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Motivations and Introductions What are tails?

What are tails?

Scattering of gravitational radiation from a system
off of its own potential

• Modifies emitted energy and binding energy

• Time asymmetric process: requires
knowledge/assumptions about entire history
of system

• Scale-mixing phenomenon: interplay between
radiation-mode and potential-mode gravitons
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Motivations and Introductions Previous methods for tails

Known methods for calculating tails

Traditional GR

• First principles

• Orbit agnostic

• Laborious
iterations

• Coordinate
dependent

• Regularization
difficulties

Self-force

• Deep perturbative
reach

• Strong field and
relativistic

• Near-circular orbits

• Probe mass limit

Effective field theory

• Separation of
scales

• Momentum space
regularization

• Feynman diagrams

• Proliferation of
Feynman diagrams

• Gauge
dependence/fixing,
BFG

Goal: Bring together modern Amplitudes methods with EFT insights for
a method that is manifestly gauge invariant, minimally scaling, nearly
trivially iterative.
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Motivations and Introductions Dissipative effects via Closed Time Path

Dissipative effects via Closed Time Path Galley et al. 1210.2745
1412.3082

Closed Time Path: action/variation principles for systematically handling
non-conservative systems

1 Double all degrees of freedom (−,+),
“causal” (− → +) and “anti-causal”
(+ → −) branches

2 “Integrate out” inaccessible DoF

3 Conservative piece, L: (−,+)
symmetric; Non-conservative, K:
asymmetric

4 Calculus of variations with “−”
variables

Image from Galley 1210.2745

~qi

~qf
t = tf

t = ti
~q2i ~q1i

~vi

1

2

NB: Enters momentum-space calculations by changing i0 prescription,
analytic continuations
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Motivations and Introductions Amplitudology

Tree amplitudes

Key Properties:

• Gauge-invariant description of particle interactions
Contains all physical information required to extract observables

• Manifest locality through factorization

Res
s12

A(1, 2, 3, 4) =
∑

states of i

A(1, 2, i)A(i , 3, 4)

1

2 3

4

A4 = A3 A3

2

1

3

4

• Many methods for construction: Feynman rules, recursion relations,
Cachazo-He-Yuan formula, color-kinematics duality
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Motivations and Introductions Amplitudology

Unitarity: loops from trees

Two imporant facts:

• Feynman integrals (including numerators) can be reduced to a basis
of scalar integrals using integration-by-parts relations (IBPs)

1 2

34

= cbox

∫ 1 2

34

+cs-bub

∫ 1 2

34

+ct-bub

∫ 1 2

34

Rational functions of d and external data
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Motivations and Introductions Amplitudology

Unitarity: loops from trees

• Basis coefficients cX can be determined by matching generalized
unitarity cuts, constructed via repeated application of the QFT
optical theorem

CutG =
∑
states

of E(G)

∏
v∈V (G)

Atree(v)

Cutbox =

1 2

34

≡
∑
states

1 2

34

IBPs
===⇒ cbox

∑
states

εµνk εαβ
k ≡ Pµν;αβ

k =
1

2

(
Pµα
k Pνβ

k + Pµβ
k Pνα

k − 1

D − 2
Pµν
k Pαβ

k

)
Pµν
k ≡ ηµν − kµqν + kνqµ

k · q
Gauge invariance ⇔ Cut is independent of q
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Motivations and Introductions Amplitudology

Benefits of unitarity-based methods

• Don’t have to think about gauge choices – turn gauge invariant input
(tree amplitudes) into gauge invariant output (observables)

• Internal consistency checks through factorization – cuts have
overlapping information

• Find hidden patterns and structures – decoupling integration makes it
easier to see iteration and recursion relations
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Tails from amplitudes

Road map

1 Motivations and Introductions
What are tails?
Previous methods for tails
Dissipative effects via Closed Time Path
Amplitudology

2 Tails from amplitudes
Unitarity for tails
Radiation reaction and leading tail
Subleading tails

3 Radiated energy from tails

4 Conclusions
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Tails from amplitudes Unitarity for tails

Unitarity for tails

1 Identify good basis of momentum invariants: propagators (ℓ2 − ω2)
and things that look like propagators

2 Determine relevant basis integrals via IBP (e.g. FIRE6, Kira)

3 Construct cuts for each basis integral

4 Reduce cuts to basis

Departures from “standard” unitarity:

• Only the frequency ω is taken as external data ⇒ integration over
remaining Euclidean spatial momenta

• Potential-mode gravitons are space-like

• Macroscopic masses suggest large mass expansions

Advantages over “standard” EFT:

• No mode-mixing or background-field gauge problems

• Complete control over contributing diagrams

Alex Edison A tale of tails DESY Zeuthen 11 / 25



Tails from amplitudes Unitarity for tails

Unitarity for tails

1 Identify good basis of momentum invariants: propagators (ℓ2 − ω2)
and things that look like propagators

2 Determine relevant basis integrals via IBP (e.g. FIRE6, Kira)

3 Construct cuts for each basis integral

4 Reduce cuts to basis

Departures from “standard” unitarity:

• Only the frequency ω is taken as external data ⇒ integration over
remaining Euclidean spatial momenta

• Potential-mode gravitons are space-like

• Macroscopic masses suggest large mass expansions

Advantages over “standard” EFT:

• No mode-mixing or background-field gauge problems

• Complete control over contributing diagrams

Alex Edison A tale of tails DESY Zeuthen 11 / 25



Tails from amplitudes Unitarity for tails

Unitarity for tails

1 Identify good basis of momentum invariants: propagators (ℓ2 − ω2)
and things that look like propagators

2 Determine relevant basis integrals via IBP (e.g. FIRE6, Kira)

3 Construct cuts for each basis integral

4 Reduce cuts to basis

Departures from “standard” unitarity:

• Only the frequency ω is taken as external data ⇒ integration over
remaining Euclidean spatial momenta

• Potential-mode gravitons are space-like

• Macroscopic masses suggest large mass expansions

Advantages over “standard” EFT:

• No mode-mixing or background-field gauge problems

• Complete control over contributing diagrams

Alex Edison A tale of tails DESY Zeuthen 11 / 25



Tails from amplitudes Radiation reaction and leading tail

Radiation reaction: Preliminaries

I ij (−ω) Imn(ω)

Coupling of SO(3) tensor to a graviton:

MQg ≡ λQJ
µνεµν ≡ λQJ

µνεµεν

= −λQ I
ij × (k0kiε0εj + k0kjε0εi − kikjε0ε0 − k0k0εiεj) ,

λQ =
√
2πGN

Basis integral:

F (1)(1;ω2) =

∫
ddℓE
(2π)d

1

(−ℓ2E + ω2)
= −Γ(1− d/2)(−ω2)d/2−1

(4π)d/2

Effective Action:

SRR =

∫
dω

2π
cRRF

(1)(1;ω2)
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Tails from amplitudes Radiation reaction and leading tail

Radiation reaction: Unitarity

I ij (−ω) Imn(ω)

cRR determined via unitarity cut: cRR ∼ CutRR
SRR

CutRR = λ2
QJ

µν
1 Pµν;αβJαβ2 δ(ℓ2E − ω2) = δ(ℓ2E − ω2)λ2

Q

(
Jµν1 Jµν2 −

Jµµ1 Jνν2
d − 1

)
= δ(Pℓ)λ

2
Q

(d + 1)(d − 2)

(d + 2)(d − 1)
ω4κab(ω)︸ ︷︷ ︸
I ija (−ω)Iij,b(ω)

⇒ cRR =
2πGN

5
ω4κab(ω)

Effective action (after CTP sum):

SRR = −i
GN

5

∫
dω

2π
ω5κ−+(ω)

Well known result (in time domain)
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Tails from amplitudes Radiation reaction and leading tail

Leading tail via unitarity


I ij (−ω) M Imn(ω) I ij (−ω) M Imn(ω)

 ⊂
I ij (−ω) M Imn(ω)

New building blocks: graviton-potential coupling
Want a covariant and gauge invariant form of V ∼ Eh00
Scalar-graviton interaction is natural choice, m2

s = p2s

Msgs ≡
λE

m2
s

pµs p
ν
s ε

µν
Scalar

rest frame======⇒ λEε
00

Easy generalization beyond three-point (multi-graviton contact)

Msggs(ms → ∞) ≡ λgλE

ω2
k2

1

2(k2k3)

[
(k2k3)ε

0
2ε

0
3 + ωk2((ε3k2)ε

0
2 − (ε2k3)ε

0
3)

− ω2
k2(ε2ε3)

]2
+O(m−1

s )
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Tails from amplitudes Radiation reaction and leading tail

Leading tail via unitarity


I ij (−ω) M Imn(ω) I ij (−ω) M Imn(ω)

 ⊂
I ij (−ω) M Imn(ω)

Basis integral:

F (2)(1, 1, 0) ≡
∫

ddℓ1 d
dℓ2

(2π)2d
1

(−ℓ21 + ω2)(−ℓ22 + ω2)
= F (1)(1;ω2)2

Cut that we need to calculate

Cuttail =
∑
states

MQg(−ω)MsggsMQg(ω)

∣∣∣Pℓ1
=0,Pℓ2

=0
ms→∞

= λ2
Q δ(Pℓ1)δ(Pℓ2)J

µν
I (−ω)P

µν;αβMαβ;γσ
sggs Pγσ;ρτJρτI (ω)

∣∣∣
ms→∞
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Tails from amplitudes Radiation reaction and leading tail

Leading tail via unitarity


I ij (−ω) M Imn(ω) I ij (−ω) M Imn(ω)

 ⊂
I ij (−ω) M Imn(ω)

After integral reduction, CTP sum, and DimReg (d → 3 + ϵd)

ST =
2

5
G 2
NE

∫
dω

2π
ω6κ−+(ω)

[
1

ϵd
+ log

(
ω2

µ2

)
− iπ sgn(ω)

]
,

Goldberger & Ross 2009,
Galley et.al. 2016But what about the patterns I alluded to?

ST =

∫
dω

2π

(2πGN)(d + 1)(d − 2)

(d + 2)(d − 1)
ω4κab(ω)(

−(16πGNE )
12− 2d + 5d2 − 4d3 + d4

2(d − 3)(d − 1)d(d + 1)

)
F (1)(1;ω2

ab)
2

Repeated
from RR

New in T
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Tails from amplitudes Subleading tails

Tail-of-tail

I ij (−ω) M M Imn(ω)
I ij (−ω) M M Imn(ω)

M4

vs ∼ 5 Feynman diagrams

STT =
107

175
G 3
NE

2

∫
dω

2π
ω7κ−+(ω)

[
π sgn(ω) + i

[
2

3 ϵd
+ log

(
ω2

µ2
1

)]]Related to
Goldberger
& Ross 2009

S left
TT =

∫
dω

2π

(2πGN)(d + 1)(d − 2)

(d + 2)(d − 1)
ω4κab(ω)(

−(16πGNE )
12− 2d + 5d2 − 4d3 + d4

2(d − 3)(d − 1)d(d + 1)

)2

F (1)(1;ω2
ab)

3

Repeated
from RR

Iteration of T!
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Tails from amplitudes Subleading tails

Tail-of-tail-of-tail

Never approached via EFT – GR via Blanchet 2017

I ij (−ω) M M M Imn(ω)
I ij (−ω) M M M Imn(ω)

M5

I ij (−ω) M M M Imn(ω)

M4

I ij (−ω) M M M Imn(ω)

M4

vs many Feynman diagrams

STTT = − 4

525
G 4
NE

3

∫
dω

2π
ω8κ−+(ω)

[
107

2ϵ2d
+

107

ϵd
log

(
ω2

µ2
2

)
+ 107 log2

(
ω2

µ2
2

)

+
20707426967

60399360
− 3103

4
ζ2 − 420 ζ3 − iπ sgn(ω)

[
107

ϵd
+ 214 log

(ω2

µ2
2

)]]
,
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Radiated energy from tails
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Radiated energy from tails

Extracting energy spectra from CTP actions

CTP extension to Noether theorem:

dE

dt
= −∂L

∂t
+ q̇J

[
∂K

∂qJ−

]
PL

+ q̈J
[
∂K

∂q̇J−

]
PL

+
∂

∂
higher
time
derivs∫

dE

dt
dt = ∆E =

∫
dE

dω
dω =

∫
dω ωqJ(ω)

[
∂K

∂qJ−(ω)

]
PL

Generic tail actions:

STx =

∫
dωf (ω)I ij−(−ω)Iij ,+(ω)

⇒ ∆E =

∫
dωκ(ω)ω Im fodd(ω)
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Radiated energy from tails

Raw energy spectra

(∆E)RR = −GN

5π

∫ ∞

−∞
dωκ(ω)ω6

{
1− ϵd

2

[
9

10
− log

(
ω2eγE

µ2π

)]
+ . . .

}
(∆E)T = −2

5
G 2

NE

∫ ∞

−∞
dωκ(ω)ω7

{
1 + ϵd

[
log

(
ω2eγE

µ2π

)
− 41

30

]
+ . . .

}
(∆E)TT =

214G 3
NE

2

525π

∫ ∞

−∞
dωκ(ω)ω8

{
1

ϵd
+

[
3

2
log

(
ω2eγE

µ2π

)
− 420ζ2

107
− 675359

89880

]}

(∆E)TTT =
428

525
G 4

NE
3

∫ ∞

−∞
dωκ(ω)ω9

{
1

ϵd
+

[
2 log

(
ω2eγE

µ2π

)
− 252583

29960

]}

Need to deal with the DimReg divergences: introduce renormalized
quadrupole coupling

κ(ω) → κ′(ω) ≡ κ(ω, µ)

(
1 +

214

105
ω2 (GNE )

2

ϵ
+ . . .

)
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Radiated energy from tails

The renormalized energy spectrum and RG flow

(∆E )inclusiveTTT =

∫ ∞

−∞
dωκ(ω, µ)

[
−ω6GN

5π
−2

5
ω7G 2

NE

+
1

π
G 3
NE

2ω8

(
214

525
log

(
ω2eγE

µ2π

)
− 634913

220500
− 8ζ2

5

)
+ G 4

NE
3ω9

(
428

525
log

(
ω2eγE

µ2π

)
− 634913

110250

)
+O(G 5

N)

]
Logs skip orders!

Renormalized coupling includes a scale dependence to balance log scaling

d

dµ
(∆E )inclusiveTTT = 0 ⇒ d

d logµ
κ(ω, µ) = −428

105
(GNωE )

2κ(ω, µ) +O(G 4
N)

Wheeler-Throne Term Blanchet & Damour Tail

Goldberger & Ross 2009,
Bini & Geralico 2021
(FT of Blanchet 1997)

New for generic
quadrupole!

Alex Edison A tale of tails DESY Zeuthen 22 / 25



Radiated energy from tails

The renormalized energy spectrum and RG flow

(∆E )inclusiveTTT =

∫ ∞

−∞
dωκ(ω, µ)

[
−ω6GN

5π
−2

5
ω7G 2

NE

+
1

π
G 3
NE

2ω8

(
214

525
log

(
ω2eγE

µ2π

)
− 634913

220500
− 8ζ2

5

)
+ G 4

NE
3ω9

(
428

525
log

(
ω2eγE

µ2π

)
− 634913

110250

)
+O(G 5

N)

]
Logs skip orders!

Renormalized coupling includes a scale dependence to balance log scaling

d

dµ
(∆E )inclusiveTTT = 0 ⇒ d

d logµ
κ(ω, µ) = −428

105
(GNωE )

2κ(ω, µ) +O(G 4
N)

Wheeler-Throne Term Blanchet & Damour Tail

Goldberger & Ross 2009,
Bini & Geralico 2021
(FT of Blanchet 1997)

New for generic
quadrupole!

Alex Edison A tale of tails DESY Zeuthen 22 / 25



Conclusions

Road map

1 Motivations and Introductions
What are tails?
Previous methods for tails
Dissipative effects via Closed Time Path
Amplitudology

2 Tails from amplitudes
Unitarity for tails
Radiation reaction and leading tail
Subleading tails

3 Radiated energy from tails

4 Conclusions
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Conclusions

T 4 and T 5 in progress

I ij (−ω) M M M M Imn(ω)

M6

⊃
I ij (−ω) M M M M Imn(ω)

M4 M4

I ij (−ω) M M M M M Imn(ω)

M7

Will contribute new counterterms and RG flow terms via subleading logs!
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Conclusions

Conclusions

New theoretical approach to tails!

• Synthesis of insights from amplitudes and EFT

• Manifest gauge invariance, internal consistency checks

• Beginning to uncover hidden patterns and iterations

• Access to both conservative and non-conservative contributions via
CTP

• Stay tuned for T 4 and T 5, with new RG flows

Thanks for your attention!
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