2 = 0

−𝐼0,2,1 + 𝐼0,1,2 = 0

⟺

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑑 − 6 −1 −1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ 𝑠 −𝑠 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ −𝑠 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −1 −1 ⋅
⋅ ⋅ ⋅ 𝑑 − 4 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −1 −1 ⋅
⋅ ⋅ ⋅ ⋅ −2 ⋅ −1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝑑 − 3 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −2 ⋅ ⋅ ⋅ ⋅ ⋅ −𝑠
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −1 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝑠 −𝑠 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −1 −1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝑑 − 2
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −1 −1 ⋅ ⋅ ⋅ ⋅ −𝑠 ⋅ 1
⋅ ⋅ ⋅ ⋅ ⋅ −2 −1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝑑 − 3 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ −2𝑠 𝑠 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝑠 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −2 ⋅ ⋅ ⋅ ⋅ ⋅ −𝑠 1 1 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ −2 −1 ⋅ ⋅ ⋅ ⋅ −2𝑠 ⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 −1 ⋅

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝐼2,1,1
𝐼1,2,1
𝐼1,1,2
𝐼1,1,1
𝐼−1,3,1
𝐼−1,1,3
𝐼−1,2,2
𝐼−1,2,1
𝐼−1,1,2
𝐼−1,1,1
𝐼0,3,1
𝐼0,1,3
𝐼0,2,2
𝐼0,1,2
𝐼0,2,1
𝐼0,1,1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 0

After Gaussian elimination (5 operations):
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 −2/(𝑑 − 6) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ 1 −1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ −𝑠 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −1 −1 ⋅
⋅ ⋅ ⋅ 𝑑 − 4 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −1 −1 ⋅
⋅ ⋅ ⋅ ⋅ −2 ⋅ −1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝑑 − 3 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −2 ⋅ ⋅ ⋅ ⋅ ⋅ −𝑠
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −1 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝑠 −𝑠 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −1 −1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝑑 − 2
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −1 −1 ⋅ ⋅ ⋅ ⋅ −𝑠 ⋅ 1
⋅ ⋅ ⋅ ⋅ ⋅ −2 −1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝑑 − 3 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ −2𝑠 𝑠 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝑠 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −2 ⋅ ⋅ ⋅ ⋅ ⋅ −𝑠 1 1 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ −2 −1 ⋅ ⋅ ⋅ ⋅ −2𝑠 ⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 −1 ⋅

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝐼2,1,1
𝐼1,2,1
𝐼1,1,2
𝐼1,1,1
𝐼−1,3,1
𝐼−1,1,3
𝐼−1,2,2
𝐼−1,2,1
𝐼−1,1,2
𝐼−1,1,1
𝐼0,3,1
𝐼0,1,3
𝐼0,2,2
𝐼0,1,2
𝐼0,2,1
𝐼0,1,1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 0



5

IBP reduction example

𝐼𝑎,𝑏,𝑐 ≡
𝑝1

𝑝2
𝑎

𝑏

𝑐
, 𝑝21 = 𝑝22 = 0, 𝑝1 ⋅𝑝2 = 𝑠/2.

(𝑑 − 6) 𝐼2,1,1 − 𝐼1,2,1 − 𝐼1,1,2 = 0
𝑠 𝐼1,2,1 − 𝑠 𝐼1,1,2 = 0

𝑠 𝐼1,1,2 + 𝐼0,2,1 + 𝐼0,1,2 = 0
(𝑑 − 4) 𝐼1,1,1 − 𝐼0,2,1 − 𝐼0,1,2 = 0

−2 𝐼−1,3,1 − 𝐼−1,2,2 + (𝑑 − 3) 𝐼0,2,1 = 0
−2 𝐼−1,1,1 − 𝑠 𝐼0,1,1 = 0
−𝐼0,3,1 + 𝐼0,1,3 = 0

𝑠 𝐼−1,2,1 − 𝑠 𝐼−1,1,2 = 0
−𝐼−1,2,1 − 𝐼−1,1,2 + (𝑑 − 2) 𝐼0,1,1 = 0
−𝐼−1,2,1 − 𝐼−1,1,2 − 𝑠 𝐼0,1,2 + 𝐼0,1,1 = 0
−𝐼−1,2,2 − 2𝐼−1,1,3 + (𝑑 − 3) 𝐼0,1,2 = 0
𝑠 𝐼−1,2,2 − 2𝑠 𝐼−1,1,3 + 𝑠 𝐼0,1,2 = 0

−2 𝐼−1,2,2 − 𝑠 𝐼0,2,2 + 𝐼0,2,1 + 𝐼0,1,2 = 0
−𝐼−1,2,2 − 2 𝐼−1,1,3 − 2𝑠 𝐼0,1,3 + 𝐼0,1,2 = 0

−𝐼0,2,1 + 𝐼0,1,2 = 0

⟺

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑑 − 6 −1 −1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ 𝑠 −𝑠 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ −𝑠 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −1 −1 ⋅
⋅ ⋅ ⋅ 𝑑 − 4 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −1 −1 ⋅
⋅ ⋅ ⋅ ⋅ −2 ⋅ −1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝑑 − 3 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −2 ⋅ ⋅ ⋅ ⋅ ⋅ −𝑠
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −1 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝑠 −𝑠 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −1 −1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝑑 − 2
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −1 −1 ⋅ ⋅ ⋅ ⋅ −𝑠 ⋅ 1
⋅ ⋅ ⋅ ⋅ ⋅ −2 −1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝑑 − 3 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ −2𝑠 𝑠 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝑠 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −2 ⋅ ⋅ ⋅ ⋅ ⋅ −𝑠 1 1 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ −2 −1 ⋅ ⋅ ⋅ ⋅ −2𝑠 ⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 −1 ⋅

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝐼2,1,1
𝐼1,2,1
𝐼1,1,2
𝐼1,1,1
𝐼−1,3,1
𝐼−1,1,3
𝐼−1,2,2
𝐼−1,2,1
𝐼−1,1,2
𝐼−1,1,1
𝐼0,3,1
𝐼0,1,3
𝐼0,2,2
𝐼0,1,2
𝐼0,2,1
𝐼0,1,1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 0

After Gaussian elimination (11 operations):
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 ⋅ 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 2/(𝑑𝑠 − 6𝑠) 2/(𝑑𝑠 − 6𝑠) ⋅
⋅ 1 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1/𝑠 1/𝑠 ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1/𝑠 1/𝑠 ⋅
⋅ ⋅ ⋅ 𝑑 − 4 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −1 −1 ⋅
⋅ ⋅ ⋅ ⋅ −2 ⋅ −1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝑑 − 3 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −2 ⋅ ⋅ ⋅ ⋅ ⋅ −𝑠
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −1 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝑠 −𝑠 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −1 −1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝑑 − 2
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −1 −1 ⋅ ⋅ ⋅ ⋅ −𝑠 ⋅ 1
⋅ ⋅ ⋅ ⋅ ⋅ −2 −1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝑑 − 3 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ −2𝑠 𝑠 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝑠 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −2 ⋅ ⋅ ⋅ ⋅ ⋅ −𝑠 1 1 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ −2 −1 ⋅ ⋅ ⋅ ⋅ −2𝑠 ⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 −1 ⋅

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝐼2,1,1
𝐼1,2,1
𝐼1,1,2
𝐼1,1,1
𝐼−1,3,1
𝐼−1,1,3
𝐼−1,2,2
𝐼−1,2,1
𝐼−1,1,2
𝐼−1,1,1
𝐼0,3,1
𝐼0,1,3
𝐼0,2,2
𝐼0,1,2
𝐼0,2,1
𝐼0,1,1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 0



5

IBP reduction example

𝐼𝑎,𝑏,𝑐 ≡
𝑝1

𝑝2
𝑎

𝑏

𝑐
, 𝑝21 = 𝑝22 = 0, 𝑝1 ⋅𝑝2 = 𝑠/2.

(𝑑 − 6) 𝐼2,1,1 − 𝐼1,2,1 − 𝐼1,1,2 = 0
𝑠 𝐼1,2,1 − 𝑠 𝐼1,1,2 = 0

𝑠 𝐼1,1,2 + 𝐼0,2,1 + 𝐼0,1,2 = 0
(𝑑 − 4) 𝐼1,1,1 − 𝐼0,2,1 − 𝐼0,1,2 = 0

−2 𝐼−1,3,1 − 𝐼−1,2,2 + (𝑑 − 3) 𝐼0,2,1 = 0
−2 𝐼−1,1,1 − 𝑠 𝐼0,1,1 = 0
−𝐼0,3,1 + 𝐼0,1,3 = 0

𝑠 𝐼−1,2,1 − 𝑠 𝐼−1,1,2 = 0
−𝐼−1,2,1 − 𝐼−1,1,2 + (𝑑 − 2) 𝐼0,1,1 = 0
−𝐼−1,2,1 − 𝐼−1,1,2 − 𝑠 𝐼0,1,2 + 𝐼0,1,1 = 0
−𝐼−1,2,2 − 2𝐼−1,1,3 + (𝑑 − 3) 𝐼0,1,2 = 0
𝑠 𝐼−1,2,2 − 2𝑠 𝐼−1,1,3 + 𝑠 𝐼0,1,2 = 0

−2 𝐼−1,2,2 − 𝑠 𝐼0,2,2 + 𝐼0,2,1 + 𝐼0,1,2 = 0
−𝐼−1,2,2 − 2 𝐼−1,1,3 − 2𝑠 𝐼0,1,3 + 𝐼0,1,2 = 0

−𝐼0,2,1 + 𝐼0,1,2 = 0

⟺

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑑 − 6 −1 −1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ 𝑠 −𝑠 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ −𝑠 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −1 −1 ⋅
⋅ ⋅ ⋅ 𝑑 − 4 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −1 −1 ⋅
⋅ ⋅ ⋅ ⋅ −2 ⋅ −1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝑑 − 3 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −2 ⋅ ⋅ ⋅ ⋅ ⋅ −𝑠
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −1 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝑠 −𝑠 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −1 −1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝑑 − 2
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −1 −1 ⋅ ⋅ ⋅ ⋅ −𝑠 ⋅ 1
⋅ ⋅ ⋅ ⋅ ⋅ −2 −1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝑑 − 3 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ −2𝑠 𝑠 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝑠 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −2 ⋅ ⋅ ⋅ ⋅ ⋅ −𝑠 1 1 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ −2 −1 ⋅ ⋅ ⋅ ⋅ −2𝑠 ⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 −1 ⋅

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝐼2,1,1
𝐼1,2,1
𝐼1,1,2
𝐼1,1,1
𝐼−1,3,1
𝐼−1,1,3
𝐼−1,2,2
𝐼−1,2,1
𝐼−1,1,2
𝐼−1,1,1
𝐼0,3,1
𝐼0,1,3
𝐼0,2,2
𝐼0,1,2
𝐼0,2,1
𝐼0,1,1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 0

After Gaussian elimination (62 operations):
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 2/(𝑑𝑠 − 6𝑠) 2/(𝑑𝑠 − 6𝑠) ⋅
⋅ 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1/𝑠 1/𝑠 ⋅
⋅ ⋅ 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1/𝑠 1/𝑠 ⋅
⋅ ⋅ ⋅ 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1/(4 − 𝑑) 1/(4 − 𝑑) ⋅
⋅ ⋅ ⋅ ⋅ 1 ⋅ 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ (𝑑 − 4)/4 (3 − 𝑑)/2 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 ⋅ ⋅ ⋅ ⋅ ⋅ 𝑠/2
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 0 ⋅ (𝑑 − 4)/(2𝑠) ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ (2 − 𝑑)/2
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ (2 − 𝑑)/2
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 0 ⋅ ⋅ ⋅ ⋅ −𝑠 ⋅ 3 − 𝑑
⋅ ⋅ ⋅ ⋅ ⋅ 1 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ (2 − 𝑑)/4 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 0 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ (4 − 𝑑)/2 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 ⋅ ⋅ ⋅ ⋅ ⋅ 1 (𝑑 − 5)/𝑠 −1/𝑠 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 0 0 ⋅ ⋅ ⋅ ⋅ 1 ⋅ (𝑑 − 4)/(2𝑠) ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 −1 ⋅

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝐼2,1,1
𝐼1,2,1
𝐼1,1,2
𝐼1,1,1
𝐼−1,3,1
𝐼−1,1,3
𝐼−1,2,2
𝐼−1,2,1
𝐼−1,1,2
𝐼−1,1,1
𝐼0,3,1
𝐼0,1,3
𝐼0,2,2
𝐼0,1,2
𝐼0,2,1
𝐼0,1,1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 0
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IBP reduction example

𝐼𝑎,𝑏,𝑐 ≡
𝑝1

𝑝2
𝑎

𝑏

𝑐
, 𝑝21 = 𝑝22 = 0, 𝑝1 ⋅𝑝2 = 𝑠/2.

(𝑑 − 6) 𝐼2,1,1 − 𝐼1,2,1 − 𝐼1,1,2 = 0
𝑠 𝐼1,2,1 − 𝑠 𝐼1,1,2 = 0

𝑠 𝐼1,1,2 + 𝐼0,2,1 + 𝐼0,1,2 = 0
(𝑑 − 4) 𝐼1,1,1 − 𝐼0,2,1 − 𝐼0,1,2 = 0

−2 𝐼−1,3,1 − 𝐼−1,2,2 + (𝑑 − 3) 𝐼0,2,1 = 0
−2 𝐼−1,1,1 − 𝑠 𝐼0,1,1 = 0
−𝐼0,3,1 + 𝐼0,1,3 = 0

𝑠 𝐼−1,2,1 − 𝑠 𝐼−1,1,2 = 0
−𝐼−1,2,1 − 𝐼−1,1,2 + (𝑑 − 2) 𝐼0,1,1 = 0
−𝐼−1,2,1 − 𝐼−1,1,2 − 𝑠 𝐼0,1,2 + 𝐼0,1,1 = 0
−𝐼−1,2,2 − 2𝐼−1,1,3 + (𝑑 − 3) 𝐼0,1,2 = 0
𝑠 𝐼−1,2,2 − 2𝑠 𝐼−1,1,3 + 𝑠 𝐼0,1,2 = 0

−2 𝐼−1,2,2 − 𝑠 𝐼0,2,2 + 𝐼0,2,1 + 𝐼0,1,2 = 0
−𝐼−1,2,2 − 2 𝐼−1,1,3 − 2𝑠 𝐼0,1,3 + 𝐼0,1,2 = 0

−𝐼0,2,1 + 𝐼0,1,2 = 0

⟺

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑑 − 6 −1 −1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ 𝑠 −𝑠 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ −𝑠 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −1 −1 ⋅
⋅ ⋅ ⋅ 𝑑 − 4 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −1 −1 ⋅
⋅ ⋅ ⋅ ⋅ −2 ⋅ −1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝑑 − 3 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −2 ⋅ ⋅ ⋅ ⋅ ⋅ −𝑠
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −1 1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝑠 −𝑠 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −1 −1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝑑 − 2
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −1 −1 ⋅ ⋅ ⋅ ⋅ −𝑠 ⋅ 1
⋅ ⋅ ⋅ ⋅ ⋅ −2 −1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝑑 − 3 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ −2𝑠 𝑠 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝑠 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −2 ⋅ ⋅ ⋅ ⋅ ⋅ −𝑠 1 1 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ −2 −1 ⋅ ⋅ ⋅ ⋅ −2𝑠 ⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 −1 ⋅

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝐼2,1,1
𝐼1,2,1
𝐼1,1,2
𝐼1,1,1
𝐼−1,3,1
𝐼−1,1,3
𝐼−1,2,2
𝐼−1,2,1
𝐼−1,1,2
𝐼−1,1,1
𝐼0,3,1
𝐼0,1,3
𝐼0,2,2
𝐼0,1,2
𝐼0,2,1
𝐼0,1,1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 0

After Gaussian elimination (108 operations, ∼ 𝑁2
integrals):

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ (12 − 4𝑑)/(𝑑𝑠2 − 6𝑠2)
⋅ 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ (6 − 2𝑑)/(𝑠2)
⋅ ⋅ 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ (6 − 2𝑑)/(𝑠2)
⋅ ⋅ ⋅ 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ (2𝑑 − 6)/(𝑑𝑠 − 4𝑠)
⋅ ⋅ ⋅ ⋅ 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ (𝑑2 − 5𝑑 + 6)/(4𝑠)
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 ⋅ ⋅ ⋅ ⋅ ⋅ 𝑠/2
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 ⋅ ⋅ ⋅ ⋅ (−𝑑2 + 7𝑑 − 12)/(2𝑠2)
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ (2 − 𝑑)/2
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ (2 − 𝑑)/2
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 (𝑑 − 3)/𝑠
⋅ ⋅ ⋅ ⋅ ⋅ 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ (𝑑2 − 5𝑑 + 6)/(4𝑠)
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ (𝑑2 − 7𝑑 + 12)/(2𝑠)
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 ⋅ ⋅ (−𝑑2 + 9𝑑 − 18)/(𝑠2)
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 ⋅ ⋅ ⋅ (−𝑑2 + 7𝑑 − 12)/(2𝑠2)
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 ⋅ (𝑑 − 3)/𝑠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝐼2,1,1
𝐼1,2,1
𝐼1,1,2
𝐼1,1,1
𝐼−1,3,1
𝐼−1,1,3
𝐼−1,2,2
𝐼−1,2,1
𝐼−1,1,2
𝐼−1,1,1
𝐼0,3,1
𝐼0,1,3
𝐼0,2,2
𝐼0,1,2
𝐼0,2,1
𝐼0,1,1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 0 ⟺

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝐼2,1,1
𝐼1,2,1
𝐼1,1,2
𝐼1,1,1
𝐼−1,3,1
𝐼−1,1,3
𝐼−1,2,2
𝐼−1,2,1
𝐼−1,1,2
𝐼−1,1,1
𝐼0,3,1
𝐼0,1,3
𝐼0,2,2
𝐼0,1,2
𝐼0,2,1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

4(𝑑 − 3)/((𝑑 − 6) 𝑠2)
2(𝑑 − 3)/𝑠2
2(𝑑 − 3)/𝑠2

−2(𝑑 − 3)/((𝑑 − 4) 𝑠)
−(𝑑 − 3)(𝑑 − 2)/(4𝑠)
−(𝑑 − 3)(𝑑 − 2)/(4𝑠)
−(𝑑 − 4)(𝑑 − 3)/(2𝑠)

−(2 − 𝑑)/2
−(2 − 𝑑)/2

−𝑠/2
(𝑑 − 4)(𝑑 − 3)/(2𝑠2)
(𝑑 − 4)(𝑑 − 3)/(2𝑠2)
(𝑑 − 6)(𝑑 − 3)/𝑠2

−(𝑑 − 3)/𝑠
−(𝑑 − 3)/𝑠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝐼0,1,1
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Rational function arithmetic, I

𝑓(𝑥, 𝑦) = 2𝑥𝑦 − 𝑦2

𝑥 − 𝑦
+ 𝑦3 − 3𝑥𝑦2

𝑥2 − 𝑦2 = ?

Rational arithmetic symbolically:

Common denominator: ((2𝑥𝑦 − 𝑦2)(𝑥 + 𝑦) + 𝑦3 − 3𝑥𝑦2)/(𝑥2 − 𝑦2)
Expand the numerator: (2𝑥2𝑦 − 𝑥𝑦2 + 2𝑥𝑦2 − 𝑦3 + 𝑦3 − 3𝑥𝑦2)/(𝑥2 − 𝑦2)
Combine alike terms: (2𝑥2𝑦 − 2𝑥𝑦2)/(𝑥2 − 𝑦2)
Cancel common factors: 2𝑥𝑦/(𝑥 + 𝑦)
Runtime: 𝒪 (𝑁2

initial monomials𝑁digits per monomial)
Peak memory needed: 𝒪 (𝑁2

initial monomials𝑁digits per monomial)
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IBP reduction as a bottleneck
Optimistic reduction time estimate (symbolic reduction):
𝑇 ∼ 1

performance
𝑁families 𝑁2

integrals per family􏿋􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏿌􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏿍
(𝑁denominators)𝑁lines

𝑁2
monomials per term􏿋􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏿌􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏿍
exp(𝑁scales)

𝑁𝑇operation
digits per monomial

To match LHC experimental precision the theory requires 2-loop corrections.
For future colliders: 3-loop corrections. [Freitas ’21]

1 loop 2 loops 3 loops
4 legs ~100 diagrams ~2K diagrams ~50K diagrams

3 families 24 families 219 families
4 denominators 7+2 denominators 10+5 denominators

2+ scales 2+ scales 2+ scales
5 legs ~1K diagrams ~30K diagrams ~800K diagrams

12 families 180 families 2355 families
5 denominators 8+3 denominators 11+7 denominators

5+ scales 5+ scales 5+ scales

* Lines in a Feynman diagram: 𝑁lines = 3𝐿 + 𝐸 − 2.
* Denominators per family: 𝑁denominators = 𝐿 (𝐿 + 1) /2 + 𝐿𝐸.
* Mass scales per family: 𝑁scales = 𝐸 (𝐸 − 1) /2 − 1 + 𝑁massive legs + masses.

https://www.actaphys.uj.edu.pl/R/52/8/929/pdf
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Rational function arithmetic, II
Rational arithmetic via an anzatz-based interpolation:

Prepare an ansatz: 𝑓(𝑥, 𝑦) = 𝑐1𝑥𝑦/(𝑥 + 𝑐2𝑦)
Evaluate: 𝑓(1, 1) = 1, 𝑓(1, 2) = 4/3
Solve for 𝑐𝑖: 𝑐1 = 2, 𝑐2 = 1
Runtime, evaluation: 𝑁final monomials × 𝒪 (𝑁initial monomials𝑁digits per monomial)
Runtime, interpolation: 𝒪 (𝑁2

final monomials𝑁digits per final monomial)
Peak memory, needed: 𝒪 (𝑁2

final monomials𝑁digits per final monomial)
Same interpolation, but using modular arithmetic:

* Interpolate keeping the values as integers modulo a prime numer 𝑃1.
* Use rational number reconstruction to upgrade 𝑐𝑖 from integers to
rationals modulo 𝑃1. [Wang ’81; Monagan ’04]

* Repeat the same with primes 𝑃2, 𝑃3, … .

* Use the Chinese remainder theorem to get 𝑐𝑖 modulo 𝑃1𝑃2𝑃3⋯.

* Stop when 𝑐𝑖 no longer change.
* Runtime: same, but𝑁digits per monomial → 𝑁digits per final monomial,
and faster on a computer: all operations are on small integers!

https://dx.doi.org/10.1145/800206.806398
https://dx.doi.org/10.1145/1005285.1005321
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Function reconstruction algorithms
If an anzatz is unknown, multiple reconstruction algorithms are available:

* Univariate case:
* Newton interpolation for dense polynomials. [Newton 1675; Peraro ’16]

* Number of evaluations ∼ 𝑁maximal degree.

* Ben-Or/Tiwari for sparse polynomials. [Ben-Or, Tiwari ’88]

* Number of evaluations ∼ 2𝑁monomials.

* Thiele interpolation for dense rationals.
* Number of evaluations ∼ 2𝑁maximal degree.

* Multivariate case:
* Newton applied recursively in each variable for dense polynomials.

* Number of evaluations ∼ (𝑁maximal degree)𝑁scales .

* Zippel (∼ recursive Newton with prunning) + early termination for
sparse polynomials. [Zippel ’90; Kaltofen, Lee ’03]

* Number of evaluations ≲ 𝑁scales𝑁maximal degree𝑁monomials.

* Multivariate Ben-Or/Tiwari for sparse polynomials. [Go ’06]

* Number of evaluations ∼ 2𝑁monomials.

* First Thiele, then Zippel and/or Ben-Or/Tiwari for multivariate rationals
(the FIREFLY library). [Klappert, Lange ’19; Klappert, Klein, Lange ’20]

https://arxiv.org/abs/1608.01902
https://dx.doi.org/10.1145/62212.62241
https://dx.doi.org/10.1016/S0747-7171(08)80018-1
https://dx.doi.org/10.1016/S0747-7171(03)00088-9
http://www.cecm.sfu.ca/CAG/theses/soogo.pdf
https://gitlab.com/firefly-library/firefly
https://arxiv.org/abs/1904.00009
https://arxiv.org/abs/2004.01463
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Performance of IBP via modular reconstruction

Total time for modular reconstruction of the IBP system solution:

1
performance

𝑁families ��������
𝑁2
integrals per family􏿋􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏿌􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏿍

→𝑁amplitudes 𝑁masters􏿋􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏿌􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏿍
expressions to reconstruct

𝑁2
monomials per term 𝑁digits per monomial

* To minimize the reconstruction time, only reduce expressions for
whole amplitudes, not individual integrals.

Total time for evaluation of the IBP system solution:

𝑇single evaluation
􏿇􏿊􏿊􏿊􏿊􏿊􏿊􏿊􏿊􏿊􏿊􏿊􏿊􏿊􏿊􏿊􏿊􏿊􏿊􏿊􏿊􏿊􏿈􏿊􏿊􏿊􏿊􏿊􏿊􏿊􏿊􏿊􏿊􏿊􏿊􏿊􏿊􏿊􏿊􏿊􏿊􏿊􏿊􏿊􏿉1
performance

𝑁families 𝑁2
integrals per family

𝑁evaluations

􏿇􏿊􏿊􏿊􏿊􏿊􏿊􏿊􏿊􏿊􏿊􏿊􏿊􏿊􏿊􏿊􏿊􏿊􏿊􏿊􏿊􏿊􏿈􏿊􏿊􏿊􏿊􏿊􏿊􏿊􏿊􏿊􏿊􏿊􏿊􏿊􏿊􏿊􏿊􏿊􏿊􏿊􏿊􏿊􏿉𝑁 �2monomials per term􏿋􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏿌􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏿍
Best case; depends on the algorithm.

𝑁digits per monomial

* The evaluation can be naturally parallelized.
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Available software
IBP solvers not using modular arithmetic:

* LITERED (useful Mathematica functions, required by FIRE). [Lee ’13]

* FORCER (for massless 2-point functions). [Ruijl, Ueda, Vermaseren ’17]

Status unknown:

* CRUSHER (a private implementation). [Marquard, Seidel]

IBP solvers that use modular arithmetic:

* FINRED (a private implementation). [von Manteuffel et al]

* FIRE6. [Smirnov, Chuharev ’19]

* Does not provide multivariate reconstruction.

* KIRA when used with FIREFLY.
[Klappert, Lange, Maierhöfer, Usovitsch ’20; Klappert, Klein, Lange ’20]

* FINITEFLOW (a library for arbitrary computations). [Peraro ’19]

* CARAVEL (a library for amplitude computations). [Cordero, Sotnikov et al ’20]

... and others.
Now also introducing: RATRACER (with KIRA and FIREFLY). [V.M. ’22]

https://www.inp.nsk.su/~lee/programs/LiteRed/
https://arxiv.org/abs/1310.1145
https://github.com/benruijl/forcer
https://arxiv.org/abs/1704.06650
https://bitbucket.org/feynmanIntegrals/fire/
http://arxiv.org/abs/1901.07808
https://gitlab.com/kira-pyred/kira
https://gitlab.com/firefly-library/firefly
http://arxiv.org/abs/2008.06494
https://arxiv.org/pdf/2008.06494
https://github.com/peraro/finiteflow
http://arxiv.org/abs/1905.08019
https://gitlab.com/caravel-public/caravel
http://arxiv.org/abs/2009.11957
https://github.com/magv/ratracer
https://arxiv.org/abs/2211.03572


12

Improving IBP reduction time
Strategies to improve the reduction time:
1. Use modular arithmetic & rational function reconstruction methods.
2. Make the result smaller:

2.1 Reduce whole amplitudes (not individual integrals).
2.2 Choose master integrals that minimize the result size.

* Use 𝑑-factorizing bases that ensure the factorization of 𝑑 in the
denominators of IBP coefficients. [Usovitsch ’20; Smirnov, Smirnov ’20]

* Consider quasi-finite bases. [von Manteuffel, Panzer, Schabinger ’14]

* Consider uniform transcendentality bases, if possible. [Bendle et al ’19]

2.3 Construct a smaller ansatz for the result. [Abreu et al ’19; De Laurentis, Page ’22]
2.4 Set some of the variables to fixed numbers.

* E.g. reduce with𝑚2
𝐻 /𝑚2

𝑡 set to 12/23.
* Or perform IBP reduction separately for each phase-space point, and

interpolate in between. [Jones, Kerner et al ’18; Chen, Heinrich et al ’19, ’20]

3. Improve the evaluation performance:
3.1 Combine IBP relations (using syzygies) to eliminate integrals with raised

(or lowered) indices. [Gluza, Kajda, Kosower ’10; Scahbinger ’11]
3.2 Just solve the equations faster?

https://arxiv.org/abs/2002.08173
https://arxiv.org/abs/2002.08042
https://arxiv.org/pdf/1411.7392
https://arxiv.org/abs/1908.04301
https://arxiv.org/abs/1904.00945
https://arxiv.org/abs/2203.04269
https://arxiv.org/abs/1802.00349
https://arxiv.org/abs/1911.09314
https://arxiv.org/pdf/2011.12325
https://arxiv.org/abs/1009.0472
https://arxiv.org/abs/1111.4220


13

Optimizing the modular Gaussian elimination
When performing Gaussian elimination one needs to:

* Represent the equations as a sparse matrix data structure.
* Keep the equations sorted.
* Keep terms in each equation sorted.
* Adjust the layout (and maybe reallocate memory) after each operation.

* This is not much work, but so is modular arithmetic!

IBP solvers using modular arithmetics will:

* Recreate the same data structures, same memory allocations, in the
same order during each evaluation, many times.

* Only the modular values change between evaluations.

* Spend relatively little time on actual modular arithmetic.
* Because it is so fast!

How to speed this up? Eliminate the data structure overhead:

* Record the list of arithmetic operations performed during the first
evaluation (“a trace”).

* Simply replay this list for subsequent evaluations.
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Rational traces
For 𝐼𝑎,𝑏,𝑐(𝑠, 𝑑) ≡

𝑝1

𝑝2
𝑎

𝑏

𝑐
the trace of the IBP solution might look like:

t0 = var 'd'

t1 = int 4

t2 = sub t0 t1

t3 = int 1

t4 = var 's'

t5 = neg t4

t6 = int 6

t7 = sub t0 t6

t8 = int -1

t9 = int 2

t10 = int -2

t11 = sub t0 t9

t12 = int 3

t13 = sub t0 t12

t14 = mul t4 t10

t15 = neginv t5

t16 = mul t4 t15

t17 = sub t8 t16

t18 = mul t5 t16

t19 = neginv t17

t20 = mul t7 t19

[...]

t54 = addmul t53 t27 t44

t55 = mul t25 t44

t56 = addmul t55 t25 t44

t57 = mul t23 t44

t58 = addmul t57 t23 t44

t59 = mul t20 t58

t60 = mul t16 t59

save t60 as CO[I[1,1,2],I[0,1,1]]

save t59 as CO[I[1,2,1],I[0,1,1]]

save t58 as CO[I[2,1,1],I[0,1,1]]

save t56 as CO[I[1,1,1],I[0,1,1]]

save t54 as CO[I[-1,1,3],I[0,1,1]]

save t52 as CO[I[-1,2,2],I[0,1,1]]

save t51 as CO[I[-1,3,1],I[0,1,1]]

save t46 as CO[I[0,1,3],I[0,1,1]]

save t49 as CO[I[0,2,2],I[0,1,1]]

save t47 as CO[I[-1,1,2],I[0,1,1]]

save t46 as CO[I[0,3,1],I[0,1,1]]

save t42 as CO[I[-1,2,1],I[0,1,1]]

save t44 as CO[I[0,1,2],I[0,1,1]]

save t44 as CO[I[0,2,1],I[0,1,1]]

save t45 as CO[I[-1,1,1],I[0,1,1]]
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Rational traces
For 𝐼𝑎,𝑏,𝑐(𝑠, 𝑑) ≡

𝑝1

𝑝2
𝑎

𝑏

𝑐
the trace of the IBP solution might look like:

－

d

4

－

s

－

6

－

2

－

3

⨉

-2

-1/

⨉

－

-1

⨉

-1/

⨉

⨉

-1/

－

-1/

－

-1/

⨉

＋⨉

＋⨉

-1/

⨉

⨉ － ⨉

-1/

⨉

⨉

-1/

⨉

＋⨉

1

⨉

⨉

＋⨉

⨉

⨉

⨉

⨉

⨉

＋⨉

⨉

＋⨉

⨉

⨉

＋⨉

⨉

＋⨉⨉

＋⨉

⨉

⨉ CO[I[1,2,1],I[0,1,1]]

CO[I[2,1,1],I[0,1,1]]

CO[I[1,1,1],I[0,1,1]]

CO[I[-1,1,3],I[0,1,1]]

CO[I[-1,2,2],I[0,1,1]]

CO[I[-1,3,1],I[0,1,1]]

CO[I[0,1,3],I[0,1,1]]

CO[I[0,2,2],I[0,1,1]]

CO[I[-1,1,2],I[0,1,1]]

CO[I[0,3,1],I[0,1,1]]

CO[I[-1,2,1],I[0,1,1]]

CO[I[0,1,2],I[0,1,1]] CO[I[0,2,1],I[0,1,1]]

CO[I[-1,1,1],I[0,1,1]]
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RATRACER overview

RATRACER (“Rational Tracer”): a program for solving systems of linear
equations using modular arithmetic based on rational traces. [V.M. ’22]

* Can trace the solution of arbitrary systems of linear equations: IBP
relations, dimensional recurrence relations, amplitude definitions, etc.

* Can trace arbitrary rational expressions.

* Can optimize and transform traces.

* Uses FIREFLY for reconstruction. [Klappert, Klein, Lange ’20, ’19]

* Initially created for solving IBPs for massive 5-point 2-loop diagrams.

* Available at github.com/magv/ratracer.
Intended usage:
1. Use KIRA (or LITERED, or custom code) to export IBP relations.
2. Use RATRACER to load them and solve them.

https://arxiv.org/abs/2211.03572
https://arxiv.org/abs/2004.01463
https://arxiv.org/abs/1904.00009
https://github.com/magv/ratracer
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RATRACER benchmarks

For IBP reduction of every integral (i.e. not single amplitudes):

Evaluation
𝑡reconstruction
𝑡evaluation

Total Total Total
speedup vs. speedup vs. speedup vs. speedup
KIRA+FIREFLY KIRA+FIREFLY KIRA+FERMAT vs. FIRE6

𝑚1

𝑚1
𝑚2 20 3.3 5.2 1.2 ∞?

𝑚1𝑚2 7.8 1/3.3 6.0 37 ∞?
𝑠

𝑚1

𝑚2

26 25 1.7 1/3.3 1.8

𝑚 9.6 8.8 5.2 2.6 8.8

[github.com/magv/ibp-benchmark]
Resulting performance:

* Consistent ~10x speedup in modular evaluation over KIRA+FIREFLY.

* Up to ~5x speedup in total reduction time over KIRA+FIREFLY for
complicated examples, 1x-30x over KIRA+FERMAT,∞x over FIRE6.

https://github.com/magv/ibp-benchmark
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Trace optimizations

Given a trace, RATRACER can optimize it using:

* Constant propagation:

􏿼
t11 = int 2

t12 = int 3

t13 = mul t11 t12
⇒ 􏿼

t11 = int 2

t12 = int 3

t13 = int 6

* Trivial operation simplification:
􏿺t11 = int -1

t12 = mul t11 t7
⇒ 􏿺t11 = int -1

t12 = neg t7

* Common subexpression elimination:
􏿺t11 = add t5 t7

t12 = add t5 t7
⇒ 􏿺t11 = add t5 t7

t12 = t11

* Dead code elimination:
􏿺t11 = add t5 t7

[..., t11 is unused]
⇒ 􏿺nop[...]

* Especially useful if a user wants to select a subset of the outputs.

* “Finalization”:

􏿼
t11 = add t5 t6

t12 = add t11 t7

[..., t11 is unused]
⇒ 􏿼

t11 = add t5 t6

t11 = add t11 t7

[...]

* Needed to minimize the temporary memory needed for the evaluation.
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Trace transformations

Given a trace, RATRACER can:

* Set some of the variables to expressions or numbers.
* E.g. set mh2 to “12/23*mt2”, d to “4-2*eps”, or s to “13600”.
* No need to remake the IBP system just to set a variable to a number.

* Select any subset of the outputs, and drop operations that don’t
contribute to them (via dead code elimination).

* Can be used to split the trace into parts.
* Each part can be reconstructed separately (e.g. on a different machine).

* See master-wise and sector-wise reduction in other solvers.

* Expand the result into a series in any variable.
* By evaluating the trace while treating each value as a series, and saving
the trace of that evaluation.

* Done before the reconstruction, so one less variable to reconstruct in,
but potentially more expressions (depending on the truncation order).

* In practice only few leading orders in 𝜀 are needed, so expand in 𝜀 up to
e.g. 𝒪 􏿴𝜀0􏿷, and don’t waste time on reconstructing the higher orders.
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Truncated series expansion

For 𝐼𝑎,𝑏,𝑐(𝑠, 𝑑) ≡
𝑝1

𝑝2
𝑎

𝑏

𝑐
before expansion:

* Variables to reconstruct in: 𝑠 and 𝑑.
* Trace outputs: “CO[I[1,1,1],I[0,1,1]]”, etc:

𝐼1,1,1 = CO[I[1,1,1],I[0,1,1]] 𝐼0,1,1.

After expansion in 𝜀 to 𝒪 􏿴𝜀0􏿷:
* Variables to reconstruct in: only 𝑠.
* Trace outputs: “ORDER[CO[I[1,1,1],I[0,1,1],eps^-1]”, etc:

𝐼1,1,1 = ORDER[CO[I[1,1,1],I[0,1,1],eps^-1] 𝜀−1 𝐼0,1,1
+ ORDER[CO[I[1,1,1],I[0,1,1],eps^0] 𝜀0 𝐼0,1,1.

* Might be slower to evaluate, but fewer evaluations are needed.
⇒ The more complicated the problem, the higher the speedup.
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Truncated series expansion: the graph

𝑝1

𝑝2
𝑎

𝑏

𝑐

Expansion: − 𝒪 􏿴𝜀0􏿷 𝒪 􏿴𝜀1􏿷 𝒪 􏿴𝜀2􏿷

Operations: 61 40 73 87

Outputs: 15 13 26 33

－

d

4

－

s

－

6

－

2

－

3

⨉

-2

-1/

⨉

－

-1

⨉

-1/

⨉

⨉

-1/

－

-1/

－

-1/

⨉

＋⨉

＋⨉

-1/

⨉

⨉ － ⨉

-1/

⨉

⨉

-1/

⨉

＋⨉

1

⨉

⨉

＋⨉

⨉

⨉

⨉

⨉

⨉

＋⨉

⨉

＋⨉

⨉

⨉

＋⨉

⨉

＋⨉⨉

＋⨉

⨉

⨉ CO[I[1,2,1],I[0,1,1]]

CO[I[2,1,1],I[0,1,1]]

CO[I[1,1,1],I[0,1,1]]

CO[I[-1,1,3],I[0,1,1]]

CO[I[-1,2,2],I[0,1,1]]

CO[I[-1,3,1],I[0,1,1]]

CO[I[0,1,3],I[0,1,1]]

CO[I[0,2,2],I[0,1,1]]

CO[I[-1,1,2],I[0,1,1]]

CO[I[0,3,1],I[0,1,1]]

CO[I[-1,2,1],I[0,1,1]]

CO[I[0,1,2],I[0,1,1]] CO[I[0,2,1],I[0,1,1]]

CO[I[-1,1,1],I[0,1,1]]



20

Truncated series expansion: the graph

𝑝1

𝑝2
𝑎

𝑏

𝑐

Expansion: − 𝒪 􏿴𝜀0􏿷 𝒪 􏿴𝜀1􏿷 𝒪 􏿴𝜀2􏿷

Operations: 61 40 73 87

Outputs: 15 13 26 33

－

s

⨉

-2

-1/

⨉

－

＋

-1⨉

-1/

⨉

⨉

-1/

－

-1/

－

-1/

⨉

⨉

2
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1

⨉

⨉ ⨉ ⨉

⨉

⨉

＋⨉

⨉ ⨉⨉ ⨉

＋⨉ ＋⨉⨉

＋⨉

⨉

⨉

ORDER[CO[I[1,1,2],I[0,1,1]],ep^0]

ORDER[CO[I[1,2,1],I[0,1,1]],ep^0]

ORDER[CO[I[2,1,1],I[0,1,1]],ep^0]

ORDER[CO[I[1,1,1],I[0,1,1]],ep^-1] ORDER[CO[I[1,1,1],I[0,1,1]],ep^0]

ORDER[CO[I[-1,1,3],I[0,1,1]],ep^0]

ORDER[CO[I[0,2,2],I[0,1,1]],ep^0]

ORDER[CO[I[-1,1,2],I[0,1,1]],ep^0]

ORDER[CO[I[-1,2,1],I[0,1,1]],ep^0]

ORDER[CO[I[0,1,2],I[0,1,1]],ep^0] ORDER[CO[I[0,2,1],I[0,1,1]],ep^0] ORDER[CO[I[-1,1,1],I[0,1,1]],ep^0]
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Truncated series expansion: the graph

𝑝1

𝑝2
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𝑏

𝑐

Expansion: − 𝒪 􏿴𝜀0􏿷 𝒪 􏿴𝜀1􏿷 𝒪 􏿴𝜀2􏿷

Operations: 61 40 73 87

Outputs: 15 13 26 33

－

s

⨉

-2

-1/

⨉
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⨉

⨉
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＋⨉

＋⨉

⨉

⨉
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⨉

⨉

ORDER[CO[I[1,1,2],I[0,1,1]],ep^0]

ORDER[CO[I[1,1,2],I[0,1,1]],ep^1]

ORDER[CO[I[1,2,1],I[0,1,1]],ep^0]

ORDER[CO[I[2,1,1],I[0,1,1]],ep^0]

ORDER[CO[I[2,1,1],I[0,1,1]],ep^1]

ORDER[CO[I[1,1,1],I[0,1,1]],ep^0]

ORDER[CO[I[-1,1,3],I[0,1,1]],ep^0]

ORDER[CO[I[-1,1,3],I[0,1,1]],ep^1]

ORDER[CO[I[-1,2,2],I[0,1,1]],ep^1]

ORDER[CO[I[-1,3,1],I[0,1,1]],ep^0]

ORDER[CO[I[-1,3,1],I[0,1,1]],ep^1]

ORDER[CO[I[0,1,3],I[0,1,1]],ep^1]

ORDER[CO[I[0,2,2],I[0,1,1]],ep^0]

ORDER[CO[I[0,2,2],I[0,1,1]],ep^1]

ORDER[CO[I[-1,1,2],I[0,1,1]],ep^0]ORDER[CO[I[-1,1,2],I[0,1,1]],ep^1]

ORDER[CO[I[0,3,1],I[0,1,1]],ep^1]

ORDER[CO[I[-1,2,1],I[0,1,1]],ep^0]ORDER[CO[I[-1,2,1],I[0,1,1]],ep^1]

ORDER[CO[I[0,1,2],I[0,1,1]],ep^0] ORDER[CO[I[0,2,1],I[0,1,1]],ep^0]

ORDER[CO[I[-1,1,1],I[0,1,1]],ep^0]
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Truncated series expansion: the graph

𝑝1

𝑝2
𝑎

𝑏

𝑐

Expansion: − 𝒪 􏿴𝜀0􏿷 𝒪 􏿴𝜀1􏿷 𝒪 􏿴𝜀2􏿷

Operations: 61 40 73 87

Outputs: 15 13 26 33

－

s

⨉

-2

-1/

⨉

－

＋

-1

⨉

-1/

⨉

⨉

-1/

⨉

⨉ ⨉

⨉

－

－

－

-1/

－

-1/

⨉

＋⨉

-1/

⨉

⨉－ ⨉

⨉⨉

-1/

⨉

⨉

⨉

⨉

2

＋⨉

1

⨉

⨉

⨉⨉ ⨉

⨉

⨉⨉

⨉

⨉

＋⨉⨉

＋⨉

＋⨉

⨉

⨉

⨉

＋⨉

＋⨉ ＋⨉

⨉

⨉⨉

⨉

⨉

＋⨉

⨉ ⨉

＋⨉ ＋⨉

⨉⨉

＋⨉⨉

＋⨉

＋⨉

＋⨉

＋⨉＋⨉

＋⨉

⨉

⨉

＋⨉

⨉

⨉

ORDER[CO[I[1,1,2],I[0,1,1]],ep^0]

ORDER[CO[I[1,1,2],I[0,1,1]],ep^1]

ORDER[CO[I[1,2,1],I[0,1,1]],ep^0]

ORDER[CO[I[1,2,1],I[0,1,1]],ep^1]

ORDER[CO[I[2,1,1],I[0,1,1]],ep^0]

ORDER[CO[I[2,1,1],I[0,1,1]],ep^1]

ORDER[CO[I[1,1,1],I[0,1,1]],ep^-1]

ORDER[CO[I[-1,1,3],I[0,1,1]],ep^0]

ORDER[CO[I[-1,1,3],I[0,1,1]],ep^1] ORDER[CO[I[-1,1,3],I[0,1,1]],ep^2]

ORDER[CO[I[-1,2,2],I[0,1,1]],ep^1]

ORDER[CO[I[-1,2,2],I[0,1,1]],ep^2]

ORDER[CO[I[-1,3,1],I[0,1,1]],ep^0]

ORDER[CO[I[-1,3,1],I[0,1,1]],ep^1]

ORDER[CO[I[0,1,3],I[0,1,1]],ep^1]

ORDER[CO[I[0,1,3],I[0,1,1]],ep^2] ORDER[CO[I[0,2,2],I[0,1,1]],ep^0]

ORDER[CO[I[0,2,2],I[0,1,1]],ep^1]

ORDER[CO[I[0,2,2],I[0,1,1]],ep^2]

ORDER[CO[I[-1,1,2],I[0,1,1]],ep^0]ORDER[CO[I[-1,1,2],I[0,1,1]],ep^1]

ORDER[CO[I[0,3,1],I[0,1,1]],ep^1]

ORDER[CO[I[0,3,1],I[0,1,1]],ep^2]

ORDER[CO[I[-1,2,1],I[0,1,1]],ep^0]ORDER[CO[I[-1,2,1],I[0,1,1]],ep^1]

ORDER[CO[I[0,1,2],I[0,1,1]],ep^0]

ORDER[CO[I[0,1,2],I[0,1,1]],ep^1]

ORDER[CO[I[0,2,1],I[0,1,1]],ep^0]

ORDER[CO[I[0,2,1],I[0,1,1]],ep^1]ORDER[CO[I[-1,1,1],I[0,1,1]],ep^0]
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RATRACER + series expansion benchmarks

probe time speedup total time speedup
𝒪 (𝜀0) 𝒪 (𝜀1) 𝒪 (𝜀2) 𝒪 (𝜀0) 𝒪 (𝜀1) 𝒪 (𝜀2)

𝑚1

𝑚1
𝑚2 1/1.3 1/1.5 1/1.8 3.2 2.4 1.9

𝑚1𝑚2 1/2.0 1/2.5 1/3.0 2.7 1.4 1/1.3

𝑠
𝑚1

𝑚2

1/1.4 1/2.4 1/2.9 2.3 1.7 1.4

𝑚 1/1.0 1/1.6 1/2.1 4.3 2.3 1.6

[github.com/magv/ibp-benchmark]
Resulting performance:

* A ~3x speedup with 𝜀 expansion up to 𝒪 􏿴𝜀0􏿷.
* The higher the expansion, the less the benefit.

https://github.com/magv/ibp-benchmark
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Guessing the denominators
The denominators of IBP coefficients factorize into few unique factors.
If some candidate factors are known, then we can find the powers of those
factors in each coefficient: [Abreu et al ’18; Heller, von Manteuffel ’21]

1. Choose a factor to search for, e.g. (𝑑 − 6).
2. Set all variables to random values, e.g. 𝑑 = 95988281, 𝑠 = 75579811.

⇒ (𝑑 − 6) = 95988275 = 52 ⋅ 103 ⋅ 37277.
3. Evaluate the IBP solution using these numbers.

* E.g. CO[𝐼2,1,1,𝐼0,1,1]=
383953112

548314574947073136171275 =
23⋅1117⋅42967

52⋅103⋅37277⋅755798112 .
4. Find common prime factors, identify their powers.

* CO[𝐼2,1,1,𝐼0,1,1]∼ (𝑑 − 6)−1 𝑠−2.
Automated implementation: toos/guessfactors from RATRACER.
To find the set of possible factors:

* Reconstruct a simpler subset of the coefficients. (A few per sector).
⇒ Easy with RATRACER, just select individual outputs.
Once the factors are found, speedup the reconstruction by dividing them
out from the expressions.

* I.e. reconstruct CO[𝐼2,1,1,𝐼0,1,1]/ (𝑑 − 6) /𝑠2, not just CO[𝐼2,1,1,𝐼0,1,1].

https://arxiv.org/abs/1812.04586
https://arxiv.org/abs/2101.08283
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Usage for IBP reduction
1. Use KIRA to generate the IBP equations.

$ cat >config/integralfamilies.yaml <<EOF

integralfamilies:

- name: "I"

loop_momenta: [l]

top_level_sectors: [b111]

propagators:

- ["l", 0]

- ["l-p1", 0]

- ["l+p2", 0]

EOF

$ cat >config/kinematics.yaml <<EOF

kinematics:

outgoing_momenta: [p1, p2]

kinematic_invariants: [[s, 2]]

scalarproduct_rules:

- [[p1,p1], 0]

- [[p2,p2], 0]

- [[p1,p2], "s/2"]

# symbol_to_replace_by_one: s

EOF

$ cat >export-equations.yaml <<EOF

jobs:

- reduce_sectors:

reduce:

- {sectors: [b111], r: 4, s: 1}

select_integrals:

select_mandatory_recursively:

- {sectors: [b111], r: 4, s: 1}

run_symmetries: true

run_initiate: input

EOF

$ kira export-equations.yaml

2. Use RATRACER to create a trace with the solution.
$ ratracer \

load-equations input_kira/I/SYSTEM_I_0000000007.kira.gz \

load-equations input_kira/I/SYSTEM_I_0000000006.kira.gz \

solve-equations choose-equation-outputs --maxr=4 --maxs=1 \

optimize finalize save-trace I.trace.gz

3. Optionally expand the outputs into a series in 𝜀.
$ ratracer \

set d '4-2*eps' load-trace I.trace.gz \

to-series eps 0 \

optimize finalize save-trace I.eps0.trace.gz

4. Use RATRACER (+FIREFLY) to reconstruct the solution.
$ ratracer \

load-trace I.eps0.trace.gz \

reconstruct --to=I.solution.txt --threads=8 --inmem



24

Usage as a library
RATRACER is built to support custom user-defined traces.
Any rational algorithm can be turned into a trace (via the C++ API).

Usage: API:

#include <ratracer.h>

int main() {

Tracer tr = tracer_init();

Value x = tr.var(tr.input("x"));

Value y = tr.var(tr.input("y"));

Value x_sqr =

tr.pow(x, 2);

Value expr =

tr.add(x_sqr, tr.mulint(y, 3));

/* expr = x^2 + 3y */

tr.add_output(expr, "expr");

tr.save("example.trace.gz");

return 0;

}

struct Value { uint64_t id; uint64_t val; };

struct Tracer {

Value var(size_t idx);

Value of_int(int64_t x);

Value of_fmpz(const fmpz_t x);

bool is_zero(const Value &a);

bool is_minus1(const Value &a);

Value mul(const Value &a, const Value &b);

Value mulint(const Value &a, int64_t b);

Value add(const Value &a, const Value &b);

Value addint(const Value &a, int64_t b);

Value sub(const Value &a, const Value &b);

Value addmul(const Value &a,

const Value &b1,

const Value &b2);

Value inv(const Value &a);

Value neginv(const Value &a);

Value neg(const Value &a);

Value pow(const Value &base, long exp);

Value div(const Value &a, const Value &b);

void assert_int(const Value &a, int64_t n);

void add_output(const Value &src, const char *name);

size_t input(const char *name, size_t len);

size_t input(const char *name);

int save(const char *path);

void clear();

};

Tracer tracer_init();
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Problems with big traces

Problem:

* The size of a trace is proportional to the number of operations.
* I.e. ∼ 𝑁2

integrals for sparse IBP systems.
⇒ Megabytes to gigabytes for 2-loop 5-point massive problems.

* Computer memory is expensive and limited.
Solution:
1. Always keep the trace on disk, never load it fully into memory.

* Compress it on disk for storage (via ZSTD, GZIP, BZIP2, or LZMA).

2. During the evaluation read the trace piece by piece.
3. During the optimization make sure the algorithms have bounded
memory usage.

⇒ Multi-GB traces are supported easily in RATRACER.
⇒ Multi-TB traces—less so.



26

RATRACER future plans
For very large examples:

* The main memory speed becomes the bottleneck for the modular
evaluation:
⇒ Investigate optimizing traces to improve memory access patterns.

* The initial trace contrsuction and optimization is slow:
⇒ Work more on benchmarking & optimization of the trace construction.

For other examples RATRACER speeds up the evaluation enough that the
modular reconstruction in FIREFLY becomes the bottleneck:

* Reduce the overhead in FIREFLY to speed up simpler examples.

* Improve paralelizability in FIREFLY to help with complicated examples.
⇒ Ongoing collaboration with FIREFLY authors.

Beyond guessing the denominators:

* Investigate smaller ansätze for the results (via e.g. partial fractioning).
[Abreu et al ’19; De Laurentis, Page ’22]

https://arxiv.org/abs/1904.00945
https://arxiv.org/abs/2203.04269
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Summary
Solving IBP equation systems faster:

* Use modular arithmetic & rational reconstruction methods.

* Spend time on choosing better master basis.

* IBP-reduce amplitudes, not individual integrals.

* Expand the coefficients into a series in 𝜀 up to the needed order.
* Guess the denominators of the coefficients.

RATRACER provides:

* Practical & fast modular reconstruction of solutions to linear systems.
* Reconstruction of arbitrary rational expressions too.

* Trace optimization, transformation, slicing and dicing.

* Coefficient expansion in 𝜀 (and not only).
* Denominator guessing.

* Source code & bug tracker at github.com/magv/ratracer.
* Benchmark code & results at github.com/magv/ibp-benchmark.

* TODO: faster evaluation, faster reconstruction, more tricks.

https://github.com/magv/ratracer
https://github.com/magv/ibp-benchmark

