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The need for accurate waveforms

• Accurate waveform models are crucial in
searching for gravitational-wave signals
and inferring their parameters.

• Numerical relativity (NR) waveforms are
computationally expensive, making
analytical approximations important.

[Ossokine, Buonanno, SXS]
[LIGO Scientific Collaboration 2016]
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Analytical approximations for the inspiral

Post-Newtonian (PN) Post-Minkowskian (PM) Gravitational Self-Force (GSF)
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Regions of applicability of NR and the approximation methods

• All GW detections so far are consistent with bound-orbit inspirals, with expected
event rates for hyperbolic encounters from 0.001 to 0.39 per year for upcoming
LIGO-Virgo-KAGRA runs. [Mukherjee, Mitra, Chatterjee 2010.00916]
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Outline

• Overview of PM results for the conservative dynamics

• Compare PM binding energy and scattering angle with NR

• Incorporate PM results in effective-one-body (EOB) Hamiltonians
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3PM conservative dynamics

• 1PM results were obtained by [Bertotti ’56], with the 2PM scattering angle first
computed by [Westpfahl ’85].

• The scattering angle contains the full gauge-invariant information for the
conservative binary dynamics. [Damour 1609.00354, 1710.10599]

• 3PM conservative dynamics
– derived using scattering amplitudes [Bern, Cheung, Roiban, Shen, Solon, Zeng 1901.04424]

– reproduced using Feynman diagrams and effective field theory approach
[Cheung, Solon 2003.08351], [Kälin, Liu, Porto 2007.04977]

– agrees with 6PN results
[Blümlein, Maier, Marquard, Schäfer 2003.07145], [Bini, Damour, Geralico 2004.05407]

– has a mass singularity in the high-energy limit, cancels with radiative contribution
[Di Vecchia, Heissenberg, Russo, Veneziano 2008.12743], [Damour 2010.01641]
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4PM conservative dynamics for hyperbolic orbits

• Nonlocal-in-time (tail) effects contribute to the conservative dynamics at 4PM/4PN,
due to GWs emitted at earlier times and backscattered off the spacetime curvature.

• 4PM conservative dynamics derived for hyperbolic orbits using scattering
amplitudes, and exhibits a simple mass dependence for the scattering angle.

[Bern, Parra-Martinez, Roiban, Ruf, Shen, Solon, Zeng 2101.07254, 2112.10750]

• Derived independently using EFT methods, but has been argued to be missing
additional contributions of O(ν2). [Dlapa, Kälin, Liu, Porto 2106.08276, 2112.11296]

• Agrees with 6PN results of [Bini, Damour, Geralico 2003.11891, 2007.11239], but disagrees in
one term with 5PN results of [Blümlein, Maier, Marquard, Schäfer 2110.13822]

• Disagreement might be due to the definition of conservative versus radiative
contributions; terms quadratic in radiation reaction start at 5PN/4PM.

• At 5PN, the difference is ∼ ν2v6/J4, which has a negligible effect on our study,
since all binary configurations considered have velocities . 0.5.
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Mass dependence of the scattering angle

• Based on the structure of the PM expansion, symmetries and dimensional analysis,
the scattering angle has the mass dependence [Damour 1912.02139]
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• This structure made it possible to derive new PN results from GSF
– partial 5PN and 6PN [Bini, Damour, Geralico 2003.11891, 2004.05407]

– complete 4.5PN spin-orbit and 5PN aligned spin1-spin2

[Antonelli, Kavanagh, MK, Steinhoff, Vines 2003.11391, 2010.02018]

– partial 5.5PN spin-orbit [MK 2110.12813]
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From scattering to bound orbits for local-in-time dynamics

• Scattering informs bound orbits; scattering angle related to periastron advance
[Kälin, Porto 1910.03008, 1911.09130]

∆Φ(E, J) = χ(E, J) + χ(E,−J)

• General map between bound and unbound observables
[Saketh, Vines, Steinhoff, Buonanno 2109.05994], [Cho, Kälin, Porto 2112.03976]

Obound(E, J) = 2

∫ rmax

rmin

f(r, E, J)dr, Ounbound(E, J) = 2

∫ ∞
rmin

f(r, E, J)dr

Obound(E, J) = Ounbound(E, J) + θ(f)Ounbound(E,−J)

θ(f) = ±1 if f is odd/even in J .

For ∆Φ and χ, f = ∂pr/∂J
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Nonlocal contribution at 4PN

• Total action is split into local and nonlocal-in-time pieces SnPN
tot = SnPN

loc + SnPN
nonloc

[Damour, Jaranowski, Schäfer 1401.4548, 1502.07245]
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• Nonlocal contribution to the scattering angle [Bini, Damour 1706.06877]
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Wnonloc(E, J), Wnonloc =

∫
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• Integral is computed in small/large eccentricity expansion for bound/unbound orbits.
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• No clear relation between bound and unbound orbits for nonlocal contributions
[Cho, Kälin, Porto 2112.03976]
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4PM radial action and Hamiltonian

• Radial action

Ihyp
r,4PM = Ir,3PM −

πG4M7ν2p2

8EJ3

[
Mp

4 + ν

(
4Mt

4 ln

√
σ2 − 1

2
+Mπ2

4 +Mrem
4

)]
terms M...

4 are directly related to parts of the scattering amplitude [Bern+ ’21]

• Scattering angle

χ = −∂I
hyp
r

∂J

• Hamiltonian in isotropic gauge (no explicit dependence on pr or J)
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rn
cn,
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Binding energy from PM-expanded Hamiltonian

• Binding energy Ē ≡ H −M ,
calculated assuming exact
circular orbits.

• Set pr = 0 in H, and solve
ṗr = ∂H/∂r = 0 for J at
each point in r.

• Plot H(J, r)−M versus
orbital frequency
Ω(J, r) = ∂H/∂J .

• NR energy
ĒNR ≡ EADM − Erad −M

• 4PM contains full 3PN, which
gives a significant
improvement over 2PN.
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NR data for binding energy from [Ossokine, Dietrich, Foley, Katebi, Lovelace 1712.06533]
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PN-expanded binding energy for elliptic vs. hyperbolic orbits

• Calculated 6PN(4PM) binding energy for hyperbolic orbits from Hhyp
4PM.

• Calculated 6PN(4PM) binding energy for bound orbits, by transforming 6PN EOB
Hamiltonian [Bini,Damour,Geralico 2004.05407] to isotropic gauge and truncating at 4PM.

• Difference at 4PN, Ē iso,hyp
4PN(4PM) − Ē

iso,ell
4PN(4PM) ' 15νx5

That coefficient is −113 in Ē iso,ell
4PN(4PM) and −98 in Ē iso,hyp

4PN(4PM).
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4PM complemented with bound-orbit PN information

• Complemented the 4PM
Hamiltonian with bound-orbit
corrections at 4PN, 5PN, and 6PN.

• The nPN expansion of
Hhyp

4PM + ∆Hell
4PM(nPN) gives the nPN

Hamiltonian for bound orbits up to
O(G4) in isotropic gauge.
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4PM complemented with bound-orbit PN information (q = 10)

• Better improvement for q = 10,
since the 3PN coefficient of the
binding energy increases
significantly with mass ratio.
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PM-expanded scattering angle

• The scattering angle is gauge
invariant, contains the same
information as Hhyp

χ = −∂I
hyp
r

∂J
.

• NR simulations for equal
masses, initial velocity v ' 0.4,
NR error ∼ 1− 2 deg.
[Damour, Guercilena, Hinder, Hopper,

Nagar, Rezzolla 1402.7307]

• Plotted PM-expanded χ(E, J),
using NR initial values.

• 4PM(3PN) is ∼ 0.1 degrees
lower than 4PM. 11 12 13 14 15 16
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Effect of radiation reaction on the scattering angle

• Radiative contribution to
scattering angle, to linear order
in radiation reaction (RR)

[Bini, Damour 1210.2834]

χrad. =
1

2

[
χcons.(Eout, Jout)

− χcons.(Ein, Jin)
]
,

• Total scattering angle

χtot = χcons.(Ein, Jin) + χrad.(Ein, Jin)

' χcons.

(
Ein + Eout

2
,
Jin + Jout

2

)
• Eout and Jout obtained from NR.
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Effective-one-body (EOB) formalism

• EOB maps the binary motion to that of a test mass in a deformed Schwarzschild
background [Buonanno, Damour 9811091]

• Effective background metric and mass-shell condition

geff
µνdxµdxν = −Adt2 +Bdr2 + r2

(
dθ2 + sin2 θdφ2)

0 = gµνeff pµpν + µ2 +Q

• Effective Hamiltonian Heff = Eeff = −p0

Heff =

√
A

(
µ2 +

p2r
B

+
J2

r2
+Q

)
Heff reduces to the Schwarzschild Hamiltonian as ν → 0

H2
S = (1− 2u)

[
µ2 + (1− 2u) p2r +

J2

r2

]
, u ≡ GM

r
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PM-EOB Hamiltonians

• EOB energy map with HS as the effective Hamiltonian reproduces the 1PM
two-body Hamiltonian. [Damour 1609.00354]

• Ansatz for PM-EOB Hamiltonian in post-Schwarzschild (PS) gauge
[Damour 1710.10599], [Antonelli, Buonanno, Steinhoff, van de Meent, Vines 1901.07102]

(Ĥeff,PS)2 = (1− 2u)

[
µ2 + (1− 2u)p2r +

J2

r2
+ u2q2PM + u3q3PM + u4q4PM

]
• Ansatz in PS∗ gauge

(Ĥeff,PS∗
)2 =

(
1− 2u+ u2a2PM + u3a3PM + u4a4PM

) [
µ2 + (1− 2u)p2r +

J2

r2

]
• qnPM and anPM are determined by matching the scattering angle computed from the

EOB Hamiltonian to χ4PM

χ = −2

∫ ∞
r0

∂pr(E, J, r)

∂J
dr − π

• Energy in qnPM and anPM is replaced with EOB Hamiltonian at lower PM orders to
obtain HEOB(r, pr, J).
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Binding energy from PM-EOB Hamiltonians
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• The PS∗ gauge is more accurate than the PS gauge

• 3PN-expanded coefficients give slightly better agreement with NR than the full
hyperbolic-orbit 4PM
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Scattering angle from PM-EOB Hamiltonians
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• Scattering angle is calculated by evolving the equations of motion numerically and
reading off the final angle (χEOB = φout − φin − π).

• The full hyperbolic-orbit 4PM Hamiltonian gives better agreement with NR than the
3PN expansion of its coefficients.
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Conclusions

• Investigated the conservative 4PM dynamics, showing that the hyperbolic
piece has a small effect.

• Compared PM results with NR simulations, finding that PM is comparable
to PN for bound orbits, but can perform better for scattering encounters.

• Incorporated PM information in EOB Hamiltonians, leading to significantly
better results.

• Possible future work:

• Produce NR scattering simulations with unequal masses and higher energy

• Develop waveform model for scattering based on PM results

• Include spin in a PM-EOB Hamiltonian
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