Drell–Yan production in QCD: q_T resummation at N³LL accuracy and fiducial cross sections at N³LO

Giancarlo Ferrera

Milan University & INFN, Milan

DESY – Zeuthen – December 16th 2021

Outline

- \bullet Fixed-order calculations within the q_{T} subtraction formalism
- Transverse-momentum resummation
- Drell-Yan production at N³LL+N³LO
- $\bullet\,$ Fiducial power corrections within the q_T subtraction formalism

Precise QCD predictions and the LHC

The success of the LHC will be crucial for High Energy Physics.

How to increase the discovery power of the LHC?

The LHC is a (large) hadron collider machine: all the interesting high- p_T reactions initiate by QCD hard scattering of partons.

To fully exploit the information contained in the LHC experimental data (and aventually claiming for new-physics signals) precise theoretical predictions of QCD dynamics is necessary.

LHC key results

Standard Model Total Production Cross Section Measurements Status: July 2018

• Very good agreement between experimental results and SM theoretical predictions of the high- Q^2 processes

LHC key results

 Very good agreement between experimental results and SM theoretical predictions of the high-Q² processes

• Factorization theorem

$$\boldsymbol{\sigma} = \sum_{f_{a}} (\mathsf{M}^{2}) \otimes f_{b}(\mathsf{M}^{2}) \otimes \hat{\boldsymbol{\sigma}}_{ab}(\boldsymbol{\alpha}_{\mathsf{S}}) + \boldsymbol{\mathcal{O}}\left(\frac{\Lambda}{\mathsf{M}}\right)$$

- Perturbation theory at leading order (LO): $\hat{\sigma}(\alpha_{\rm S}) = \hat{\sigma}^{(0)}$
- LO result: only order of magnitude estimate. NLO: first reliable estimate. NNLO & beyond: precise prediction & robust uncertainty.
- Higher-order calculations not an easy task due to infrared (IR) singularities (impossible direct use of numerical techniques).

• Factorization theorem

$$\boldsymbol{\sigma} = \sum_{i} f_{a}(\mathsf{M}^{2}) \otimes f_{b}(\mathsf{M}^{2}) \otimes \hat{\boldsymbol{\sigma}}_{ab}(\boldsymbol{\alpha}_{S}) + \boldsymbol{\mathcal{O}}\left(\frac{\Lambda}{\mathsf{M}}\right)$$

• Perturbation theory at next order (NLO):

 $\hat{\pmb{\sigma}}(\pmb{lpha}_{ extsf{S}}) = \hat{\pmb{\sigma}}^{(0)} + \pmb{lpha}_{ extsf{S}}\,\hat{\pmb{\sigma}}^{(1)}$

• LO result: only order of magnitude estimate. NLO: first reliable estimate.

NNLO & beyond: precise prediction & robust uncertainty.

 Higher-order calculations not an easy task due to infrared (IR) singularities (impossible direct use of numerical techniques).

• Factorization theorem

$$\boldsymbol{\sigma} = \sum_{i} f_{a}(\mathsf{M}^{2}) \otimes f_{b}(\mathsf{M}^{2}) \otimes \hat{\boldsymbol{\sigma}}_{ab}(\boldsymbol{\alpha}_{\mathsf{S}}) + \boldsymbol{\mathcal{O}}\left(\frac{\Lambda}{\mathsf{M}}\right)$$

• Perturbation theory at NNLO & beyond:

$$\hat{\boldsymbol{\sigma}}(\boldsymbol{lpha}_{\mathsf{S}}) = \hat{\boldsymbol{\sigma}}^{(0)} + \boldsymbol{lpha}_{\mathsf{S}}\,\hat{\boldsymbol{\sigma}}^{(1)} + \boldsymbol{lpha}_{\mathsf{S}}^2\,\hat{\boldsymbol{\sigma}}^{(2)} + \cdots$$

- LO result: only order of magnitude estimate.
 NLO: first reliable estimate.
 NNLO & beyond: precise prediction & robust uncertainty.
- Higher-order calculations not an easy task due to infrared (IR) singularities (impossible direct use of numerical techniques).

• Factorization theorem

$$\boldsymbol{\sigma} = \sum_{i} f_{a}(\mathsf{M}^{2}) \otimes f_{b}(\mathsf{M}^{2}) \otimes \hat{\boldsymbol{\sigma}}_{ab}(\boldsymbol{\alpha}_{S}) + \boldsymbol{\mathcal{O}}\left(\frac{\Lambda}{\mathsf{M}}\right)$$

• Perturbation theory at NNLO & beyond:

$$\hat{\boldsymbol{\sigma}}(\boldsymbol{lpha}_{\mathsf{S}}) = \hat{\boldsymbol{\sigma}}^{(0)} + \boldsymbol{lpha}_{\mathsf{S}}\,\hat{\boldsymbol{\sigma}}^{(1)} + \boldsymbol{lpha}_{\mathsf{S}}^2\,\hat{\boldsymbol{\sigma}}^{(2)} + \cdots$$

- LO result: only order of magnitude estimate.
 NLO: first reliable estimate.
 NNLO & beyond: precise prediction & robust uncertainty.
- Higher-order calculations not an easy task due to infrared (IR) singularities (impossible direct use of numerical techniques).

Drell-Yan	LO	NLO	NNLO
process	Drell, Yan	Altarelli, Ellis, Greco	Hamberg, van Neerven,
	(1974)	Martinelli,(1980-84)	Matsuura (1991)
	· · ·		Melnikov, Petriello (2006)
	N ³ LO		Catani, Cieri, de Florian,
Duhr,	Mistlberger (2	G.F.,Grazzini (2009)	
Cama	rda, GF, Cieri (2		

Fiducial cross sections at higher order

• Experiments have finite acceptance important to provide exclusive theoretical predictions.

- Beyond LO infrared singularities in *real* and *virtual* corrections prevent the straightforward implementation of Monte Carlo numerical techniques.
- Subtraction method: introduction of auxiliary QCD cross section *in a general way* exploiting the universality of the soft and collinear emission. Fully formalized at NLO [Frixione,Kunszt,Signer('96) (FKS), Catani,Seymour('97) (CS)]. It allows (relatively) straightforward calculations (once the QCD amplitudes are available). Fully general formalism beyond NLO still lacking.

$$\sigma^{NLO} = \int_{m+1} d\sigma^{R}(\epsilon) + \int_{m} d\sigma^{V}(\epsilon)$$
$$= \int_{m+1} \left[d\sigma^{R}(\epsilon) - d\sigma^{A}(\epsilon) \right]_{\epsilon=0} + \int_{m} \left[d\sigma^{V}(\epsilon) + \int_{1} d\sigma^{A}(\epsilon) \right]_{\epsilon=0}$$

Fiducial cross sections at higher order

- Experiments have finite acceptance important to provide exclusive theoretical predictions.
- Beyond LO infrared singularities in *real* and *virtual* corrections prevent the straightforward implementation of Monte Carlo numerical techniques.
- Subtraction method: introduction of auxiliary QCD cross section *in a general way* exploiting the universality of the soft and collinear emission. Fully formalized at NLO [Frixione,Kunszt,Signer('96) (FKS), Catani,Seymour('97) (CS)]. It allows (relatively) straightforward calculations (once the QCD amplitudes are available). Fully general formalism beyond NLO still lacking.

$$\sigma^{NLO} = \int_{m+1} d\sigma^{R}(\epsilon) + \int_{m} d\sigma^{V}(\epsilon)$$
$$= \int_{m+1} \left[d\sigma^{R}(\epsilon) - d\sigma^{A}(\epsilon) \right]_{\epsilon=0} + \int_{m} \left[d\sigma^{V}(\epsilon) + \int_{1} d\sigma^{A}(\epsilon) \right]_{\epsilon=0}$$

Fiducial cross sections at higher order

- Experiments have finite acceptance important to provide exclusive theoretical predictions.
- Beyond LO infrared singularities in *real* and *virtual* corrections prevent the straightforward implementation of Monte Carlo numerical techniques.
- Subtraction method: introduction of auxiliary QCD cross section *in a general way* exploiting the universality of the soft and collinear emission. Fully formalized at NLO [Frixione,Kunszt,Signer('96) (FKS), Catani,Seymour('97) (CS)]. It allows (relatively) straightforward calculations (once the QCD amplitudes are available). Fully general formalism beyond NLO still lacking.

$$\sigma^{NLO} = \int_{m+1} d\sigma^{R}(\epsilon) + \int_{m} d\sigma^{V}(\epsilon)$$
$$= \int_{m+1} \left[d\sigma^{R}(\epsilon) - d\sigma^{A}(\epsilon) \right]_{\epsilon=0} + \int_{m} \left[d\sigma^{V}(\epsilon) + \int_{1} d\sigma^{A}(\epsilon) \right]_{\epsilon=0}$$

The q_T-subtraction method at NNLO (and beyond)

 $h_1(p_1)+h_2(p_2) \ \rightarrow \ F(M,q_T)+X$

F is one or more colourless particles (vector bosons, photons, Higgs bosons,...) [Catani,Grazzini('07)].

• **Observation:** at LO the q_T of the F is exactly zero.

 $\mathsf{d}m{\sigma}^{\mathsf{F}}_{\mathsf{N}^{\mathsf{n}}\mathsf{LO}}|_{\mathsf{q}_{\mathsf{T}}
eq0}=\mathsf{d}m{\sigma}^{\mathsf{F}+\mathsf{jets}}_{\mathsf{N}^{\mathsf{n}} ext{-}1}\mathsf{LO}}\;\;,$

for $q_T \neq 0$ the NⁿLO IR divergences cancelled with the Nⁿ⁻¹LO subtraction method.

- The only remaining N^nLO singularities are associated with the $q_T \rightarrow 0$ limit.
- Key point: treat the NⁿLO singularities at q_T = 0 by an additional subtraction using the universality of logarithmically-enhanced contributions from q_T resummation formalism [Catani, de Florian, Grazzini('00)].

$$\begin{array}{rcl} \mathrm{d} \sigma^{\mathsf{F}}_{\mathsf{N}^{\mathsf{n}}\mathsf{LO}} & \stackrel{q_{\mathrm{T}}\to 0}{\longrightarrow} & \mathrm{d} \sigma^{\mathsf{F}}_{\mathsf{LO}} \otimes \Sigma(\mathsf{q}_{\mathrm{T}}/\mathsf{M}) \mathrm{d} \mathsf{q}_{\mathrm{T}}^{2} \\ & = & \mathrm{d} \sigma^{\mathsf{F}}_{\mathsf{LO}} \otimes \sum_{n=1}^{\infty} \sum_{k=1}^{2n} \left(\frac{\alpha_{\mathrm{S}}}{\pi} \right)^{n} \Sigma^{(n,k)} \frac{\mathsf{M}^{2}}{\mathsf{q}_{\mathrm{T}}^{2}} \ln^{k-1} \frac{\mathsf{M}^{2}}{\mathsf{q}_{\mathrm{T}}^{2}} \, \mathrm{d}^{2} \mathsf{q}_{\mathrm{T}} \end{array}$$

The q_T-subtraction method at NNLO (and beyond)

 $h_1(p_1) + h_2(p_2) \rightarrow F(M, q_T) + X$

F is one or more colourless particles (vector bosons, photons, Higgs bosons,...) [Catani, Grazzini('07)].

• Observation: at LO the q_T of the F is exactly zero.

$$\mathsf{d} \sigma^{\mathsf{F}}_{\mathsf{N}^{\mathsf{n}}\mathsf{LO}}|_{\mathsf{q}_{\mathsf{T}}
eq 0} = \mathsf{d} \sigma^{\mathsf{F}+\mathrm{jets}}_{\mathsf{N}^{\mathsf{n}-1}\mathsf{LO}}$$
 ,

for $q_T \neq 0$ the $N^n LO \; IR$ divergences cancelled with the $N^{n\text{-}1}LO$ subtraction method.

- The only remaining N^nLO singularities are associated with the $q_T \rightarrow 0$ limit.
- Key point: treat the NⁿLO singularities at q_T = 0 by an additional subtraction using the universality of logarithmically-enhanced contributions from q_T resummation formalism [Catani, de Florian, Grazzini(²00)].

$$\begin{split} d\boldsymbol{\sigma}_{\mathsf{N}^{\mathsf{n}}\mathsf{LO}}^{\mathsf{F}} & \xrightarrow{q_{\mathsf{T}} \to 0} & d\boldsymbol{\sigma}_{\mathsf{LO}}^{\mathsf{F}} \otimes \Sigma(q_{\mathsf{T}}/\mathsf{M}) dq_{\mathsf{T}}^{2} \\ & = & d\boldsymbol{\sigma}_{\mathsf{LO}}^{\mathsf{F}} \otimes \sum_{n=1}^{2n} \sum_{k=1}^{2n} \left(\frac{\alpha_{\mathsf{S}}}{\pi}\right)^{n} \Sigma^{(n,k)} \frac{\mathsf{M}^{2}}{q_{\mathsf{T}}^{2}} \ln^{k-1} \frac{\mathsf{M}^{2}}{q_{\mathsf{T}}^{2}} d^{2}q_{\mathsf{T}} \end{split}$$

x بمعوجوعو x

The q_T-subtraction method at NNLO (and beyond)

 $h_1(p_1) + h_2(p_2) \rightarrow F(M, q_T) + X$

F is one or more colourless particles (vector bosons, photons, Higgs bosons,...) [Catani, Grazzini('07)].

• Observation: at LO the q_T of the F is exactly zero.

$$\mathsf{d} oldsymbol{\sigma}^{\mathsf{F}}_{\mathsf{N}^{\mathsf{n}}\mathsf{LO}}|_{\mathsf{q}_{\mathsf{T}}
eq 0} = \mathsf{d} oldsymbol{\sigma}^{\mathsf{F}+\mathrm{jets}}_{\mathsf{N}^{\mathsf{n} ext{-}1}\mathsf{LO}}$$
 ,

for $q_T \neq 0$ the $N^n LO$ IR divergences cancelled with the $N^{n-1}LO$ subtraction method.

- The only remaining NⁿLO singularities are associated with the $q_T \rightarrow 0$ limit.
- Key point: treat the NⁿLO singularities at q_T = 0 by an additional subtraction using the universality of logarithmically-enhanced contributions from q_T resummation formalism [Catani,de Florian,Grazzini('00)].

$$\begin{array}{rcl} d\sigma^F_{N^nLO} & \stackrel{q_T \to 0}{\longrightarrow} & d\sigma^F_{LO} \otimes \Sigma(q_T/M) dq_T^2 \\ & = & d\sigma^F_{LO} \otimes \sum_{n=1}^{\infty} \sum_{k=1}^{2n} \left(\frac{\alpha_S}{\pi} \right)^n \Sigma^{(n,k)} \frac{M^2}{q_T^2} \ln^{k-1} \frac{M^2}{q_T^2} d^2 q_T \end{array}$$

x 2280 20

$$\begin{split} d\boldsymbol{\sigma}_{N^{n}LO}^{F} &= \boldsymbol{\mathcal{H}}_{N^{n}LO}^{F} \otimes d\boldsymbol{\sigma}_{LO}^{F} + \left[d\boldsymbol{\sigma}_{N^{n-1}LO}^{F+jets} - d\boldsymbol{\sigma}_{N^{n-1}LO}^{CT} \right] \quad, \end{split}$$
 where
$$\boldsymbol{\mathcal{H}}_{N^{n}LO}^{F} &= \left[1 + \frac{\alpha_{S}}{\pi} \boldsymbol{\mathcal{H}}^{F(1)} + \left(\frac{\alpha_{S}}{\pi} \right)^{2} \boldsymbol{\mathcal{H}}^{F(2)} + \dots + \left(\frac{\alpha_{S}}{\pi} \right)^{n} \boldsymbol{\mathcal{H}}^{F(n)} \right] \end{split}$$

- The choice of the counter-term has some arbitrariness but it must behave $d\sigma^{CT} \xrightarrow{q_T \to 0} d\sigma^F_{LO} \otimes \Sigma(q_T/M) dq_T^2 \text{ where } \Sigma(q_T/M) \text{ is universal.}$
- dσ^{CT} regularizes the q_T = 0 singularity of dσ^{F+jets}: real and real-virtual NⁿLO contributions.
- The finite part of *multi-loop virtual* corrections is contained in the hard-collinear function H^F_{NPLO}. Its process dependent part can be directly related to the all-order virtual amplitude by an universal (process independent) factorization formula [Catani, Cieri, de Florian, G.F., Grazzini ('14)].
- Final state partons only appear in dσ^{F+jets} so that NⁿLO IR-safe cuts are included in the Nⁿ⁻¹LO computation: observable-independent NⁿLO extension of a Nⁿ⁻¹LO subtraction formalism.

$$\begin{split} \mathsf{d}\boldsymbol{\sigma}_{\mathsf{N}^{\mathsf{P}}\mathsf{LO}}^{\mathsf{F}} &= \boldsymbol{\mathcal{H}}_{\mathsf{N}^{\mathsf{n}}\mathsf{LO}}^{\mathsf{F}} \otimes \mathsf{d}\boldsymbol{\sigma}_{\mathsf{LO}}^{\mathsf{F}} + \left[\mathsf{d}\boldsymbol{\sigma}_{\mathsf{N}^{\mathsf{n}-1}\mathsf{LO}}^{\mathsf{F}+\mathsf{jets}} - \mathsf{d}\boldsymbol{\sigma}_{\mathsf{N}^{\mathsf{n}-1}\mathsf{LO}}^{\mathsf{CT}}\right] \ ,\\ \mathsf{ere} \quad \boldsymbol{\mathcal{H}}_{\mathsf{N}^{\mathsf{n}}\mathsf{LO}}^{\mathsf{F}} &= \left[1 + \frac{\alpha_{\mathsf{S}}}{\pi}\boldsymbol{\mathcal{H}}^{\mathsf{F}(1)} + \left(\frac{\alpha_{\mathsf{S}}}{\pi}\right)^{2}\boldsymbol{\mathcal{H}}^{\mathsf{F}(2)} + \dots + \left(\frac{\alpha_{\mathsf{S}}}{\pi}\right)^{\mathsf{n}}\boldsymbol{\mathcal{H}}^{\mathsf{F}(\mathsf{n})}\right] \end{split}$$

- The choice of the counter-term has some arbitrariness but it must behave $d\sigma^{CT} \xrightarrow{q_T \to 0} d\sigma^F_{LO} \otimes \Sigma(q_T/M) dq_T^2 \text{ where } \Sigma(q_T/M) \text{ is universal.}$
- dσ^{CT} regularizes the q_T = 0 singularity of dσ^{F+jets}: real and real-virtual NⁿLO contributions.
- The finite part of *multi-loop virtual* corrections is contained in the hard-collinear function H^F_{N^LO}. Its process dependent part can be directly related to the all-order virtual amplitude by an universal (process independent) factorization formula [Catani, Cieri, de Florian, G.F., Grazzini ('14)].
- Final state partons only appear in dσ^{F+jets} so that NⁿLO IR-safe cuts are included in the Nⁿ⁻¹LO computation: observable-independent NⁿLO extension of a Nⁿ⁻¹LO subtraction formalism.

wh

$$\begin{split} \mathsf{d}\boldsymbol{\sigma}_{\mathsf{N}^{\mathsf{P}}\mathsf{LO}}^{\mathsf{F}} &= \boldsymbol{\mathcal{H}}_{\mathsf{N}^{\mathsf{n}}\mathsf{LO}}^{\mathsf{C}} \otimes \mathsf{d}\boldsymbol{\sigma}_{\mathsf{LO}}^{\mathsf{F}} + \left[\mathsf{d}\boldsymbol{\sigma}_{\mathsf{N}^{\mathsf{n}-1}\mathsf{LO}}^{\mathsf{F}+\mathsf{jets}} - \mathsf{d}\boldsymbol{\sigma}_{\mathsf{N}^{\mathsf{n}-1}\mathsf{LO}}^{\mathsf{CT}}\right] \ , \\ \text{where} \quad \boldsymbol{\mathcal{H}}_{\mathsf{N}^{\mathsf{n}}\mathsf{LO}}^{\mathsf{F}} &= \left[1 + \frac{\alpha_{\mathsf{S}}}{\pi}\boldsymbol{\mathcal{H}}^{\mathsf{F}(1)} + \left(\frac{\alpha_{\mathsf{S}}}{\pi}\right)^{2}\boldsymbol{\mathcal{H}}^{\mathsf{F}(2)} + \dots + \left(\frac{\alpha_{\mathsf{S}}}{\pi}\right)^{\mathsf{n}}\boldsymbol{\mathcal{H}}^{\mathsf{F}(\mathsf{n})}\right] \end{split}$$

- The choice of the counter-term has some arbitrariness but it must behave $d\sigma^{CT} \xrightarrow{q_T \to 0} d\sigma^F_{LO} \otimes \Sigma(q_T/M) dq_T^2 \text{ where } \Sigma(q_T/M) \text{ is universal.}$
- dσ^{CT} regularizes the q_T = 0 singularity of dσ^{F+jets}: real and real-virtual NⁿLO contributions.
- The finite part of *multi-loop virtual* corrections is contained in the hard-collinear function *H*^F_{NⁿLO}. Its process dependent part can be directly related to the all-order virtual amplitude by an universal (process independent) factorization formula [Catani, Cieri, de Florian, G.F., Grazzini('14)].
- Final state partons only appear in dσ^{F+jets} so that NⁿLO IR-safe cuts are included in the Nⁿ⁻¹LO computation: observable-independent NⁿLO extension of a Nⁿ⁻¹LO subtraction formalism.

$$\begin{split} \mathsf{d}\boldsymbol{\sigma}_{\mathsf{N}^{\mathsf{P}}\mathsf{LO}}^{\mathsf{F}} &= \boldsymbol{\mathcal{H}}_{\mathsf{N}^{\mathsf{n}}\mathsf{LO}}^{\mathsf{C}} \otimes \mathsf{d}\boldsymbol{\sigma}_{\mathsf{LO}}^{\mathsf{F}} + \left[\mathsf{d}\boldsymbol{\sigma}_{\mathsf{N}^{\mathsf{n}-1}\mathsf{LO}}^{\mathsf{F}+\mathsf{jets}} - \mathsf{d}\boldsymbol{\sigma}_{\mathsf{N}^{\mathsf{n}-1}\mathsf{LO}}^{\mathsf{CT}}\right] \ , \\ \text{where} \quad \boldsymbol{\mathcal{H}}_{\mathsf{N}^{\mathsf{n}}\mathsf{LO}}^{\mathsf{F}} &= \left[1 + \frac{\alpha_{\mathsf{S}}}{\pi}\boldsymbol{\mathcal{H}}^{\mathsf{F}(1)} + \left(\frac{\alpha_{\mathsf{S}}}{\pi}\right)^{2}\boldsymbol{\mathcal{H}}^{\mathsf{F}(2)} + \dots + \left(\frac{\alpha_{\mathsf{S}}}{\pi}\right)^{\mathsf{n}}\boldsymbol{\mathcal{H}}^{\mathsf{F}(\mathsf{n})}\right] \end{split}$$

- The choice of the counter-term has some arbitrariness but it must behave $d\sigma^{CT} \xrightarrow{q_T \to 0} d\sigma^F_{LO} \otimes \Sigma(q_T/M) dq_T^2 \text{ where } \Sigma(q_T/M) \text{ is universal.}$
- dσ^{CT} regularizes the q_T = 0 singularity of dσ^{F+jets}: real and real-virtual NⁿLO contributions.
- The finite part of *multi-loop virtual* corrections is contained in the hard-collinear function *H*^F_{NⁿLO}. Its process dependent part can be directly related to the all-order virtual amplitude by an universal (process independent) factorization formula [Catani, Cieri, de Florian, G.F., Grazzini('14)].
- Final state partons only appear in dσ^{F+jets} so that NⁿLO IR-safe cuts are included in the Nⁿ⁻¹LO computation: observable-independent NⁿLO extension of a Nⁿ⁻¹LO subtraction formalism.

• Process-dependence is fully encoded in the hard-virtual factor $H_c^F(\alpha_S)$.

• All-order universal factorization formula relates $H_c^F(\alpha_s)$ to the virtual amplitude

$$\mathcal{M}_{ab\to F} = \sum_{n=0}^{\infty} \left(\frac{\alpha_S}{\pi}\right)^n \mathcal{M}_{ab\to F}^{(n)} ,$$

 $\tilde{I}(\epsilon, M^2) = \sum_{n=1}^{\infty} \left(\frac{\alpha_S}{\pi}\right)^n \tilde{I}^{(n)}(\epsilon),$

renormalized virtual amplitude (UV finite but IR divergent).

IR subtraction *universal* operators (contain IR ε-poles and IR finite terms)

hard-virtual subtracted amplitude (IR finite).

$$H_q^F(\alpha_S) = \frac{|\widetilde{\mathcal{M}}_{q\bar{q}\to F}|^2}{|\mathcal{M}_{q\bar{q}\to F}^{(0)}|^2}$$

 Process independent part of H^F coefficients calculated at NNLO in [Catani,Grazzini ('11)], [Catani,Cieri,de Florian, G.F.,Grazzini ('12)] at N³LO in [Luo et al. ('19,'20)], [Erbert et al. ('20)]

- Process-dependence is fully encoded in the hard-virtual factor $H_c^F(\alpha_S)$.
- All-order universal factorization formula relates $H_c^F(\alpha_S)$ to the virtual amplitude

$$\mathcal{M}_{ab\to F} = \sum_{n=0}^{\infty} \left(\frac{\alpha_S}{\pi}\right)^n \mathcal{M}_{ab\to F}^{(n)} ,$$

 $\widetilde{\mathcal{M}}_{ab \to F} = \left[1 - \widetilde{I}(\epsilon, M^2) \right] \mathcal{M}_{ab \to F} \;\;,$

renormalized virtual amplitude (UV finite but IR divergent).

 $\widetilde{I}(\epsilon, M^2) = \sum_{n=1}^{\infty} \left(\frac{lpha \varsigma}{\pi}\right)^n \widetilde{I}^{(n)}(\epsilon) \,,$

IR subtraction *universal* operators (contain IR ϵ -poles and IR finite terms)

$$H_q^F(\alpha_S) = \frac{|\widetilde{\mathcal{M}}_{q\bar{q}\to F}|^2}{|\mathcal{M}_{q\bar{q}\to F}^{(0)}|^2}$$

 Process independent part of H^F coefficients calculated at NNLO in [Catani,Grazzini('11)], [Catani,Cieri,deFlorian, G.F.,Grazzini('12)] at N³LO in [Luo et al. ('19,'20)], [Erbert et al. ('20)]

- Process-dependence is fully encoded in the hard-virtual factor $H_c^F(\alpha_S)$.
- All-order universal factorization formula relates $H_c^F(\alpha_s)$ to the virtual amplitude

$$\mathcal{M}_{ab\to F} = \sum_{n=0}^{\infty} \left(\frac{\alpha_S}{\pi}\right)^n \mathcal{M}_{ab\to F}^{(n)} ,$$

renormalized virtual amplitude (UV finite but IR divergent).

 $\widetilde{I}(\epsilon, M^2) = \sum_{n=1}^{\infty} \left(\frac{lpha \varsigma}{\pi}\right)^n \widetilde{I}^{(n)}(\epsilon) \,,$

Mah DE

IR subtraction *universal* operators (contain IR ϵ -poles and IR finite terms)

$$= \left[1 - \tilde{I}(\epsilon, M^2)
ight]\mathcal{M}_{ab
ightarrow F} \; , \qquad {
m has}$$

hard-virtual subtracted amplitude (IR finite).

$$H_q^F(\alpha_S) = \frac{|\widetilde{\mathcal{M}}_{q\bar{q}\to F}|^2}{|\mathcal{M}_{q\bar{q}\to F}^{(0)}|^2}$$

 Process independent part of H^F coefficients calculated at NNLO in [Catani,Grazzini('11)], [Catani,Cieri,deFlorian, G.F.,Grazzini('12)] at N³LO in [Luo et al. ('19,'20)], [Erbert et al. ('20)]

- Process-dependence is fully encoded in the hard-virtual factor $H_c^F(\alpha_S)$.
- All-order universal factorization formula relates $H_c^F(\alpha_S)$ to the virtual amplitude

$$\mathcal{M}_{ab\to F} = \sum_{n=0}^{\infty} \left(\frac{\alpha_S}{\pi}\right)^n \mathcal{M}_{ab\to F}^{(n)} ,$$

renormalized virtual amplitude (UV finite but IR divergent).

 $\widetilde{I}(\epsilon, M^2) = \sum_{n=1}^{\infty} \left(\frac{\alpha_S}{\pi}\right)^n \widetilde{I}^{(n)}(\epsilon),$

IR subtraction *universal* operators (contain IR ϵ -poles and IR finite terms)

$$\widetilde{\mathcal{M}}_{ab
ightarrow F} = \left[1 - \tilde{I}(\epsilon, M^2)\right] \mathcal{M}_{ab
ightarrow F} \; ,$$

hard-virtual subtracted amplitude (IR finite).

$$H_q^F(\alpha_S) = \frac{|\widetilde{\mathcal{M}}_{q\bar{q}\to F}|^2}{|\mathcal{M}_{q\bar{q}\to F}^{(0)}|^2}$$

• Process independent part of \mathcal{H}^{F} coefficients calculated at NNLO in [Catani,Grazzini('11)],[Catani,Cieri,deFlorian, G.F.,Grazzini('12)] at N³LO in [Luo et al.('19,'20)],[Erbert et al.('20)]

NNLO QCD predictions compared with LHC data

Lepton charge asymmetry from $W \rightarrow l\nu_l$ decay. Comparison between experimental data and NNLO predictions (DYNNLO [Catani, Cieri, de Florian, G.F., Grazzini ('09), ('10)]) using various PDFs (from [ATLAS Coll.('12)]).

Transverse-momentum resummation

q_T resummation

$$\begin{split} & \mathsf{h}_1(\mathsf{p}_1) + \mathsf{h}_2(\mathsf{p}_2) \ \rightarrow \ \mathsf{F}(\mathsf{M},\mathsf{q}_\mathsf{T}) + \mathsf{X} \\ & \mathsf{where} \quad F = \gamma^*, Z^0, W^{\pm}, H, HH, \dots \end{split}$$

pQCD *collinear* factorization formula $(M \gg \Lambda_{QCD})$:

$$h_1(p_1) \xrightarrow{f_a/h_1(x_1,\mu_F^2)} \ell_1$$

$$a(x_1p_1) \lor V(M) \qquad \ell_2$$

$$b(x_2p_2) \qquad b(x_2p_2) \qquad \vdots \\ h_2(p_2) \qquad f_{h/h_2}(x_2,\mu_F^2)$$

 $\frac{d\sigma}{dq_T^2}(q_T, M, s) = \sum_{a,b} \int_0^1 dx_1 \int_0^1 dx_2 f_{a/h_1}(x_1, \mu_F^2) f_{b/h_2}(x_2, \mu_F^2) \frac{d\hat{\sigma}_{ab}}{dq_T^2}(q_T, M, \hat{s}; \alpha_S, \mu_R^2, \mu_F^2).$

Fixed-order perturbative expansion not reliable for $q_T \ll M$:

$$\int_{0}^{q_{T}^{2}} d\bar{q}_{T}^{2} \frac{d\hat{\sigma}}{d\bar{q}_{T}^{2}} \overset{q_{T} \ll M}{\sim} \sigma_{0} + \alpha_{S} \bigg[c_{12} \ln^{2} \frac{M^{2}}{q_{T}^{2}} + c_{11} \ln \frac{M^{2}}{q_{T}^{2}} + c_{10} \bigg] + \cdots$$

 $lpha_S \ln(M^2/q_T^2) \gg 1$: need for resummation of large logs

$$\frac{d\sigma}{dq_T^2} = \frac{d\sigma^{(res)}}{dq_T^2} + \frac{d\sigma^{(fin)}}{dq_T^2}; \qquad \begin{array}{l} \int_0^{q_T^2} d\bar{q}_T^2 \stackrel{q_T \to 0}{=} 0 \\ \int_0^{q_T^2} d\bar{q}_T^2 \stackrel{d\hat{\sigma}^{(fin)}}{d\bar{q}_T^2} \stackrel{q_T \to 0}{\sim} \sigma_0 + \sum_n \sum_{m=0}^{2n} c_{nm} \alpha_S^n \ln^m \frac{M^2}{q_T^2} \end{array}$$

q_T resummation

$$\begin{array}{ll} h_1(p_1) + h_2(p_2) & \rightarrow & \mathsf{F}(\mathsf{M},\mathsf{q_T}) + \mathsf{X} \\ \\ \text{where} & F = \gamma^*, Z^0, W^{\pm}, H, HH, \ldots \end{array}$$

pQCD *collinear* factorization formula $(M \gg \Lambda_{QCD})$:

$$\frac{d\sigma}{dq_T^2}(q_T, M, s) = \sum_{a, b} \int_0^1 dx_1 \int_0^1 dx_2 f_{a/h_1}(x_1, \mu_F^2) f_{b/h_2}(x_2, \mu_F^2) \frac{d\hat{\sigma}_{ab}}{dq_T^2}(q_T, M, \hat{s}; \alpha_S, \mu_R^2, \mu_F^2).$$

Fixed-order perturbative expansion not reliable for $q_T \ll M$:

$$\int_{0}^{q_{T}^{2}} d\bar{q}_{T}^{2} \frac{d\hat{\sigma}}{d\bar{q}_{T}^{2}} \overset{q_{T} \ll M}{\sim} \sigma_{0} + \alpha_{S} \bigg[c_{12} \ln^{2} \frac{M^{2}}{q_{T}^{2}} + c_{11} \ln \frac{M^{2}}{q_{T}^{2}} + c_{10} \bigg] + \cdots$$

 $lpha_{\mathcal{S}} \ln(M^2/\!q_{ au}^2) \gg 1$: need for resummation of large logs

$$\frac{d\sigma}{dq_T^2} = \frac{d\sigma^{(res)}}{dq_T^2} + \frac{d\sigma^{(fin)}}{dq_T^2}; \qquad \begin{array}{l} \int_0^{q_T^2} d\bar{q}_T^2 \frac{d\hat{\sigma}^{(fin)}}{d\bar{q}_T^2} \stackrel{q_T \to 0}{=} 0\\ \int_0^{q_T^2} d\bar{q}_T^2 \frac{d\hat{\sigma}^{(res)}}{d\bar{q}_T^2} \stackrel{q_T \to 0}{\sim} \sigma_0 + \sum_n \sum_{m=0}^{2n} c_{nm} \alpha_S^n \ln^m \frac{M^2}{q_T^2} \end{array}$$

q_T resummation

$$h_1(p_1) + h_2(p_2) \rightarrow F(M, q_T) + X$$

where $F = \gamma^*, Z^0, W^{\pm}, H, HH, \dots$

pQCD *collinear* factorization formula $(M \gg \Lambda_{QCD})$:

$$\frac{d\sigma}{dq_T^2}(q_T, M, s) = \sum_{a,b} \int_0^1 dx_1 \int_0^1 dx_2 f_{a/b_1}(x_1, \mu_F^2) f_{b/b_2}(x_2, \mu_F^2) \frac{d\hat{\sigma}_{ab}}{dq_T^2}(q_T, M, \hat{s}; \alpha_S, \mu_R^2, \mu_F^2).$$

 $h_1(p_1) = f_{a/h_1}(x_1, \mu_F^2)$

 $f_{b/b_2}(x_2, \mu_F^2)$

10-3

10-6

 $h_2(p_2)$

 $\begin{array}{c}
a(x_1p_1) \quad V(M) \\
\hat{\sigma}_{ab} \\
b(x_2p_2)
\end{array}$

0.10

100 150 200

Fixed-order perturbative expansion not reliable for $q_T \ll M$: $\int_0^{q_T^2} d\bar{q}_T^2 \frac{d\hat{\sigma}}{d\bar{q}_T^2} \overset{q_T \ll M}{\sim} \sigma_0 + \alpha_S \left[c_{12} \ln^2 \frac{M^2}{q_T^2} + c_{11} \ln \frac{M^2}{q_T^2} + c_{10} \right] + \cdots$

 $\alpha_S \ln(M^2/q_T^2) \gg 1$: need for resummation of large logs.

$$\frac{d\sigma}{dq_T^2} = \frac{d\sigma^{(res)}}{dq_T^2} + \frac{d\sigma^{(fin)}}{dq_T^2}; \qquad \int_0^{q_T^2} d\bar{q}_T^2 \frac{d\hat{\sigma}^{(fin)}}{d\bar{q}_T^2} \stackrel{q_T \to 0}{=} 0$$

$$\int_0^{q_T^2} d\bar{q}_T^2 \frac{d\hat{\sigma}^{(res)}}{d\bar{q}_T^2} \stackrel{q_T \to 0}{\sim} \sigma_0 + \sum_n \sum_{m=0}^{2n} c_{nm} \alpha_S^n \ln^m \frac{M^2}{q_T^2}$$

Giancarlo Ferrera – Milan University & INFN Drell–Yan production at N³LL+N³LO in QCD 10 15

Soft gluon exponentiation

Sudakov resummation feasible when: dynamics AND kinematics factorize \Rightarrow exponentiation.

 Dynamics factorization: general propriety of QCD matrix element for soft emissions based on colour coherence. It is the analogous of the independent multiple soft-photon emission is QED:

$$dw_n(q_1,\ldots,q_n)\simeq rac{1}{n!}\prod_{i=1}^n dw_1(q_i)$$

• Kinematics factorization: not valid in general. For q_T distribution it holds in the impact parameter space (Fourier transform)

$$\int d^2 \mathbf{q}_{\mathsf{T}} \, \exp(-i\mathbf{b} \cdot \mathbf{q}_{\mathsf{T}}) \, \delta\left(\mathbf{q}_{\mathsf{T}} - \sum_{j=1}^n \mathbf{q}_{\mathsf{T}_j}\right) = \exp(-i\mathbf{b} \cdot \sum_{j=1}^n \mathbf{q}_{\mathsf{T}_j}) = \prod_{j=1}^n \exp(-i\mathbf{b} \cdot \mathbf{q}_{\mathsf{T}_j}) \, .$$

 Exponentiation holds in the impact parameter space. Results have then to be transformed back to the physical space: q_T ≪ M ⇔ Mb≫1, log M/q_T≫1 ⇔ log Mb≫1.

Resummation holds in impact parameter space: $q_T \ll M \Leftrightarrow Mb \gg 1$, $\log M/q_T \gg 1 \Leftrightarrow \log Mb \gg 1$

$$rac{d\hat{\sigma}^{(res)}}{dq_T^2} = rac{M^2}{\hat{s}}\int\!\!rac{d^2{
m b}}{4\pi}e^{i{
m b}\cdot{
m q}_{
m T}}\,\mathcal{W}(m{b},m{M}),$$

In the Mellin moments space we have:

 $\mathcal{W}_{N}(b,M) = \mathcal{H}_{N}(\alpha_{S}) imes \exp \left\{ \mathcal{G}_{N}(\alpha_{S},L)
ight\}$ where $L \equiv \log(M^{2}b^{2})$

$$\mathcal{G}_{N}(\alpha_{S},L) = -\int_{1/b^{2}}^{M^{2}} \frac{dq^{2}}{q^{2}} \Big[A(\alpha_{S}(q^{2})) + \widetilde{B}_{N}(\alpha_{S}(q^{2})) \Big] = Lg^{(1)}(\alpha_{S}L) + g^{(2)}_{N}(\alpha_{S}L) + \frac{\alpha_{S}}{\pi}g^{(3)}_{N}(\alpha_{S}L) + \cdots$$

$$A(\alpha_{S}) = \frac{\alpha_{S}}{\pi}A^{(1)} + \left(\frac{\alpha_{S}}{\pi}\right)^{2}A^{(2)} + \left(\frac{\alpha_{S}}{\pi}\right)^{3}A^{(3)} + \cdots; \quad \widetilde{B}_{N}(\alpha_{S}) = \frac{\alpha_{S}}{\pi}\widetilde{B}^{(1)}_{N} + \left(\frac{\alpha_{S}}{\pi}\right)^{2}\widetilde{B}^{(2)}_{N} + \cdots; \quad \mathcal{H}_{N}(\alpha_{S}) = \sigma^{(0)} \Big[1 + \frac{\alpha_{S}}{\pi}\mathcal{H}^{(1)}_{N} + \left(\frac{\alpha_{S}}{\pi}\right)^{2}\mathcal{H}^{(2)}_{N} + \cdots \Big]$$

$$LL (\sim \alpha_{S}^{n}L^{n+1}): g^{(1)}, (\sigma^{(0)}); \quad \text{NLL} (\sim \alpha_{S}^{n}L^{n}): g^{(2)}_{N}, \mathcal{H}^{(1)}_{N}; \quad \text{NNLL} (\sim \alpha_{S}^{n}L^{n-1}): g^{(3)}_{N}, \mathcal{H}^{(2)}_{N};$$
Resummed result at small q_{T} matched with fixed "finite" part at large q_{T} :
$$uniform$$

$$\frac{d\hat{\sigma}}{dq_T^2} = \frac{d\hat{\sigma}^{(res)}}{dq_T^2} + \frac{d\hat{\sigma}^{(fin)}}{dq_T^2}; \qquad \int_0^{Q_T^2} dq_T^2 \Big[\frac{d\hat{\sigma}^{(res)}}{dq_T^2}\Big]_{f.o.} \overset{Q_T \to 0}{\sim} \sum_{n=0} \sum_{m=0}^{2n} c_{nm} \alpha_S^n \log^m \frac{M^2}{Q_T^2} \int_0^{Q_T^2} dq_T^2 \Big[\frac{d\hat{\sigma}^{(fin)}}{dq_T^2}\Big]_{f.o.} \overset{Q_T \to 0}{\sim} \mathcal{O}(\frac{Q_T^2}{M^2})$$

Resummation holds in impact parameter space: $q_T \ll M \Leftrightarrow Mb \gg 1$, $\log M/q_T \gg 1 \Leftrightarrow \log Mb \gg 1$

$$rac{d\hat{\sigma}^{(res)}}{dq_T^2} = rac{M^2}{\hat{s}}\int\!\!rac{d^2{
m b}}{4\pi}{
m e}^{i{
m b}\cdot{
m q}_{
m T}}\,{\cal W}(b,M),$$

In the Mellin moments space we have:

 $\mathcal{W}_{N}(b,M) = \mathcal{H}_{N}(\alpha_{S}) imes \exp \left\{ \mathcal{G}_{N}(\alpha_{S},L)
ight\}$ where $L \equiv \log(M^{2}b^{2})$

$$\mathcal{G}_{N}(\alpha_{S},L) = -\int_{1/b^{2}}^{M^{2}} \frac{dq^{2}}{q^{2}} \Big[A(\alpha_{S}(q^{2})) + \widetilde{B}_{N}(\alpha_{S}(q^{2})) \Big] = L g^{(1)}(\alpha_{S}L) + g_{N}^{(2)}(\alpha_{S}L) + \frac{\alpha_{S}}{\pi} g_{N}^{(3)}(\alpha_{S}L) + \cdots$$

$$A(\alpha_{S}) = \frac{\alpha_{S}}{\pi} A^{(1)} + \left(\frac{\alpha_{S}}{\pi}\right)^{2} A^{(2)} + \left(\frac{\alpha_{S}}{\pi}\right)^{3} A^{(3)} + \cdots; \quad \widetilde{B}_{N}(\alpha_{S}) = \frac{\alpha_{S}}{\pi} \widetilde{B}_{N}^{(1)} + \left(\frac{\alpha_{S}}{\pi}\right)^{2} \widetilde{B}_{N}^{(2)} + \cdots; \quad \mathcal{H}_{N}(\alpha_{S}) = \sigma^{(0)} \Big[1 + \frac{\alpha_{S}}{\pi} \mathcal{H}_{N}^{(1)} + \left(\frac{\alpha_{S}}{\pi}\right)^{2} \mathcal{H}_{N}^{(2)} + \cdots \Big] \Big]$$

$$LL (\sim \alpha_{S}^{n} L^{n+1}): g^{(1)}, (\sigma^{(0)}); \quad \text{NLL} (\sim \alpha_{S}^{n} L^{n}): g_{N}^{(2)}, \quad \mathcal{H}_{N}^{(1)}; \quad \text{NNLL} (\sim \alpha_{S}^{n} L^{n-1}): g_{N}^{(3)}, \quad \mathcal{H}_{N}^{(2)};$$
Resummed result at small q_{T} matched with fixed "finite" part at large q_{T} :
$$uniform accuracy for $q_{T} \ll M$ and $q_{T} \sim M$$$

$$\frac{d\hat{\sigma}}{dq_T^2} = \frac{d\hat{\sigma}^{(res)}}{dq_T^2} + \frac{d\hat{\sigma}^{(fin)}}{dq_T^2}; \qquad \int_0^{Q_T^2} dq_T^2 \Big[\frac{d\hat{\sigma}^{(res)}}{dq_T^2}\Big]_{f.o.} \overset{Q_T \to 0}{\sim} \sum_{n=0} \sum_{m=0}^{2n} c_{nm} \alpha_S^n \log^m \frac{M^2}{Q_T^2} \int_0^{Q_T^2} dq_T^2 \Big[\frac{d\hat{\sigma}^{(fin)}}{dq_T^2}\Big]_{f.o.} \overset{Q_T \to 0}{\sim} \mathcal{O}(\frac{Q_T^2}{M^2})$$

Resummation holds in impact parameter space: $q_T \ll M \Leftrightarrow Mb \gg 1$, $\log M/q_T \gg 1 \Leftrightarrow \log Mb \gg 1$

$$rac{d\hat{\sigma}^{(res)}}{dq_T^2} = rac{M^2}{\hat{s}}\int\!\!rac{d^2\mathsf{b}}{4\pi} e^{i\mathsf{b}\cdot\mathsf{q}_{\mathsf{T}}}\,\mathcal{W}(b,M),$$

In the Mellin moments space we have:

 $\mathcal{W}_{N}(b,M) = \mathcal{H}_{N}(\alpha_{S}) \times \exp \left\{ \mathcal{G}_{N}(\alpha_{S},L) \right\}$ where $L \equiv \log(M^{2}b^{2})$

$$\mathcal{G}_{N}(\alpha_{S},L) = -\int_{1/b^{2}}^{M^{2}} \frac{dq^{2}}{q^{2}} \Big[A(\alpha_{S}(q^{2})) + \widetilde{B}_{N}(\alpha_{S}(q^{2})) \Big] = Lg^{(1)}(\alpha_{S}L) + g^{(2)}_{N}(\alpha_{S}L) + \frac{\alpha_{S}}{\pi}g^{(3)}_{N}(\alpha_{S}L) + \cdots$$

$$A(\alpha_{S}) = \frac{\alpha_{S}}{\pi}A^{(1)} + \left(\frac{\alpha_{S}}{\pi}\right)^{2}A^{(2)} + \left(\frac{\alpha_{S}}{\pi}\right)^{3}A^{(3)} + \cdots; \quad \widetilde{B}_{N}(\alpha_{S}) = \frac{\alpha_{S}}{\pi}\widetilde{B}^{(1)}_{N} + \left(\frac{\alpha_{S}}{\pi}\right)^{2}\widetilde{B}^{(2)}_{N} + \cdots; \quad \mathcal{H}_{N}(\alpha_{S}) = \sigma^{(0)} \Big[1 + \frac{\alpha_{S}}{\pi}\mathcal{H}^{(1)}_{N} + \left(\frac{\alpha_{S}}{\pi}\right)^{2}\mathcal{H}^{(2)}_{N} + \cdots \Big]$$

$$LL (\sim \alpha_{S}^{n}L^{n+1}): g^{(1)}, (\sigma^{(0)}); \quad \text{NLL} (\sim \alpha_{S}^{n}L^{n}): g^{(2)}_{N}, \mathcal{H}^{(1)}_{N}; \quad \text{NNLL} (\sim \alpha_{S}^{n}L^{n-1}): g^{(3)}_{N}, \mathcal{H}^{(2)}_{N};$$
Resummed result at small q_{T} matched with fixed "finite" part at large q_{T} :
$$uniform$$

$$\frac{d\hat{\sigma}}{dq_T^2} = \frac{d\hat{\sigma}^{(res)}}{dq_T^2} + \frac{d\hat{\sigma}^{(fin)}}{dq_T^2}; \qquad \int_0^{Q_T^2} dq_T^2 \Big[\frac{d\hat{\sigma}^{(res)}}{dq_T^2} \Big]_{f.o.}^{Q_T \to 0} \sum_{n=0}^{2n} \sum_{m=0}^{2n} c_{nm} \alpha_S^n \log^m \frac{M^2}{Q_T^2} \int_0^{Q_T^2} dq_T^2 \Big[\frac{d\hat{\sigma}^{(fin)}}{dq_T^2} \Big]_{f.o.}^{Q_T \to 0} \mathcal{O}(\frac{Q_T^2}{M^2})$$

Resummation holds in impact parameter space: $q_T \ll M \Leftrightarrow Mb \gg 1$, $\log M/q_T \gg 1 \Leftrightarrow \log Mb \gg 1$

$$\frac{d\hat{\sigma}^{(res)}}{dq_T^2} = \frac{M^2}{\hat{s}} \int \frac{d^2 b}{4\pi} e^{i b \cdot q_T} \, \mathcal{W}(b, M),$$

In the Mellin moments space we have:

$$\mathcal{W}_{N}(b,M) = \mathcal{H}_{N}(\alpha_{S}) \times \exp \left\{ \mathcal{G}_{N}(\alpha_{S},L) \right\}$$
 where $L \equiv \log(M^{2}b^{2})$

$$\mathcal{G}_{N}(\alpha_{S},L) = -\int_{1/b^{2}}^{M^{2}} \frac{dq^{2}}{q^{2}} \Big[A(\alpha_{S}(q^{2})) + \widetilde{B}_{N}(\alpha_{S}(q^{2})) \Big] = Lg^{(1)}(\alpha_{S}L) + g_{N}^{(2)}(\alpha_{S}L) + \frac{\alpha_{S}}{\pi}g_{N}^{(3)}(\alpha_{S}L) + \cdots$$

$$A(\alpha_{S}) = \frac{\alpha_{S}}{\pi}A^{(1)} + \left(\frac{\alpha_{S}}{\pi}\right)^{2}A^{(2)} + \left(\frac{\alpha_{S}}{\pi}\right)^{3}A^{(3)} + \cdots; \widetilde{B}_{N}(\alpha_{S}) = \frac{\alpha_{S}}{\pi}\widetilde{B}_{N}^{(1)} + \left(\frac{\alpha_{S}}{\pi}\right)^{2}\widetilde{B}_{N}^{(2)} + \cdots; \mathcal{H}_{N}(\alpha_{S}) = \sigma^{(0)} \Big[1 + \frac{\alpha_{S}}{\pi}\mathcal{H}_{N}^{(1)} + \left(\frac{\alpha_{S}}{\pi}\right)^{2}\mathcal{H}_{N}^{(2)} + \cdots \Big]$$

$$LL (\sim \alpha_{S}^{n}L^{n+1}): g^{(1)}, (\sigma^{(0)}); \text{ NLL } (\sim \alpha_{S}^{n}L^{n}): g_{N}^{(2)}, \mathcal{H}_{N}^{(1)}; \text{ NNLL } (\sim \alpha_{S}^{n}L^{n-1}): g_{N}^{(3)}, \mathcal{H}_{N}^{(2)};$$
Resummed result at small q_{T} matched with fixed "finite" part at large q_{T} :

Giancarlo Ferrera – Milan University & INFN Drell–Yan production at N^3LL+N^3LO in QCD

$$\frac{d\hat{\sigma}}{dq_T^2} = \frac{d\hat{\sigma}^{(res)}}{dq_T^2} + \frac{d\hat{\sigma}^{(fin)}}{dq_T^2}; \qquad \int_0^{Q_T^2} dq_T^2 \Big[\frac{d\hat{\sigma}^{(res)}}{dq_T^2} \Big]_{f.o.}^{Q_T \to 0} \sum_{n=0}^{2n} \sum_{m=0}^{2n} c_{nm} \alpha_S^n \log^m \frac{M^2}{Q_T^2} \int_0^{Q_T^2} dq_T^2 \Big[\frac{d\hat{\sigma}^{(fin)}}{dq_T^2} \Big]_{f.o.}^{Q_T \to 0} \mathcal{O}(\frac{Q_T^2}{M^2})$$

Resummation holds in impact parameter space: $q_T \ll M \Leftrightarrow Mb \gg 1$, $\log M/q_T \gg 1 \Leftrightarrow \log Mb \gg 1$

$$\frac{d\hat{\sigma}^{(res)}}{dq_T^2} = \frac{M^2}{\hat{s}} \int \frac{d^2 b}{4\pi} e^{i b \cdot q_T} \, \mathcal{W}(b, M),$$

In the Mellin moments space we have:

$$\mathcal{W}_{N}(b,M) = \mathcal{H}_{N}(\alpha_{S}) \times \exp \left\{ \mathcal{G}_{N}(\alpha_{S},L) \right\}$$
 where $L \equiv \log(M^{2}b^{2})$

$$\mathcal{G}_{N}(\alpha_{S},L) = -\int_{1/b^{2}}^{M^{2}} \frac{dq^{2}}{q^{2}} \Big[A(\alpha_{S}(q^{2})) + \widetilde{B}_{N}(\alpha_{S}(q^{2})) \Big] = Lg^{(1)}(\alpha_{S}L) + g^{(2)}_{N}(\alpha_{S}L) + \frac{\alpha_{S}}{\pi}g^{(3)}_{N}(\alpha_{S}L) + \cdots$$

$$A(\alpha_{S}) = \frac{\alpha_{S}}{\pi}A^{(1)} + \left(\frac{\alpha_{S}}{\pi}\right)^{2}A^{(2)} + \left(\frac{\alpha_{S}}{\pi}\right)^{3}A^{(3)} + \cdots; \quad \widetilde{B}_{N}(\alpha_{S}) = \frac{\alpha_{S}}{\pi}\widetilde{B}^{(1)}_{N} + \left(\frac{\alpha_{S}}{\pi}\right)^{2}\widetilde{B}^{(2)}_{N} + \cdots; \quad \mathcal{H}_{N}(\alpha_{S}) = \sigma^{(0)} \Big[1 + \frac{\alpha_{S}}{\pi}\mathcal{H}^{(1)}_{N} + \left(\frac{\alpha_{S}}{\pi}\right)^{2}\mathcal{H}^{(2)}_{N} + \cdots \Big] \\ LL (\sim \alpha_{S}^{n}L^{n+1}): g^{(1)}, (\sigma^{(0)}); \quad \text{NLL} (\sim \alpha_{S}^{n}L^{n}): g^{(2)}_{N}, \mathcal{H}^{(1)}_{N}; \quad \text{NNLL} (\sim \alpha_{S}^{n}L^{n-1}): g^{(3)}_{N}, \mathcal{H}^{(2)}_{N}; \\ \text{Resummed result at small } q_{T} \text{ matched with fixed "finite" part at large } q_{T}:$$

uniform accuracy for $q_T \ll M$ and $q_T \sim M$.

$$\frac{d\hat{\sigma}}{dq_T^2} = \frac{d\hat{\sigma}^{(res)}}{dq_T^2} + \frac{d\hat{\sigma}^{(fin)}}{dq_T^2}; \qquad \int_0^{Q_T^2} dq_T^2 \Big[\frac{d\hat{\sigma}^{(res)}}{dq_T^2} \Big]_{f.o.}^{Q_T \to 0} \sum_{n=0}^{2n} \sum_{m=0}^{2n} c_{nm} \alpha_S^n \log^m \frac{M^2}{Q_T^2} \int_0^{Q_T^2} dq_T^2 \Big[\frac{d\hat{\sigma}^{(fin)}}{dq_T^2} \Big]_{f.o.}^{Q_T \to 0} \mathcal{O}(\frac{Q_T^2}{M^2})$$

Resummation holds in impact parameter space: $q_T \ll M \Leftrightarrow Mb \gg 1$, $\log M/q_T \gg 1 \Leftrightarrow \log Mb \gg 1$

$$\frac{d\hat{\sigma}^{(res)}}{dq_T^2} = \frac{M^2}{\hat{s}} \int \frac{d^2 b}{4\pi} e^{i b \cdot q_T} \, \mathcal{W}(b, M),$$

In the Mellin moments space we have:

$$\mathcal{W}_{N}(b,M) = \mathcal{H}_{N}(\alpha_{S}) \times \exp \left\{ \mathcal{G}_{N}(\alpha_{S},L) \right\}$$
 where $L \equiv \log(M^{2}b^{2})$

$$\mathcal{G}_{N}(\alpha_{S},L) = -\int_{1/b^{2}}^{M^{2}} \frac{dq^{2}}{q^{2}} \Big[A(\alpha_{S}(q^{2})) + \tilde{B}_{N}(\alpha_{S}(q^{2})) \Big] = L g^{(1)}(\alpha_{S}L) + g_{N}^{(2)}(\alpha_{S}L) + \frac{\alpha_{S}}{\pi} g_{N}^{(3)}(\alpha_{S}L) + \cdots$$

$$A(\alpha_{S}) = \frac{\alpha_{S}}{\pi} A^{(1)} + \left(\frac{\alpha_{S}}{\pi}\right)^{2} A^{(2)} + \left(\frac{\alpha_{S}}{\pi}\right)^{3} A^{(3)} + \cdots; \tilde{B}_{N}(\alpha_{S}) = \frac{\alpha_{S}}{\pi} \tilde{B}_{N}^{(1)} + \left(\frac{\alpha_{S}}{\pi}\right)^{2} \tilde{B}_{N}^{(2)} + \cdots; \mathcal{H}_{N}(\alpha_{S}) = \sigma^{(0)} \Big[1 + \frac{\alpha_{S}}{\pi} \mathcal{H}_{N}^{(1)} + \left(\frac{\alpha_{S}}{\pi}\right)^{2} \mathcal{H}_{N}^{(2)} + \cdots \Big]$$

$$LL (\sim \alpha_{S}^{n} L^{n+1}): g^{(1)}, (\sigma^{(0)}); \text{ NLL } (\sim \alpha_{S}^{n} L^{n}): g_{N}^{(2)}, \mathcal{H}_{N}^{(1)}; \text{ NNLL } (\sim \alpha_{S}^{n} L^{n-1}): g_{N}^{(3)}, \mathcal{H}_{N}^{(2)};$$
Resummed result at small q_{-} matched with fixed "finite" part at large q_{-} :

Resummed result at small q_T matched with fixed "finite" part at large q_T : uniform accuracy for $q_T \ll M$ and $q_T \sim M$.

$$\frac{d\hat{\sigma}}{dq_T^2} = \frac{d\hat{\sigma}^{(res)}}{dq_T^2} + \frac{d\hat{\sigma}^{(fin)}}{dq_T^2}; \qquad \int_0^{Q_T^2} dq_T^2 \Big[\frac{d\hat{\sigma}^{(res)}}{dq_T^2} \Big]_{f.o.}^{Q_T \to 0} \sum_{n=0}^{2n} \sum_{m=0}^{2n} c_{nm} \alpha_S^n \log^m \frac{M^2}{Q_T^2} \int_0^{Q_T^2} dq_T^2 \Big[\frac{d\hat{\sigma}^{(fin)}}{dq_T^2} \Big]_{f.o.}^{Q_T \to 0} \mathcal{O}(\frac{Q_T^2}{M^2})$$

Resummation holds in impact parameter space: $q_T \ll M \Leftrightarrow Mb \gg 1$, $\log M/q_T \gg 1 \Leftrightarrow \log Mb \gg 1$

$$\frac{d\hat{\sigma}^{(res)}}{dq_T^2} = \frac{M^2}{\hat{s}} \int \frac{d^2 b}{4\pi} e^{i b \cdot q_T} \, \mathcal{W}(b, M),$$

In the Mellin moments space we have:

$$\mathcal{W}_{N}(b,M) = \mathcal{H}_{N}(\alpha_{S}) \times \exp \left\{ \mathcal{G}_{N}(\alpha_{S},L) \right\}$$
 where $L \equiv \log(M^{2}b^{2})$

$$\mathcal{G}_{N}(\alpha_{S},L) = -\int_{1/b^{2}}^{M^{2}} \frac{dq^{2}}{q^{2}} \Big[A(\alpha_{S}(q^{2})) + \widetilde{B}_{N}(\alpha_{S}(q^{2})) \Big] = L g^{(1)}(\alpha_{S}L) + g_{N}^{(2)}(\alpha_{S}L) + \frac{\alpha_{S}}{\pi} g_{N}^{(3)}(\alpha_{S}L) + \cdots$$

$$A(\alpha_{S}) = \frac{\alpha_{S}}{\pi} A^{(1)} + \left(\frac{\alpha_{S}}{\pi}\right)^{2} A^{(2)} + \left(\frac{\alpha_{S}}{\pi}\right)^{3} A^{(3)} + \cdots; \quad \widetilde{B}_{N}(\alpha_{S}) = \frac{\alpha_{S}}{\pi} \widetilde{B}_{N}^{(1)} + \left(\frac{\alpha_{S}}{\pi}\right)^{2} \widetilde{B}_{N}^{(2)} + \cdots; \quad \mathcal{H}_{N}(\alpha_{S}) = \sigma^{(0)} \Big[1 + \frac{\alpha_{S}}{\pi} \mathcal{H}_{N}^{(1)} + \left(\frac{\alpha_{S}}{\pi}\right)^{2} \mathcal{H}_{N}^{(2)} + \cdots \Big]$$

$$LL (\sim \alpha_{S}^{n} L^{n+1}): g^{(1)}, (\sigma^{(0)}); \quad \text{NLL} (\sim \alpha_{S}^{n} L^{n}): g_{N}^{(2)}, \quad \mathcal{H}_{N}^{(1)}; \quad \text{NNLL} (\sim \alpha_{S}^{n} L^{n-1}): g_{N}^{(3)}, \quad \mathcal{H}_{N}^{(2)};$$

Resummed result at small q_T matched with fixed "finite" part at large q_T : uniform accuracy for $q_T \ll M$ and $q_T \sim M$.

$$\frac{d\hat{\sigma}}{dq_T^2} = \frac{d\hat{\sigma}^{(res)}}{dq_T^2} + \frac{d\hat{\sigma}^{(fin)}}{dq_T^2}; \qquad \int_0^{Q_T^2} dq_T^2 \Big[\frac{d\hat{\sigma}^{(res)}}{dq_T^2}\Big]_{f.o.} \overset{Q_T \to 0}{\sim} \sum_{n=0} \sum_{m=0}^{2n} c_{nm} \alpha_S^n \log^m \frac{M^2}{Q_T^2} \int_0^{Q_T^2} dq_T^2 \Big[\frac{d\hat{\sigma}^{(fin)}}{dq_T^2}\Big]_{f.o.} \overset{Q_T \to 0}{\sim} \mathcal{O}(\frac{Q_T^2}{M^2})$$

Resummation holds in impact parameter space: $q_T \ll M \Leftrightarrow Mb \gg 1$, $\log M/q_T \gg 1 \Leftrightarrow \log Mb \gg 1$

$$rac{d\hat{\sigma}^{(res)}}{dq_T^2} = rac{M^2}{\hat{s}}\int\!\!rac{d^2{
m b}}{4\pi}e^{i{
m b}\cdot{
m q}_{
m T}}\,\mathcal{W}(b,M),$$

In the Mellin moments space we have:

$$\mathcal{W}_{N}(b,M) = \mathcal{H}_{N}(lpha_{S}) imes \exp \left\{ \mathcal{G}_{N}(lpha_{S},L)
ight\}$$
 where $L \equiv \log(M^{2}b^{2})$

$$\mathcal{G}_{N}(\alpha_{S},L) = -\int_{1/b^{2}}^{M^{2}} \frac{dq^{2}}{q^{2}} \Big[A(\alpha_{S}(q^{2})) + \widetilde{B}_{N}(\alpha_{S}(q^{2})) \Big] = L g^{(1)}(\alpha_{S}L) + g^{(2)}_{N}(\alpha_{S}L) + \frac{\alpha_{S}}{\pi} g^{(3)}_{N}(\alpha_{S}L) + \cdots$$

$$A(\alpha_{S}) = \frac{\alpha_{S}}{\pi} A^{(1)} + \left(\frac{\alpha_{S}}{\pi}\right)^{2} A^{(2)} + \left(\frac{\alpha_{S}}{\pi}\right)^{3} A^{(3)} + \cdots; \quad \widetilde{B}_{N}(\alpha_{S}) = \frac{\alpha_{S}}{\pi} \widetilde{B}^{(1)}_{N} + \left(\frac{\alpha_{S}}{\pi}\right)^{2} \widetilde{B}^{(2)}_{N} + \cdots; \quad \mathcal{H}_{N}(\alpha_{S}) = \sigma^{(0)} \Big[1 + \frac{\alpha_{S}}{\pi} \mathcal{H}^{(1)}_{N} + \left(\frac{\alpha_{S}}{\pi}\right)^{2} \mathcal{H}^{(2)}_{N} + \cdots \Big] \\ LL (\sim \alpha_{S}^{n} L^{n+1}): g^{(1)}, (\sigma^{(0)}); \quad \text{NLL} (\sim \alpha_{S}^{n} L^{n}): g^{(2)}_{N}, \mathcal{H}^{(1)}_{N}; \quad \text{NNLL} (\sim \alpha_{S}^{n} L^{n-1}): g^{(3)}_{N}, \mathcal{H}^{(2)}_{N}; \\ \text{Resummed result at small } q_{T} \text{ matched with fixed "finite" part at large } q_{T}:$$

uniform accuracy for $q_T \ll M$ and $q_T \sim M$.

Giancarlo Ferrera – Milan University & INFN Drell–Yan production at N^3LL+N^3LO in QCD

Transverse-momentum resummation formula

 $\widetilde{F}_{q_f/h}(x, b, M) = \sum_{a} \int_{x}^{1} \frac{dz}{z} \sqrt{S_q(M, b)} C_{q_f a}(z; \alpha_S(b_0^2/b^2)) f_{a/h}(x/z, b_0^2/b^2)$

Transverse-momentum resummation formula

$$\widetilde{F}_{q_f/h}(x,b,M) = \sum_{\mathfrak{a}} \int_x^1 \frac{dz}{z} \sqrt{S_q(M,b)} C_{q_f \mathfrak{a}}(z; \alpha_S(b_0^2/b^2)) f_{\mathfrak{a}/h}(x/z, b_0^2/b^2)$$

q_{T} recoil and lepton angular distribution

 ${\ensuremath{\bullet}}$ The dependence of the resummed cross section on the leptonic variable Ω is

$$rac{d\hat{\sigma}^{(0)}}{d\Omega}=\hat{\sigma}^{(0)}(M^2)\;F(\mathbf{q_T}/M;M^2,\Omega)\;\;,\;\; ext{with}\;\;\int d\Omega\;F(\mathbf{q_T}/M;\Omega)=1\;.$$

the q_T dependence arise as a *dynamical* q_T -recoil of the vector boson due to *soft* and *collinear* multiparton emissions.

$$F(\mathbf{q}_{\mathrm{T}}/M; M^2, \Omega) = F(0/M; M^2, \Omega) + \mathcal{O}(\mathbf{q}_{\mathrm{T}}^2/M^2) \ ,$$

- After the matching between resummed and finite component the $O(q_T^2/M^2)$ ambiguity starts at $O(\alpha_5^3)$ ($O(\alpha_5^2)$) at NNLL+NNLO (NLL+NLO).
- After integration over leptonic variable Ω the ambiguity *completely cancel*.
- A general procedure to treat the q_T recoil in q_T resummed calculations introduced in [Catani, de Florian, G.F., Grazzini ('15)].
- This procedure is directly related to the choice of a particular (among the infinite ones) vector boson rest frame to generate the lepton momenta: e.g. the Collins-Soper rest frame.

q_{T} recoil and lepton angular distribution

 ${\ensuremath{\bullet}}$ The dependence of the resummed cross section on the leptonic variable Ω is

$$rac{d\hat{\sigma}^{(0)}}{d\Omega}=\hat{\sigma}^{(0)}(M^2)\;F(\mathbf{q_T}/M;M^2,\Omega)\;\;,\;\; ext{with}\;\;\int d\Omega\;F(\mathbf{q_T}/M;\Omega)=1\;.$$

the q_T dependence arise as a *dynamical* q_T -recoil of the vector boson due to *soft* and *collinear* multiparton emissions.

$$F(\mathbf{q}_{\mathsf{T}}/M;M^2,\Omega) = F(0/M;M^2,\Omega) + \mathcal{O}(\mathbf{q}_{\mathsf{T}}^2/M^2) \ ,$$

- After the matching between *resummed* and *finite* component the $O(\mathbf{q}_T^2/M^2)$ ambiguity starts at $O(\alpha_5^3)$ ($O(\alpha_5^2)$) at NNLL+NNLO (NLL+NLO).
- After integration over leptonic variable Ω the ambiguity completely cancel.
- A general procedure to treat the q_T recoil in q_T resummed calculations introduced in [Catani, de Florian, G.F., Grazzini ('15)].
- This procedure is directly related to the choice of a particular (among the infinite ones) vector boson rest frame to generate the lepton momenta: e.g. the Collins–Soper rest frame.

q_T recoil and lepton angular distribution

 ${\ensuremath{\bullet}}$ The dependence of the resummed cross section on the leptonic variable Ω is

$$rac{d\hat{\sigma}^{(0)}}{d\Omega}=\hat{\sigma}^{(0)}(M^2)\;F(\mathbf{q_T}/M;M^2,\Omega)\;\;,\;\; ext{with}\;\;\int d\Omega\;F(\mathbf{q_T}/M;\Omega)=1\;.$$

the q_T dependence arise as a *dynamical* q_T -recoil of the vector boson due to *soft* and *collinear* multiparton emissions.

$$F(\mathbf{q}_{\mathsf{T}}/M;M^2,\Omega) = F(0/M;M^2,\Omega) + \mathcal{O}(\mathbf{q}_{\mathsf{T}}^2/M^2) \ ,$$

- After the matching between resummed and finite component the $O(q_T^2/M^2)$ ambiguity starts at $O(\alpha_5^2)$ ($O(\alpha_5^2)$) at NNLL+NNLO (NLL+NLO).
- After integration over leptonic variable Ω the ambiguity *completely cancel*.
- A general procedure to treat the q_T recoil in q_T resummed calculations introduced in [Catani, de Florian, G.F., Grazzini('15)].
- This procedure is directly related to the choice of a particular (among the infinite ones) vector boson rest frame to generate the lepton momenta: e.g. the Collins-Soper rest frame.

q_{T} recoil and lepton angular distribution

 ${\ensuremath{\bullet}}$ The dependence of the resummed cross section on the leptonic variable Ω is

$$rac{d\hat{\sigma}^{(0)}}{d\Omega}=\hat{\sigma}^{(0)}(M^2)\;F(\mathbf{q_T}/M;M^2,\Omega)\;\;,\;\; ext{with}\;\;\int d\Omega\;F(\mathbf{q_T}/M;\Omega)=1\;.$$

the q_T dependence arise as a *dynamical* q_T -recoil of the vector boson due to *soft* and *collinear* multiparton emissions.

$$F(\mathbf{q}_{\mathsf{T}}/M;M^2,\Omega) = F(0/M;M^2,\Omega) + \mathcal{O}(\mathbf{q}_{\mathsf{T}}^2/M^2) \ ,$$

- After the matching between resummed and finite component the $O(q_T^2/M^2)$ ambiguity starts at $O(\alpha_5^2)$ ($O(\alpha_5^2)$) at NNLL+NNLO (NLL+NLO).
- After integration over leptonic variable Ω the ambiguity completely cancel.
- A general procedure to treat the q_T recoil in q_T resummed calculations introduced in [Catani, de Florian, G.F., Grazzini('15)].
- This procedure is directly related to the choice of a particular (among the infinite ones) vector boson rest frame to generate the lepton momenta: e.g. the Collins–Soper rest frame.

q_T resummation: numerical implementations

- q_T resummation performed for Drell-Yan process up to NNLL+NNLO by using the formalism developed in [Catani,deFlorian,Grazzini('01)], [Bozzi,Catani,deFlorian,Grazzini('06,'08)]. We have included
 - NNLL logarithmic contributions to all orders (i.e. up to $exp(\sim \alpha_s^n L^{n-1}))$;
 - NNLO corrections (i.e. up to $\mathcal{O}(\alpha_S^2)$) at small q_T ;
 - NLO corrections (i.e. up to $\mathcal{O}(\alpha_S^2)$) at large q_T ;
 - NNLO result (i.e. up to $\mathcal{O}(\alpha_s^2)$) for the total cross section.
- We have implemented the calculation in the publicly available codes:

DYqT: computes resummed q_T spectrum, inclusive over other kinematical variables [Bozzi,Catani,deFlorian,G.F.,Grazzini('09,'11)]

DYRes: computes resummed q_T spectrum and related distributions, it retains full kinematics of the vector boson and of its leptonic decay products (possible to apply arbitrary cuts on these variables, and to plot the corresponding distributions)

http://pcteserver.mi.infn.it/~ferrera/research.html.

q_T resummation: numerical implementations

- q_T resummation performed for Drell-Yan process up to NNLL+NNLO by using the formalism developed in [Catani,deFlorian,Grazzini('01)], [Bozzi,Catani,deFlorian,Grazzini('06,'08)]. We have included
 - NNLL logarithmic contributions to all orders (i.e. up to $exp(\sim \alpha_s^n L^{n-1}))$;
 - NNLO corrections (i.e. up to $\mathcal{O}(\alpha_s^2)$) at small q_T ;
 - NLO corrections (i.e. up to $\mathcal{O}(\alpha_S^2)$) at large q_T ;
 - NNLO result (i.e. up to $\mathcal{O}(\alpha_s^2)$) for the total cross section.
- We have implemented the calculation in the publicly available codes:

DYqT: computes resummed q_T spectrum, inclusive over other kinematical variables [Bozzi,Catani,deFlorian,G.F.,Grazzini('09,'11)]

DYRes: computes resummed q_T spectrum and related distributions, it retains full kinematics of the vector boson and of its leptonic decay products (possible to apply arbitrary cuts on these variables, and to plot the corresponding distributions) [Catani, de Florian, G.F., Grazzini('15)]

http://pcteserver.mi.infn.it/~ferrera/research.html.

q_T resummation: numerical implementations

- q_T resummation performed for Drell-Yan process up to NNLL+NNLO by using the formalism developed in [Catani,deFlorian,Grazzini('01)], [Bozzi,Catani,deFlorian,Grazzini('06,'08)]. We have included
 - NNLL logarithmic contributions to all orders (i.e. up to $exp(\sim \alpha_s^n L^{n-1}))$;
 - NNLO corrections (i.e. up to $\mathcal{O}(\alpha_S^2)$) at small q_T ;
 - NLO corrections (i.e. up to $\mathcal{O}(\alpha_S^2)$) at large q_T ;
 - NNLO result (i.e. up to $\mathcal{O}(\alpha_S^2)$) for the total cross section.
- We have implemented the calculation in the publicly available codes:

DYqT: computes resummed q_T spectrum, inclusive over other kinematical variables [Bozzi,Catani,deFlorian,G.F.,Grazzini('09,'11)]

DYRes: computes resummed q_T spectrum and related distributions, it retains full kinematics of the vector boson and of its leptonic decay products (possible to apply arbitrary cuts on these variables, and to plot the corresponding distributions)

[Catani,deFlorian,G.F.,Grazzini('15)]

http://pcteserver.mi.infn.it/~ferrera/research.html.

Fast predictions for Drell-Yan processes: DYTurbo

[Camarda,Boonekamp,Bozzi,Catani,Cieri,Cuth,G.F.,deFlorian,Glazov, Grazzini,Vincter,Schott ('20)]

DYTurbo project

• Optimised version of DYNNLO, DYqT, DYRes with improvements in

Software	Numerical integration
Code profiling	Quadrature with interpolating functions
Loop vectorisation	Factorisation of integrals
Hoisting	Analytic integration
Loop unrolling	
Multi-threading	

- Achieved significant enhancement in time performance for a given numerical precision
- The main application is the measurement of the W mass at the LHC
- Other applications: PDF fits including qt-resummation for cross-section predictions, $sin^2\theta_w, \, \alpha_s(m_{_{2}})$
- Two main modes of operation: Vegas integration and Quadrature rules based on interpolating functions

Stefano Camarda

Fast predictions for Drell-Yan processes: DYTurbo

[Camarda,Boonekamp,Bozzi,Catani,Cieri,Cuth,G.F.,deFlorian,Glazov, Grazzini,Vincter,Schott ('20)]

Fast predictions for Drell-Yan processes: DYTurbo

[Camarda,Boonekamp,Bozzi,Catani,Cieri,Cuth,G.F.,deFlorian,Glazov, Grazzini,Vincter,Schott ('20)]

- The most demanding calculation is V+jet
 - \rightarrow can use APPLgrid/FASTnlo for this term

Stefano Camarda

11

NNLO QCD predictions at large q_T

- ATLAS data ($\sqrt{s} = 8 \ TeV$) [1512.02192] (2.8% luminosity uncertainty not shown).
- NNLO (i.e. $\mathcal{O}(\alpha_5^3)$) QCD predictions [G.-DeRidder,Gehrmann,Glover,Huss, Morgan('16)]. NNLO correction positive (~6-8%) and reduce scale dependence (factor 2 around $\mu = \sqrt{M^2 + q_T^2}$).

 $Z q_T$ spectrum ($q_T > 20 \ GeV$).

n the small q_T region effects of soft-gluon resummation are essential At the LHC 90% of the W^{\pm} and Z^0 are produced with $q_T \lesssim 20~GeV$

NNLO QCD predictions at large q_T

- ATLAS data ($\sqrt{s} = 8 \ TeV$) [1512.02192] (2.8% luminosity uncertainty not shown).
- NNLO (i.e. $\mathcal{O}(\alpha_5^3)$) QCD predictions [G.-DeRidder,Gehrmann,Glover,Huss, Morgan('16)]. NNLO correction positive (~6-8%) and reduce scale dependence (factor 2 around $\mu = \sqrt{M^2 + q_T^2}$).

 $Z q_T$ spectrum ($q_T > 20 \ GeV$).

In the small q_T region effects of soft-gluon resummation are essential At the LHC 90% of the W^{\pm} and Z^0 are produced with $q_T \lesssim 20 \text{ GeV}$

Z/γ^* production at N³LL+N³LO

[Camarda,Cieri,G.F.('21)]

DYTurbo results. Resummed (left) and matched (right) NLL, NNLL and N³LL bands for Z/γ^* q_T spectrum.

Lower panel: ratio with respect to the N³LL central value.

Fiducial power corrections

Fiducial power corrections within the q_T subtraction

[Camarda,Cieri,G.F.('21)]

$$\sigma_{fid}^{F} = \int_{cuts} \mathcal{H}^{F} \otimes d\sigma_{LO}^{F} + \int_{cuts} \left[d\sigma_{q_{T} > q_{T}^{cut}}^{F+jets} - d\sigma_{q_{T} > q_{T}^{cut}}^{CT} \right] + \mathcal{O}\left((q_{T}^{cut}/M)^{p} \right)$$

- $d\sigma^{F+\text{jets}}$ and $d\sigma^{CT}$ are *separately* divergent, their sum is finite. A lower limit $q_T > q_T^{cut}$ is necessary with a power correction ambiguity $\mathcal{O}\left((q_T^{cut}/M)^p\right)$.
- Typical cuts on the p_T and rapidities of the final state particles leads to linear (p = 1) "fiducial" power corrections (FPC) $((q_T^{cut}/M)^p)$ [Alekhin et al.('21)].
- The limit q^{cut}_T → 0 leads to large cancellations and large numerical integration uncertainties.
- Key point: FPC are absent in resummed calculations when q_T recoil is correctly taken into account.

$$\int_{cuts} d\sigma^{F+\text{jets}} \xrightarrow{q_T \to 0} \int_{cuts} d\widetilde{\sigma}^{CT} + \mathcal{O}\left(\left(q_T/M\right)^2\right)$$

where $d\tilde{\sigma}^{CT}$ is the q_T subtraction counteterm with the Born amplitude $\hat{\sigma}^{(0)}$ evaluated with the recoil kinematics [Catani,de Florian,G.F.,Grazzini('15)]

Giancarlo Ferrera – Milan University & INFN Drell-Yan production at N^3LL+N^3LO in QCD

Fiducial power corrections within the q_T subtraction

[Camarda,Cieri,G.F.('21)]

$$\sigma_{fid}^{F} = \int_{cuts} \mathcal{H}^{F} \otimes d\sigma_{LO}^{F} + \int_{cuts} \left[d\sigma_{q_{T} > q_{T}^{cut}}^{F+jets} - d\sigma_{q_{T} > q_{T}^{cut}}^{CT} \right] + \mathcal{O}\left((q_{T}^{cut}/M)^{p} \right)$$

- $d\sigma^{F+\text{jets}}$ and $d\sigma^{CT}$ are *separately* divergent, their sum is finite. A lower limit $q_T > q_T^{cut}$ is necessary with a power correction ambiguity $\mathcal{O}\left((q_T^{cut}/M)^p\right)$.
- Typical cuts on the p_T and rapidities of the final state particles leads to linear (p = 1) "fiducial" power corrections (FPC) $((q_T^{cut}/M)^p)$ [Alekhin et al.('21)].
- The limit $q_T^{cut} \rightarrow 0$ leads to large cancellations and large numerical integration uncertainties.
- Key point: FPC are absent in resummed calculations when q_T recoil is correctly taken into account.

$$\int_{cuts} d\sigma^{F+\text{jets}} \xrightarrow{q_T \to 0} \int_{cuts} d\widetilde{\sigma}^{CT} + \mathcal{O}\left(\left(q_T/M\right)^2\right)$$

where $d\tilde{\sigma}^{CT}$ is the q_T subtraction counteterm with the Born amplitude $\hat{\sigma}^{(0)}$ evaluated with the recoil kinematics [Catani,de Florian,G.F.,Grazzini('15)]

Giancarlo Ferrera – Milan University & INFN Drell-Yan production at N^3LL+N^3LO in QCD

Fiducial power corrections within the q_T subtraction

[Camarda,Cieri,G.F.('21)]

$$\sigma_{fid}^{F} = \int_{cuts} \mathcal{H}^{F} \otimes d\sigma_{LO}^{F} + \int_{cuts} \left[d\sigma_{q_{T} > q_{T}^{cut}}^{F+jets} - d\sigma_{q_{T} > q_{T}^{cut}}^{CT} \right] + \mathcal{O}\left((q_{T}^{cut}/M)^{p} \right)$$

- $d\sigma^{F+\text{jets}}$ and $d\sigma^{CT}$ are *separately* divergent, their sum is finite. A lower limit $q_T > q_T^{cut}$ is necessary with a power correction ambiguity $\mathcal{O}\left((q_T^{cut}/M)^p\right)$.
- Typical cuts on the p_T and rapidities of the final state particles leads to linear (p = 1) "fiducial" power corrections (FPC) $((q_T^{cut}/M)^p)$ [Alekhin et al.('21)].
- The limit q^{cut}_T → 0 leads to large cancellations and large numerical integration uncertainties.
- Key point: FPC are absent in resummed calculations when q_T recoil is correctly taken into account.

$$\int_{cuts} d\sigma^{F+\text{jets}} \xrightarrow{q_T \to 0} \int_{cuts} d\widetilde{\sigma}^{CT} + \mathcal{O}\left(\left(q_T/M\right)^2\right)$$

where $d\tilde{\sigma}^{CT}$ is the q_T subtraction counteterm with the Born amplitude $\hat{\sigma}^{(0)}$ evaluated with the recoil kinematics [Catani, de Florian, G.F., Grazzini('15)].

Giancarlo Ferrera – Milan University & INFN Drell–Yan production at N^3LL+N^3LO in QCD

Fiducial power corrections within the q_{T} subtraction

[Camarda,Cieri,G.F.('21)]

 q_T subtraction formula without FPC

$$\sigma_{fid}^{F} = \int_{cuts} \mathcal{H}^{F} \otimes d\sigma_{LO}^{F} + \int_{cuts} \left[d\sigma_{q_{T} > q_{T}}^{F+\text{jets}} - d\sigma_{q_{T} > q_{T}}^{CT} \right] + \int_{cuts} \frac{d\sigma^{FPC}}{\sigma_{T}} + \mathcal{O}\left((q_{T}^{cut}/M)^{2} \right)$$

with

$$d\sigma^{FPC} = \left[d\widetilde{\sigma}_{q_{T} < q_{T}^{cut}}^{CT} - d\sigma_{q_{T} < q_{T}^{cut}}^{CT} \right]$$

• $d\sigma^{FPC}$ is *universal* and IR finite.

- can be treated as a *local* subtraction: integration for $q_T < q_T^{cut}$ extended at arbitrary small q_T (e.g. $q_T/M \sim 10^{-6} \text{ GeV}$)
- Equivalent methods have been proposed by [Ebert et al.('20), Buonocore et al.('21)]

Fiducial power corrections within the q_{T} subtraction

[Camarda,Cieri,G.F.('21)]

 q_T subtraction formula without FPC

$$\sigma_{fid}^{F} = \int_{cuts} \mathcal{H}^{F} \otimes d\sigma_{LO}^{F} + \int_{cuts} \left[d\sigma_{q_{T} > q_{T}^{cut}}^{F+jets} - d\sigma_{q_{T} > q_{T}^{cut}}^{CT} \right] + \int_{cuts} \frac{d\sigma_{PO}^{FPO}}{d\sigma_{T}^{FPO}} + \mathcal{O}\left((q_{T}^{cut}/M)^{2} \right)$$

with

$$d\sigma^{FPC} = \left[d\widetilde{\sigma}_{q_{T} < q_{T}^{cut}}^{CT} - d\sigma_{q_{T} < q_{T}^{cut}}^{CT} \right]$$

• $d\sigma^{FPC}$ is universal and IR finite.

- can be treated as a *local* subtraction: integration for $q_T < q_T^{cut}$ extended at arbitrary small q_T (e.g. $q_T/M \sim 10^{-6} \,\text{GeV}$)
- Equivalent methods have been proposed by [Ebert et al.('20), Buonocore et al.('21)]

Fiducial power corrections at NLO

 Z/γ^* production and decay at the LHC (13 TeV). CUTS on leptons: $p_T > 25$ GeV, $|\eta| < 2.5$, $66 < M_{ll} < 116$ GeV, $q_T < 100$ GeV.

NLO results with the q_T subtraction method (blue squared points) and q_T subtraction method without FPC (red circled points) at various values of q_T^{cut} , and with a local subtraction method (black line).

Fiducial power corrections at NNLO

 Z/γ^* production and decay at the LHC (13 TeV). CUTS on leptons: $p_T > 25$ GeV, $|\eta| < 2.5$, $66 < M_{ll} < 116$ GeV, $q_T < 100$ GeV.

NNLO results with the q_T subtraction method (blue squared points) and q_T subtraction method without FPC (red circled points) at various values of q_T^{cut} , and with a local subtraction method (black line).

Fiducial power corrections at NLO and NNLO

Order	NLO	NNLO
q_T subtr. $(q_T^{cut}=1{ m GeV})$	$768.8\pm0.1\text{pb}$	$753.3\pm0.3\text{pb}$
q_T subtr. ($q_T^{cut} = 0.5 { m GeV}$)	$766.8\pm0.1\text{pb}$	$753.8\pm0.2\text{pb}$
recoil q_T subtr.	$764.4\pm0.1\text{pb}$	$759.1\pm0.3\text{pb}$
local subtraction	$764.4\pm0.1\text{pb}$	$759.0\pm0.7\text{pb}$

Fiducial cross sections at the LHC ($\sqrt{s} = 13$ TeV): fixed-order results at NLO and NNLO. The uncertainties refer to an estimate of the numerical uncertainties.

Fiducial power corrections at N³LO

Fiducial cross sections at the LHC ($\sqrt{s} = 13$ TeV): fixed-order results at N³LO. The uncertainties refer to an estimate of the numerical uncertainties.

Fiducial power corrections up to N³LO

- Flip sign of the FPC with order. Alternating-sign "unphysical" factorial growth of the FO expansion due to symmetric cuts [Salam,Slade('21)].
- Unphysical behaviour can be removed within resummed perturbative predictions. *However* the goal of having precise FO calculations is very relevant.
- No reduction of FPC with higher orders. At N³LO with $q_T^{cut} = 0.05 \text{ GeV} 0.4\%$ (+0.3% from α_S^2 and a -0.7% α_S^3 .
- Our method is crucial when *local* calculations are not available or when large numerical uncertainties are associated to the q_T → 0 limit (e.g. at N³LO).

Conclusions

- To fully exploit the information contained in the experimental data, and to increase the LHC discovery power, precise theoretical predictions are necessary ⇒ computation of higher-order pQCD corrections.
- Discussed formalisms necessary to perform fixed-order and q_T resummed predictions up to N³LL+N³LO and presented results for Drell-Yan production at the LHC.
- Presented a method to remove linear fiducial power corrections within the q_T -subtraction formalism.
- Computations encoded in the fast and numerically precise publicly available code DYTurbo:

https://dyturbo.hepforge.org

Conclusions

- To fully exploit the information contained in the experimental data, and to increase the LHC discovery power, precise theoretical predictions are necessary ⇒ computation of higher-order pQCD corrections.
- Discussed formalisms necessary to perform fixed-order and q_T resummed predictions up to N³LL+N³LO and presented results for Drell-Yan production at the LHC.
- Presented a method to remove linear fiducial power corrections within the q_T -subtraction formalism.
- Computations encoded in the fast and numerically precise publicly available code DYTurbo:

https://dyturbo.hepforge.org

Back up slides

Giancarlo Ferrera – Milan University & INFN Drell–Yan production at N^3LL+N^3LO in QCD

DYRes results: q_T spectrum of Z boson at the LHC

NLL+NLO and NNLL+NNLO bands for $Z/\gamma^* q_T$ spectrum compared with CMS (left) and ATLAS (right) data.

Lower panel: ratio with respect to the NNLL+NNLO central value.

Program performances: for high statistic runs (i.e. few per mille accuracy on cross sections) on a single CPU: \sim 1 day at full NLL, \sim 3 days at full NNLL.

Giancarlo Ferrera – Milan University & INFN Drell–Yan production at N³LL+N³LO in QCD DESY - 16/12/2021 37/35