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• The soft and collinear singularities have a process-independent 
structure, and they are controlled by universal factorization formulae 
and corresponding soft/collinear factors

Motivation
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These factorization properties are 
relevant for both fixed-order and 

resummed QCD calculations

• Soft/collinear factorization formulae can be used to organize and greatly 
simplify the cancellation mechanism of the infrared (IR) divergences in 
fixed-order calculations between phase space soft/collinear singularities 
and virtual IR divergences

• Real and virtual radiative corrections in scattering amplitudes are 
kinematically  strongly unbalanced (close to the exclusive boundary of 
the phase space). The cancellation of IR divergences among them 
produces large logs Soft/collinear factorization formulae 

and the corresponding singular 
factors are the basic ingredients for 

the explicit computation and 
resummation of these large logarithms



• The singular factors at O("s) and O("s2) for soft and collinear factorization of 
scattering amplitudes are known since long time
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• At O("s) they have been essential to devise fully general methods to carry out next-
to-leading order (NLO) QCD calculations

• At O("s2) similar considerations to NNLO QCD methods

Frixione, Kunszt, Signer (1995); Frixione (1997)
Catani, Seymour (1996)

Campbell, Glover (1997)
Catani, Grazzini (1998,1999,2000)
Bern, Del Duca, Schmidt (1998)
Kosower, Uwer (1999)
Bern, Del Duca, Kilgore, Schmidt (1999)
Czakon (2011)
Bierenbaum, Czakon, Mitov (2011); Czakon, Mitov (2018)
Catani, de Florian, Rodrigo (2011)
Sborlini, de Florian, Rodrigo (2013)

Soft/collinear factorization contributes to resummed calculations up to

next-to-next-to-leading logarithmic accuracy (NNLL)

Becher, Broggio, Ferroglia (2014)
Luisoni, Marzani (2015)

• At O("s3) soft/collinear factorization can be used in the context of N3LO calculations 
and resummed computations at N3LL accuracy
Process-independent singular factors for the various collinear limits

Soft currents 
• Triple soft gluon radiation at the tree level

• Double soft emission at one loop level (has been consider recently)

• Single soft-gluon radiation at two loop order

Del Duca, Frizzo, Maltoni (1999)
Birthwright, Glover, Khoze, Marquard (2005)
Del Duca, Duhr, Haindl, Lazopoulos, Michel (2019) (2007)
Catani, de Florian, Rodrigo (2003)

Sborlini, de Florian, Rodrigo (2014) Badger, Buciuni, Peraro (2015) Bern, Dixon, Kosower (2004) Badger, Glover (2004)
Duhr, Gehrmann, Jaquier (2014) Catani, de Florian, Rodrigo (2011)

Catani, Colferai, Torrini (2019)
Zhu (2020) Catani, LC  (2021)
Badger, Glover (2004) Li, Zhu (2013)
Duhr, Gehrmann (2013) Dixon, Herrmann, Yan, Zhu (2019)

Motivation



• We consider the amplitude M of a generic scattering process whose 
external particles are QCD partons and possibly, additional non-QCD 
particles

Soft Factorization
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cludes the corresponding spin wave functions), and we always define the external momenta
pi’s as outgoing momenta. Note, however, that we do no restrict our treatment to processes
with physical partons in the final state. In particular, the time-component (i.e. the ‘en-
ergy’) p0i of the momentum vector pνi (ν = 0, 1, . . . , d− 1) in d space-time dimensions is not
positive definite. Different types of physical processes are described by considering differ-
ent kinematical regions of the parton momenta and by simply applying crossing symmetry
to the wave functions and quantum numbers of the external partons of the same matrix
element M(p1, p2, . . . , pn). According to our definition of the momenta, if pi has positive
energy, M(. . . , pi, . . . ) describes a physical process that produces the parton Ai in the final
state; if pi has negative energy, M(. . . , pi, . . . ) describes a physical process produced by
the collision of the antiparton Ai in the initial state.

The scattering amplitude M also depends on the colour indices {c1, c2, . . . } and on the
spin (e.g. helicity) indices {s1, s2, . . . } of the external QCD partons, and we write

Mc1,c2,...,cn
s1,s2,...,sn

(p1, p2, . . . , pn) . (1)

It is convenient to directly work in colour (and spin) space, and to use the notation of
Ref. [16] (see also Ref. [44]). We treat the colour and spin structures by formally intro-
ducing an orthonormal basis {|c1, c2, . . . , cn〉 ⊗ |s1, s2, . . . , sn〉} in colour + spin space. The
scattering amplitude can be written as

Mc1,c2,...
s1,s2,...

(p1, p2, . . . ) ≡
(
〈c1, c2, . . .|⊗ 〈s1, s2, . . .|

)
|M(p1, p2, . . . )〉 . (2)

Thus |M(p1, p2, . . . , pn)〉 is a vector in colour + spin (helicity) space.

As previously stated, we define the external momenta pi’s as outgoing momenta. The
colour indices {c1, c2, . . . cn} are consistently defined as outgoing colour indices: ci is the
colour index of the parton Ai with outgoing momentum pi (if pi has negative energy, ci is
the colour index of the physical parton Ai that collides in the initial state). An analogous
comment applies to spin indices.

The amplitude M can be evaluated in QCD perturbation theory as a power series
expansion (i.e., loop expansion) in the QCD coupling gS (or, equivalently, in the strong
coupling αS = g2S/(4π)). We write

M = M(0) +M(1) +M(2) + . . . , (3)

where M(0) is the tree-level scattering amplitude, M(1) is the one-loop contribution, M(2)

is the two-loop contribution, and so forth. More generally, M(0) is not necessarily a tree
amplitude, but rather the lowest-order amplitude for that given process. Thus, M(L)

(L = 1, 2 . . . ) is the corresponding L-loop correction. For instance, in the cases of the
diphoton production process gg → γγ or the Higgs boson (H) production process gg → H,
the corresponding amplitude M(0) involves a quark loop (a massive-quark loop in the case
of gg → H). Note that in Eq. (3) we have not made explicit the dependence on powers
of gS. Thus, M(0) includes an integer power of gS as overall factor, and M(1) includes an
extra factor of g2S (i.e., M(1)/M(0) ∝ g2S).

Physical processes take place in four-dimensional space-time. The four-dimensional
evaluation of the L-loop amplitude M(L) leads to UV and IR divergences that have to be
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• We regularize ultraviolet (UV) and infrared (IR) divergences by performing 

the analytic continuation of the loop momenta and phase -space in d=4-2! 
space-time dimensions



• Let us assume that M is in the kinematical configuration where one 
or more the momenta of the external massless partons (gluons or 
massless quarks or antiquarks) become soft

Soft Factorization
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properly regularized. We regularize both kind of divergences by performing the analytic
continuation of the loop momenta and phase-space in d = 4−2ε space-time dimensions. We
postpone comments on different variants of dimensional regularization. The dimensional-
regularization scale is denoted by µ. After regularization, the UV and IR divergences
appears as ε-poles of the Laurent series expansion in powers of ε around ε = 0. Throughout
the paper we formally consider expressions for arbitrary values of d = 4−2ε (equivalently, in
terms of ε expansions, the expressions are valid to all orders in ε before they are eventually
truncated at some order in ε). We always consider unrenormalized amplitudes, and gS
denotes the bare (unrenormalized) coupling constant.

We are interested in studying the behaviour of M in the kinematical configuration
where one or more of the momenta of the external massless partons (gluons or massless
quark and antiquarks) become soft. In this kinematical configuration, M becomes singular.
To make the notation more explicit, the soft momenta are denoted by qνk , while the other
parton momenta are still denoted by pνi . The behaviour of M(. . . , qk, . . . , pi, . . . ) in this
multiparton soft region is formally specified by performing an overall rescaling of all soft
momenta as qk → λqk (the rescaling parameter λ is the same for each soft momentum qk)
and by considering the limit λ → 0. In this limit, if the set of soft partons has m (m ≥ 1)
momenta qk’s (k = 1, . . . ,m), the amplitude M is singular and it behaves as

M(λq1, . . . ,λqm, p1 . . . , pn) ∼
1

(λ)m
mod (lnr λ) + . . . , (λ → 0) . (4)

The power-like behaviour (λ)−m that we have specified in the right-hand side of Eq. (4)
determines the dominant singular terms of M in the multiple soft region. The logarithmic
corrections lnr λ (r = 0, 1, 2, . . . ) arise from scaling violation, since the näıve (power-like)
scaling behaviour is violated by the effects of the UV and IR divergences of the scattering
amplitude at the loop level (see Sect. 3). The dots on the right-hand side of Eq. (4)
denote the subdominant singular behaviour of M. The relative suppression factor between
subdominant and dominant terms is (at least) of O(

√
λ).

The computation of physical observables eventually requires the phase-space integration
of the squared amplitude |M|2. We note that, after phase-space integration over the soft
momenta, the dominant singular behaviour of |M|2 produces logarithmic soft (IR) diver-
gences (i.e., ε poles), whereas the subdominant singular behaviour does not lead to soft
divergences. In this paper we are interested in the dominant singular behaviour of Eq. (4).

In the soft multiparton limit, the dominant singular behaviour of M can be expressed
by the following process-independent (universal) factorization formula [45, 21, 22, 23, 46]

|M(q1, . . . , qm, p1, . . . , pn)〉 = J(q1, . . . , qm) |M(p1, . . . , pn)〉+ . . . , (5)

where, analogously to Eq. (4), the dots on the right-hand side denote subdominant singular
terms. The amplitude M(p1, . . . , pn) on the right-hand side of Eq. (5) is simply obtained by
removing the m external legs with soft parton momenta q1, . . . , qm from the amplitude on
the left-hand side. The factor J(q1, . . . , qm) is the soft multiparton current that embodies
the dominant singular behaviour denoted in the right-hand side of Eq. (4).

In the case of tree-level scattering amplitudes [47, 48, 22], the factorization formula
(5) can be simply derived by considering soft-parton radiation from the hard-parton (the
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Bern, Del Duca, Kilgore, Schmidt (1995)
Catani, Grazzini (1999, 2000)
Feige, Schwartz (2014)
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• In the case of tree-level scattering amplitudes the factorization formula 
can be simply derived by considering soft-parton radiation from the 
hard-parton external legs of the amplitude and by directly applying the 
eikonal approximation for emission vertices and propagators.

• At one-loop level the soft current can still be computed by using the eikonal 
approximation for soft-parton radiation from the external hard partons, and 
this discussion generalizes to two-loop and higher-loop orders.

Bassetto, Ciafaloni, Marchesini (1983) Berends, Giele (1989) Catani, Grazzini (1999)

Bern, Chalmers (1995) Bern, Del Duca, Kilgore, Schmidt (1995) Catani, Grazzini (2000)
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be expressed in terms of a loop expansion that is completely analogous to that in Eq. (3).
We write

J = J (0) + J (1) + J (2) + . . . , (6)

where J (0) is the tree-level current, J (1) is the one-loop current, and so forth. Analogously
to Eq. (3), the loop label L in J (L) refers to the unrenormalized current. Inserting the
expansions (3) and (6) in Eq. (5) we obtain factorization formulae that are valid order-by-
order in the number of loops. The soft factorization formula for tree-level (lowest-order)
amplitudes is

|M(0)(q1, . . . , qm, p1, . . . , pn)〉 " J (0)(q1, . . . , qm) |M(0)(p1, . . . , pn)〉 , (7)

where the symbol ‘"’ means† that we are neglecting subdominant terms in the soft limit
(i.e., the terms denoted by dots in the right-hand side of Eqs. (4) and (5)). The soft
factorization formula for one-loop amplitudes is

|M(1)(q1, . . . , qm, p1, . . . , pn)〉 " J (1)(q1, . . . , qm) |M(0)(p1, . . . , pn)〉 (8)

+ J (0)(q1, . . . , qm) |M(1)(p1, . . . , pn)〉 .

The tree-level current for the emission of a single soft gluon of momentum qν is well
known [47]:

J (0)(q) = gS µ
ε
∑

i∈H

T i

pi · ε(q)
pi · q

≡ J (0)
ν (q)εν(q) , (9)

where the notation i ∈ H means that the sum extends over all hard partons (with momenta
pi) in M, εν(q) is the spin polarization vector of the soft gluon, and T i is the colour charge
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We note that the colour charge operators T i fulfil some relevant properties related to
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which follows from the fact that the scattering amplitude M is a colour-singlet state (the
notation i ∈ M means that the sum in Eq. (10) extends over all external partons of M).

†The symbol ‘"’ is used throughout the paper with the same meaning as in Eq. (7).
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soft single-quark limit (the radiation of a single soft quark only produces a subdominant
behaviour of O(1/

√
λ) in the right-hand side of Eq. (4)).

The tree-level current for emission of a soft qq̄ pair was computed in Ref. [22], where
the result was explicitly reported at the level of squared amplitudes (i.e., the result refers
to J †J). The corresponding result for the qq̄ current is

J (0)(q1, q2) = − (gSµ
ε)2
∑

i∈H

tc T c
i

pi · j(1, 2)
pi · q12

, (14)

where we have introduced the fermionic current jν(1, 2),

jν(1, 2) ≡
u(q1) γν v(q2)

q212
, q12 = q1 + q2 . (15)

The soft quark and antiquark have momenta qν1 and qν2 , respectively, and u(q) and v(q) are
the customary Dirac spinors. The spin indices (s1 and s2) and the colour indices (α1 and
α2) of the quark and antiquark are embodied in the colour+spin space notation of Eq. (14).
Analogously to Eq. (9), we can consider (〈α1,α2| ⊗ 〈s1, s2| )J(q1, q2) ≡ Jα1,α2

s1,s2
(q1, q2) and

we have (〈α1,α2|⊗ 〈s1, s2| ) tc u(q1) γν v(q2) = tcα1α2
u(s1)(q1) γ

ν v(s2)(q2).

3 One-loop current for multiple soft emission: UV

and IR divergences

The soft singular behaviour of one-loop amplitudes (see Eq. (8)) is controlled by J (0) and
by an additional new ingredient, the one-loop soft current J (1).

The one-loop soft limit for emission of a single soft gluon was worked out independently
by two groups [21, 23], finding results that are in agreement. The analysis of Ref. [21]
is based on the study of colour-ordered subamplitudes, while Ref. [23] considers generic
scattering amplitudes. The results of Refs. [21, 23] are valid for the case of massless hard
partons. The generalization of the results of Ref. [23] to include massive hard partons (such
as heavy quarks) was carried out in Ref. [25]. In the remaining part of this paper we limit
ourselves to consider scattering amplitudes with massless hard partons.

The result of the one-loop current for single gluon emission is [23] (we explicitly write
J (1) a ≡ 〈a|J (1), where a is the colour index of the soft gluon):

J (1) a = − (gS µ
ε)3 cΓ

1

ε2
Γ(1− ε)Γ(1 + ε) ifabc

×
∑

i,j ∈H
i "= j

T b
i T

c
j

(
pνi

pi · q
−

pνj
pj · q

)
εν(q)

(−2pi · q − i0)−ε (−2pj · q − i0)−ε

(−2pi · pj − i0)−ε , (16)

where ‘x − i0’ denotes the customary Feynman prescription for analytic continuation in
different kinematical regions (x > 0 and x < 0) and cΓ is the typical volume factor of
d-dimensional one-loop integrals:

cΓ ≡
Γ(1 + ε)Γ2(1− ε)

(4π)2−ε Γ(1− 2ε)
. (17)
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α2) of the quark and antiquark are embodied in the colour+spin space notation of Eq. (14).
Analogously to Eq. (9), we can consider (〈α1,α2| ⊗ 〈s1, s2| )J(q1, q2) ≡ Jα1,α2

s1,s2
(q1, q2) and

we have (〈α1,α2|⊗ 〈s1, s2| ) tc u(q1) γν v(q2) = tcα1α2
u(s1)(q1) γ

ν v(s2)(q2).

3 One-loop current for multiple soft emission: UV

and IR divergences

The soft singular behaviour of one-loop amplitudes (see Eq. (8)) is controlled by J (0) and
by an additional new ingredient, the one-loop soft current J (1).

The one-loop soft limit for emission of a single soft gluon was worked out independently
by two groups [21, 23], finding results that are in agreement. The analysis of Ref. [21]
is based on the study of colour-ordered subamplitudes, while Ref. [23] considers generic
scattering amplitudes. The results of Refs. [21, 23] are valid for the case of massless hard
partons. The generalization of the results of Ref. [23] to include massive hard partons (such
as heavy quarks) was carried out in Ref. [25]. In the remaining part of this paper we limit
ourselves to consider scattering amplitudes with massless hard partons.

The result of the one-loop current for single gluon emission is [23] (we explicitly write
J (1) a ≡ 〈a|J (1), where a is the colour index of the soft gluon):

J (1) a = − (gS µ
ε)3 cΓ

1

ε2
Γ(1− ε)Γ(1 + ε) ifabc

×
∑

i,j ∈H
i "= j

T b
i T

c
j

(
pνi

pi · q
−

pνj
pj · q

)
εν(q)

(−2pi · q − i0)−ε (−2pj · q − i0)−ε

(−2pi · pj − i0)−ε , (16)

where ‘x − i0’ denotes the customary Feynman prescription for analytic continuation in
different kinematical regions (x > 0 and x < 0) and cΓ is the typical volume factor of
d-dimensional one-loop integrals:

cΓ ≡
Γ(1 + ε)Γ2(1− ε)

(4π)2−ε Γ(1− 2ε)
. (17)
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be expressed in terms of a loop expansion that is completely analogous to that in Eq. (3).
We write

J = J (0) + J (1) + J (2) + . . . , (6)

where J (0) is the tree-level current, J (1) is the one-loop current, and so forth. Analogously
to Eq. (3), the loop label L in J (L) refers to the unrenormalized current. Inserting the
expansions (3) and (6) in Eq. (5) we obtain factorization formulae that are valid order-by-
order in the number of loops. The soft factorization formula for tree-level (lowest-order)
amplitudes is

|M(0)(q1, . . . , qm, p1, . . . , pn)〉 " J (0)(q1, . . . , qm) |M(0)(p1, . . . , pn)〉 , (7)

where the symbol ‘"’ means† that we are neglecting subdominant terms in the soft limit
(i.e., the terms denoted by dots in the right-hand side of Eqs. (4) and (5)). The soft
factorization formula for one-loop amplitudes is

|M(1)(q1, . . . , qm, p1, . . . , pn)〉 " J (1)(q1, . . . , qm) |M(0)(p1, . . . , pn)〉 (8)

+ J (0)(q1, . . . , qm) |M(1)(p1, . . . , pn)〉 .

The tree-level current for the emission of a single soft gluon of momentum qν is well
known [47]:

J (0)(q) = gS µ
ε
∑

i∈H

T i

pi · ε(q)
pi · q

≡ J (0)
ν (q)εν(q) , (9)

where the notation i ∈ H means that the sum extends over all hard partons (with momenta
pi) in M, εν(q) is the spin polarization vector of the soft gluon, and T i is the colour charge
of the hard parton i.

The spin index s and the colour index a (a = 1, . . . , N2
c − 1, for SU(Nc) QCD with

Nc colours) of the soft gluon can be specified by acting onto Eq. (9) in colour+spin space
as in Eq. (2). Considering (〈a| ⊗ 〈s| )J (0)(q) ≡ J (0) a

s (q), we have (〈a| ⊗ 〈s| ) εν(q)T i =
εν(s)(q) T

a
i , where T a

i denotes the generators of SU(Nc) of the representation of the parton
i. We have 〈ci|T a

i |c′i〉 = (T a
i )ci c′i , where (T a)cb ≡ ifcab (colour-charge matrix in the adjoint

representation) if the parton i is a gluon and (T a)αβ ≡ taαβ (colour-charge matrix in the
fundamental representation, with α, β = 1, . . . , Nc) if the parton i is a quark ((T a)αβ ≡
t̄aαβ = −taβα if the parton i is an antiquark). We normalize the colour matrices such as
[ta, tb] = ifabc and Tr(tatb) = TR δab with TR = 1/2. The colour-charge algebra gives
[T a

i , T
b
j ] = ifabcT a

i δij and
∑

a T
a
i T

a
j ≡ T i · T j with T 2

i = Ci, where Ci is the Casimir
operator of the representation of the parton i, i.e. Ci = CA = Nc if i is a gluon and
Ci = CF = (N2

c − 1)/(2Nc) if i is a quark or antiquark.

We note that the colour charge operators T i fulfil some relevant properties related to
colour conservation. For instance, we have [16]

∑

i∈M

T i |M〉 = 0 , (10)

which follows from the fact that the scattering amplitude M is a colour-singlet state (the
notation i ∈ M means that the sum in Eq. (10) extends over all external partons of M).

†The symbol ‘"’ is used throughout the paper with the same meaning as in Eq. (7).
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The one-loop soft current for single gluon emission
Catani, Grazzini (2000)
Bern, Del Duca, Schmidt (1999)

soft single-quark limit (the radiation of a single soft quark only produces a subdominant
behaviour of O(1/

√
λ) in the right-hand side of Eq. (4)).

The tree-level current for emission of a soft qq̄ pair was computed in Ref. [22], where
the result was explicitly reported at the level of squared amplitudes (i.e., the result refers
to J †J). The corresponding result for the qq̄ current is

J (0)(q1, q2) = − (gSµ
ε)2
∑

i∈H

tc T c
i

pi · j(1, 2)
pi · q12

, (14)

where we have introduced the fermionic current jν(1, 2),

jν(1, 2) ≡
u(q1) γν v(q2)

q212
, q12 = q1 + q2 . (15)

The soft quark and antiquark have momenta qν1 and qν2 , respectively, and u(q) and v(q) are
the customary Dirac spinors. The spin indices (s1 and s2) and the colour indices (α1 and
α2) of the quark and antiquark are embodied in the colour+spin space notation of Eq. (14).
Analogously to Eq. (9), we can consider (〈α1,α2| ⊗ 〈s1, s2| )J(q1, q2) ≡ Jα1,α2

s1,s2
(q1, q2) and

we have (〈α1,α2|⊗ 〈s1, s2| ) tc u(q1) γν v(q2) = tcα1α2
u(s1)(q1) γ

ν v(s2)(q2).

3 One-loop current for multiple soft emission: UV

and IR divergences

The soft singular behaviour of one-loop amplitudes (see Eq. (8)) is controlled by J (0) and
by an additional new ingredient, the one-loop soft current J (1).

The one-loop soft limit for emission of a single soft gluon was worked out independently
by two groups [21, 23], finding results that are in agreement. The analysis of Ref. [21]
is based on the study of colour-ordered subamplitudes, while Ref. [23] considers generic
scattering amplitudes. The results of Refs. [21, 23] are valid for the case of massless hard
partons. The generalization of the results of Ref. [23] to include massive hard partons (such
as heavy quarks) was carried out in Ref. [25]. In the remaining part of this paper we limit
ourselves to consider scattering amplitudes with massless hard partons.

The result of the one-loop current for single gluon emission is [23] (we explicitly write
J (1) a ≡ 〈a|J (1), where a is the colour index of the soft gluon):

J (1) a = − (gS µ
ε)3 cΓ

1

ε2
Γ(1− ε)Γ(1 + ε) ifabc

×
∑

i,j ∈H
i "= j

T b
i T

c
j

(
pνi

pi · q
−

pνj
pj · q

)
εν(q)

(−2pi · q − i0)−ε (−2pj · q − i0)−ε

(−2pi · pj − i0)−ε , (16)

where ‘x − i0’ denotes the customary Feynman prescription for analytic continuation in
different kinematical regions (x > 0 and x < 0) and cΓ is the typical volume factor of
d-dimensional one-loop integrals:

cΓ ≡
Γ(1 + ε)Γ2(1− ε)

(4π)2−ε Γ(1− 2ε)
. (17)
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The tree-level current for emission of a soft qq̄ pair was computed in Ref. [22], where
the result was explicitly reported at the level of squared amplitudes (i.e., the result refers
to J †J). The corresponding result for the qq̄ current is

J (0)(q1, q2) = − (gSµ
ε)2
∑

i∈H

tc T c
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pi · j(1, 2)
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, (14)

where we have introduced the fermionic current jν(1, 2),

jν(1, 2) ≡
u(q1) γν v(q2)

q212
, q12 = q1 + q2 . (15)

The soft quark and antiquark have momenta qν1 and qν2 , respectively, and u(q) and v(q) are
the customary Dirac spinors. The spin indices (s1 and s2) and the colour indices (α1 and
α2) of the quark and antiquark are embodied in the colour+spin space notation of Eq. (14).
Analogously to Eq. (9), we can consider (〈α1,α2| ⊗ 〈s1, s2| )J(q1, q2) ≡ Jα1,α2

s1,s2
(q1, q2) and

we have (〈α1,α2|⊗ 〈s1, s2| ) tc u(q1) γν v(q2) = tcα1α2
u(s1)(q1) γ

ν v(s2)(q2).

3 One-loop current for multiple soft emission: UV

and IR divergences

The soft singular behaviour of one-loop amplitudes (see Eq. (8)) is controlled by J (0) and
by an additional new ingredient, the one-loop soft current J (1).

The one-loop soft limit for emission of a single soft gluon was worked out independently
by two groups [21, 23], finding results that are in agreement. The analysis of Ref. [21]
is based on the study of colour-ordered subamplitudes, while Ref. [23] considers generic
scattering amplitudes. The results of Refs. [21, 23] are valid for the case of massless hard
partons. The generalization of the results of Ref. [23] to include massive hard partons (such
as heavy quarks) was carried out in Ref. [25]. In the remaining part of this paper we limit
ourselves to consider scattering amplitudes with massless hard partons.

The result of the one-loop current for single gluon emission is [23] (we explicitly write
J (1) a ≡ 〈a|J (1), where a is the colour index of the soft gluon):

J (1) a = − (gS µ
ε)3 cΓ

1

ε2
Γ(1− ε)Γ(1 + ε) ifabc

×
∑

i,j ∈H
i "= j
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i T

c
j

(
pνi

pi · q
−

pνj
pj · q

)
εν(q)

(−2pi · q − i0)−ε (−2pj · q − i0)−ε

(−2pi · pj − i0)−ε , (16)

where ‘x − i0’ denotes the customary Feynman prescription for analytic continuation in
different kinematical regions (x > 0 and x < 0) and cΓ is the typical volume factor of
d-dimensional one-loop integrals:

cΓ ≡
Γ(1 + ε)Γ2(1− ε)

(4π)2−ε Γ(1− 2ε)
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be expressed in terms of a loop expansion that is completely analogous to that in Eq. (3).
We write

J = J (0) + J (1) + J (2) + . . . , (6)

where J (0) is the tree-level current, J (1) is the one-loop current, and so forth. Analogously
to Eq. (3), the loop label L in J (L) refers to the unrenormalized current. Inserting the
expansions (3) and (6) in Eq. (5) we obtain factorization formulae that are valid order-by-
order in the number of loops. The soft factorization formula for tree-level (lowest-order)
amplitudes is

|M(0)(q1, . . . , qm, p1, . . . , pn)〉 " J (0)(q1, . . . , qm) |M(0)(p1, . . . , pn)〉 , (7)

where the symbol ‘"’ means† that we are neglecting subdominant terms in the soft limit
(i.e., the terms denoted by dots in the right-hand side of Eqs. (4) and (5)). The soft
factorization formula for one-loop amplitudes is

|M(1)(q1, . . . , qm, p1, . . . , pn)〉 " J (1)(q1, . . . , qm) |M(0)(p1, . . . , pn)〉 (8)

+ J (0)(q1, . . . , qm) |M(1)(p1, . . . , pn)〉 .

The tree-level current for the emission of a single soft gluon of momentum qν is well
known [47]:

J (0)(q) = gS µ
ε
∑

i∈H

T i

pi · ε(q)
pi · q

≡ J (0)
ν (q)εν(q) , (9)

where the notation i ∈ H means that the sum extends over all hard partons (with momenta
pi) in M, εν(q) is the spin polarization vector of the soft gluon, and T i is the colour charge
of the hard parton i.

The spin index s and the colour index a (a = 1, . . . , N2
c − 1, for SU(Nc) QCD with

Nc colours) of the soft gluon can be specified by acting onto Eq. (9) in colour+spin space
as in Eq. (2). Considering (〈a| ⊗ 〈s| )J (0)(q) ≡ J (0) a

s (q), we have (〈a| ⊗ 〈s| ) εν(q)T i =
εν(s)(q) T

a
i , where T a

i denotes the generators of SU(Nc) of the representation of the parton
i. We have 〈ci|T a

i |c′i〉 = (T a
i )ci c′i , where (T a)cb ≡ ifcab (colour-charge matrix in the adjoint

representation) if the parton i is a gluon and (T a)αβ ≡ taαβ (colour-charge matrix in the
fundamental representation, with α, β = 1, . . . , Nc) if the parton i is a quark ((T a)αβ ≡
t̄aαβ = −taβα if the parton i is an antiquark). We normalize the colour matrices such as
[ta, tb] = ifabc and Tr(tatb) = TR δab with TR = 1/2. The colour-charge algebra gives
[T a

i , T
b
j ] = ifabcT a

i δij and
∑

a T
a
i T

a
j ≡ T i · T j with T 2

i = Ci, where Ci is the Casimir
operator of the representation of the parton i, i.e. Ci = CA = Nc if i is a gluon and
Ci = CF = (N2

c − 1)/(2Nc) if i is a quark or antiquark.

We note that the colour charge operators T i fulfil some relevant properties related to
colour conservation. For instance, we have [16]

∑

i∈M

T i |M〉 = 0 , (10)

which follows from the fact that the scattering amplitude M is a colour-singlet state (the
notation i ∈ M means that the sum in Eq. (10) extends over all external partons of M).

†The symbol ‘"’ is used throughout the paper with the same meaning as in Eq. (7).
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Which is modified by 
through logarithmic 

corrections by the loop 
interactions

We remark that Eq. (16) gives the complete result to all orders in the ε expansion around
ε = 0 (equivalently, the result in arbitrary d = 4− 2ε space-time dimensions).

We comment on some features of Eq. (16). The one-loop current is proportional to the
structure constants fabc of the gauge group and, therefore, it is purely non-abelian. This
is in agreement with the absence of one-loop corrections to the soft current for single soft-
photon emission in massless QED [51]. The current in Eq. (16) involves non-abelian colour
correlations, ifabc T b

i T
c
j , with two hard partons. Its kinematical structure has a rational

dependence on pi ·ε(q)/pi · q (which is analogous to that in the tree-level current of Eq. (9))
that is only modified through logarithmic corrections by the one-loop interactions. The
logarithmic corrections are due to the ε expansion of the last factor in the right-hand side
of Eq. (16), and they are proportional to powers of ln q2⊥ ij (modulo branch-cut effects),
where q⊥ ij,

q2⊥ ij =
2(pi · q)(pj · q)

pi · pj
, (18)

has a simple kinematical interpretation since it is the transverse component of the gluon
momentum q with respect to the longitudinal direction singled out by the momenta pi and
pj (in a reference frame in which pi and pj are back-to-back) of the colour-correlated partons.
The overall scaling behaviour of J (1)(λq) (with λ > 0) in the limit λ → 0 is proportional
to (λ2)−ε/λ = (1/λ)mod(εr lnr λ), and it is in agreement with Eq. (4). In particular, we
explicitly see that the lnλ-enhancement is produced by the use of dimensional regularization
to avoid the IR and UV divergences in the one-loop contribution to J . Performing the ε
expansion of Eq. (16), this IR and UV behaviour produces double (1/ε2) and single (1/ε)
poles near ε = 0.

The two-loop current for single soft-gluon emission was computed in Ref. [37] up to
including contributions of O(ε0) for the simplest case of scattering amplitudes with only
two hard partons. Subsequently this result was extended up to O(ε2) [41, 42] and to all
orders in ε [42]. The two-loop result of Refs. [37, 41, 42] has a structure that is very
similar to the one-loop current in Eq. (16). More involved structures, in terms of both
colour correlations and kinematical dependence, do appear in the general case of scattering
amplitudes with three or more hard partons, and the corresponding two-loop current for
single soft-gluon emission was considered and explicitly computed in Ref. [43], by including
the finite contributions up to O(ε0).

We now discuss multiple soft radiation at one-loop order. The structure of the loop-level
current J for multiple soft radiation is expected to be definitely more complex (in terms
of both colour and kinematical dependence) than the single soft-gluon current in Eq. (16).
The presence of two or more soft partons and the ensuing dependence on their momenta
increases the number of relevant kinematical invariants, which drive an increased complexity
of colour and kinematical correlations (especially at high orders in the ε expansion). In the
remaining part of this Section we deal with general properties of the soft current J with
m ≥ 2 soft partons. In particular, we consider the UV and IR divergences of J and we
discuss their regularization scheme dependence.

The one-loop current for multiple soft emission has (analogously to Eq. (16)) double
(1/ε2) and single (1/ε) pole contributions due to the presence of IR and UV divergences in
the four-dimensional case (ε = 0). At L-loop order, the current J (L) has poles of the type
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The structure of one-loop current for multiple soft radiation 

• In general at L-loop order the current J(L) has poles of the type 1/!k   
with 2L ≥ k ≥ 1. 

• The !-pole contributions to the one-loop soft current have a general 
structure, whose explicit form can be directly derived from the 
known universal structure of the IR and UV divergences of one-loop 
scattering amplitudes

Catani, LC  (2021)

Giele, Glover (1992): Kunszt, Signer, Trocsanyi (1994)
Catani, Seymour (1996)
Catani (1998)

• The procedure to derive the !-pole contributions is completely 
analogous to that used for the study of the multiparton collinear limit 
of scattering amplitudes Catani, de Florian, Rodrigo (2003)

Catani, de Florian, Rodrigo (2011)

• The general all-order representation of the !-pole contributions to J 
is

1/εk with 2L ≥ k ≥ 1. These ε-pole contributions are directly related to the corresponding
contributions to the multiparton scattering amplitudes [44, 52, 53, 54, 55, 56]. The ε-pole
contributions to the one-loop current J (1) have a general structure, whose explicit form can
be directly derived from the known universal structure of the IR and UV divergences of one-
loop scattering amplitudes [57, 16, 44]. Starting from the results in Refs. [57, 16, 44], the
procedure to derive the ε-pole contributions to J (1) is completely analogous to that used in
Refs. [33, 26] for the study of the multiparton collinear limit of scattering amplitudes (see,
in particular, Eqs. (104)–(109) in the arXiv version of Ref. [26] and replace the collinear
splitting matrix Sp(1) with the soft current J (1)). Moreover that procedure can be extended
to higher-loop orders and it leads to a compact representation of the ε-pole contributions
to J at arbitrary perturbative orders (see the analogous procedure in Sect. 6.1 and, in
particular, Eq. (137) in the arXiv version of Ref. [26] and replace Sp with J). Owing to
the complete analogy with the collinear limit studied in Ref. [26], we limit ourselves to
present the final results for the soft limit.

The general all-order representation of the ε-pole contributions to J is

J(q1, . . . , qm) = V(q1, . . . , qm, p1, . . . , pn) J
[no ε−poles](q1, . . . , qm) V

−1(p1, . . . , pn) , (19)

where J [no ε−poles] is obtained from J by properly subtracting its ε-pole part order by order
in the loop expansion. Therefore at each perturbative order J [no ε−poles] is finite in the limit
ε → 0 order by order in the ε expansion around ε = 0. Note that this statement refers to
the loop expansion of J [no ε−poles] with respect to renormalized QCD coupling (the use of
the renormalized QCD coupling removes ε poles of UV origin, which cannot be absorbed
in the V factors of Eq. (19)). Obviously, at the tree level J and J [no ε−poles] coincides
(J (0) = J (0) [no ε−poles]). The colour space operator V(q1, . . . , qm, p1, . . . , pn) is the process-
independent factor [44, 52, 53, 54, 55, 56] that controls the IR ε-pole contributions to the
scattering amplitude |M(q1, . . . , qm, p1, . . . , pn)〉 in the left-hand side of the factorization
formula (5) (at the tree level, V(0) = 1). The operator V(p1, . . . , pn) to the right of
J [no ε−poles] in Eq. (19) is the restriction of V to the scattering amplitude |M(p1, . . . , pn)〉
in the left-hand side of Eq. (5) (i.e., the amplitude with the external soft legs removed).
Since the V factors in Eq. (19) only depends on the colour, flavour and momentum of the
soft and hard partons, their perturbative knowledge determines in a recursive manner (i.e.,
order by order in the loop expansion) the ε-pole part of J at a given order in terms of J
at lower perturbative orders.

At the one-loop level, using Eq. (19) and the known expression [57, 16, 44] of the
one-loop term V(1) of the operator V, we obtain the following expression for the ε-pole
contributions to the soft multiparton current J (1):

J (1)(q1, . . . , qm) = −g2S cΓ
{∑

k∈S

[
1

ε2
Ck +

1

ε
(γk − b0)

]
J (0)(q1, . . . , qm)

+
1

ε

[ ∑

k,l∈S
k #= l

ln

(
−2qk · ql − i0

µ2

)
T k · T l +

∑

i∈H
k∈S

ln

(
−2pi · qk − i0

µ2

)
2T i · T k

]
J (0)(q1, . . . , qm)

−
1

ε

∑

i,j ∈H
i #= j

ln

(
−2pi · pj − i0

µ2

) [
J (0)(q1, . . . , qm) , T i · T j

] }
+O(ε0) , (20)
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The structure of one-loop current for multiple soft radiation 
• Using the known expression of the one-loop term V(1) of the operator V we obtain

Catani, LC  (2021)

Giele, Glover (1992): Kunszt, Signer, Trocsanyi (1994)
Catani, Seymour (1996)
Catani (1998)

1/εk with 2L ≥ k ≥ 1. These ε-pole contributions are directly related to the corresponding
contributions to the multiparton scattering amplitudes [44, 52, 53, 54, 55, 56]. The ε-pole
contributions to the one-loop current J (1) have a general structure, whose explicit form can
be directly derived from the known universal structure of the IR and UV divergences of one-
loop scattering amplitudes [57, 16, 44]. Starting from the results in Refs. [57, 16, 44], the
procedure to derive the ε-pole contributions to J (1) is completely analogous to that used in
Refs. [33, 26] for the study of the multiparton collinear limit of scattering amplitudes (see,
in particular, Eqs. (104)–(109) in the arXiv version of Ref. [26] and replace the collinear
splitting matrix Sp(1) with the soft current J (1)). Moreover that procedure can be extended
to higher-loop orders and it leads to a compact representation of the ε-pole contributions
to J at arbitrary perturbative orders (see the analogous procedure in Sect. 6.1 and, in
particular, Eq. (137) in the arXiv version of Ref. [26] and replace Sp with J). Owing to
the complete analogy with the collinear limit studied in Ref. [26], we limit ourselves to
present the final results for the soft limit.

The general all-order representation of the ε-pole contributions to J is

J(q1, . . . , qm) = V(q1, . . . , qm, p1, . . . , pn) J
[no ε−poles](q1, . . . , qm) V

−1(p1, . . . , pn) , (19)

where J [no ε−poles] is obtained from J by properly subtracting its ε-pole part order by order
in the loop expansion. Therefore at each perturbative order J [no ε−poles] is finite in the limit
ε → 0 order by order in the ε expansion around ε = 0. Note that this statement refers to
the loop expansion of J [no ε−poles] with respect to renormalized QCD coupling (the use of
the renormalized QCD coupling removes ε poles of UV origin, which cannot be absorbed
in the V factors of Eq. (19)). Obviously, at the tree level J and J [no ε−poles] coincides
(J (0) = J (0) [no ε−poles]). The colour space operator V(q1, . . . , qm, p1, . . . , pn) is the process-
independent factor [44, 52, 53, 54, 55, 56] that controls the IR ε-pole contributions to the
scattering amplitude |M(q1, . . . , qm, p1, . . . , pn)〉 in the left-hand side of the factorization
formula (5) (at the tree level, V(0) = 1). The operator V(p1, . . . , pn) to the right of
J [no ε−poles] in Eq. (19) is the restriction of V to the scattering amplitude |M(p1, . . . , pn)〉
in the left-hand side of Eq. (5) (i.e., the amplitude with the external soft legs removed).
Since the V factors in Eq. (19) only depends on the colour, flavour and momentum of the
soft and hard partons, their perturbative knowledge determines in a recursive manner (i.e.,
order by order in the loop expansion) the ε-pole part of J at a given order in terms of J
at lower perturbative orders.

At the one-loop level, using Eq. (19) and the known expression [57, 16, 44] of the
one-loop term V(1) of the operator V, we obtain the following expression for the ε-pole
contributions to the soft multiparton current J (1):
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coefficient γk depends on the flavour of the parton k and, explicitly, we have

γq = γq̄ =
3

2
CF , γg =

1

6
(11CA − 4TR Nf ) , (21)

where Nf is the number of flavours of massless quarks. The coefficient b0 is the first
perturbative coefficient of the QCD β function,

b0 =
1

6
(11CA − 4TR Nf ) . (22)

Note that, in our normalization, we have b0 = γg.

The various ε-pole terms in Eq. (20) have different origins. The single-pole term that is
proportional to b0 is of UV origin; it can be removed by renormalizing the soft current J (we
recall that we are considering unrenormalized scattering amplitudes and, correspondingly,
unrenormalized soft currents). The other ε-pole terms are of IR origin. The double-pole
terms, which are proportional to the Casimir coefficients Ck (Ck = CF and CA for quarks
and gluons, respectively), originate from one-loop contributions in which the loop momen-
tum is nearly on-shell, very soft and parallel to the momentum of one of the soft partons
involved in the current. The single-pole terms with γk coefficients are produced by contri-
butions in which the loop momentum is not soft, though it is nearly on-shell and parallel to
the momentum of one of the external soft partons of the current. The single-pole terms with
logarithmic dependence on soft-parton and hard-partons subenergies (qk · ql, pi · qk, pi · pj)
originate from configurations in which the loop momentum is very soft and at wide angle
with respect to the direction of the external-leg (soft and hard) partons. Specifically, the
radiative part of these terms (i.e., the real part of the logarithms) is due to a nearly on-
shell virtual gluon in the loop, while the absorptive part (i.e., the imaginary part of the
logarithms) is due to the exchange of an off-shell Coulomb-type gluon.

The expression in the right-hand side of Eq. (20) is valid for an arbitrary number m of
soft partons in the current (and for an arbitrary number of hard partons in the scattering
amplitude). This expression is given in terms of explicit coefficients and of the tree-level
current J (0) for the corresponding parton configuration. Once J (0) (and, in particular, its
colour structure) is explicitly known, Eq. (20) can be directly applied to determine the
explicit ε-pole contributions to the one-loop current J (1).

In particular, in the case of a single (m = 1) soft parton, using Eq. (9) it is straightfor-
ward to check that Eq. (20) gives the ε-pole terms of the one-loop result J (1) in Eq. (16).
In this respect, we note that the expression in the right-hand side of Eq. (20) does not
identically (in its precise algebraic form) correspond to the ε-pole terms in Eq. (16): the
difference is due to terms of O(1/ε2) and O(1/ε) that are proportional to the total colour
charge (

∑
i∈H T i) of the hard partons. As previously discussed (see Eq. (13) and related

comments) the presence of such terms in J is physically harmless.

The tree-level currents J (0) for emission of two (m = 2) soft partons (either two gluons
or a qq̄ pair) are also explicitly known [22]. Therefore Eq. (20) can also be straightforwardly
applied to explicitly obtain the ε-pole terms of the one-loop current J (1) for double soft-
parton emission. The case of a soft quark and antiquark is discussed in detail in Sect. 4.
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1/εk with 2L ≥ k ≥ 1. These ε-pole contributions are directly related to the corresponding
contributions to the multiparton scattering amplitudes [44, 52, 53, 54, 55, 56]. The ε-pole
contributions to the one-loop current J (1) have a general structure, whose explicit form can
be directly derived from the known universal structure of the IR and UV divergences of one-
loop scattering amplitudes [57, 16, 44]. Starting from the results in Refs. [57, 16, 44], the
procedure to derive the ε-pole contributions to J (1) is completely analogous to that used in
Refs. [33, 26] for the study of the multiparton collinear limit of scattering amplitudes (see,
in particular, Eqs. (104)–(109) in the arXiv version of Ref. [26] and replace the collinear
splitting matrix Sp(1) with the soft current J (1)). Moreover that procedure can be extended
to higher-loop orders and it leads to a compact representation of the ε-pole contributions
to J at arbitrary perturbative orders (see the analogous procedure in Sect. 6.1 and, in
particular, Eq. (137) in the arXiv version of Ref. [26] and replace Sp with J). Owing to
the complete analogy with the collinear limit studied in Ref. [26], we limit ourselves to
present the final results for the soft limit.

The general all-order representation of the ε-pole contributions to J is

J(q1, . . . , qm) = V(q1, . . . , qm, p1, . . . , pn) J
[no ε−poles](q1, . . . , qm) V

−1(p1, . . . , pn) , (19)

where J [no ε−poles] is obtained from J by properly subtracting its ε-pole part order by order
in the loop expansion. Therefore at each perturbative order J [no ε−poles] is finite in the limit
ε → 0 order by order in the ε expansion around ε = 0. Note that this statement refers to
the loop expansion of J [no ε−poles] with respect to renormalized QCD coupling (the use of
the renormalized QCD coupling removes ε poles of UV origin, which cannot be absorbed
in the V factors of Eq. (19)). Obviously, at the tree level J and J [no ε−poles] coincides
(J (0) = J (0) [no ε−poles]). The colour space operator V(q1, . . . , qm, p1, . . . , pn) is the process-
independent factor [44, 52, 53, 54, 55, 56] that controls the IR ε-pole contributions to the
scattering amplitude |M(q1, . . . , qm, p1, . . . , pn)〉 in the left-hand side of the factorization
formula (5) (at the tree level, V(0) = 1). The operator V(p1, . . . , pn) to the right of
J [no ε−poles] in Eq. (19) is the restriction of V to the scattering amplitude |M(p1, . . . , pn)〉
in the left-hand side of Eq. (5) (i.e., the amplitude with the external soft legs removed).
Since the V factors in Eq. (19) only depends on the colour, flavour and momentum of the
soft and hard partons, their perturbative knowledge determines in a recursive manner (i.e.,
order by order in the loop expansion) the ε-pole part of J at a given order in terms of J
at lower perturbative orders.

At the one-loop level, using Eq. (19) and the known expression [57, 16, 44] of the
one-loop term V(1) of the operator V, we obtain the following expression for the ε-pole
contributions to the soft multiparton current J (1):

J (1)(q1, . . . , qm) = −g2S cΓ
{∑
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1/εk with 2L ≥ k ≥ 1. These ε-pole contributions are directly related to the corresponding
contributions to the multiparton scattering amplitudes [44, 52, 53, 54, 55, 56]. The ε-pole
contributions to the one-loop current J (1) have a general structure, whose explicit form can
be directly derived from the known universal structure of the IR and UV divergences of one-
loop scattering amplitudes [57, 16, 44]. Starting from the results in Refs. [57, 16, 44], the
procedure to derive the ε-pole contributions to J (1) is completely analogous to that used in
Refs. [33, 26] for the study of the multiparton collinear limit of scattering amplitudes (see,
in particular, Eqs. (104)–(109) in the arXiv version of Ref. [26] and replace the collinear
splitting matrix Sp(1) with the soft current J (1)). Moreover that procedure can be extended
to higher-loop orders and it leads to a compact representation of the ε-pole contributions
to J at arbitrary perturbative orders (see the analogous procedure in Sect. 6.1 and, in
particular, Eq. (137) in the arXiv version of Ref. [26] and replace Sp with J). Owing to
the complete analogy with the collinear limit studied in Ref. [26], we limit ourselves to
present the final results for the soft limit.

The general all-order representation of the ε-pole contributions to J is

J(q1, . . . , qm) = V(q1, . . . , qm, p1, . . . , pn) J
[no ε−poles](q1, . . . , qm) V

−1(p1, . . . , pn) , (19)

where J [no ε−poles] is obtained from J by properly subtracting its ε-pole part order by order
in the loop expansion. Therefore at each perturbative order J [no ε−poles] is finite in the limit
ε → 0 order by order in the ε expansion around ε = 0. Note that this statement refers to
the loop expansion of J [no ε−poles] with respect to renormalized QCD coupling (the use of
the renormalized QCD coupling removes ε poles of UV origin, which cannot be absorbed
in the V factors of Eq. (19)). Obviously, at the tree level J and J [no ε−poles] coincides
(J (0) = J (0) [no ε−poles]). The colour space operator V(q1, . . . , qm, p1, . . . , pn) is the process-
independent factor [44, 52, 53, 54, 55, 56] that controls the IR ε-pole contributions to the
scattering amplitude |M(q1, . . . , qm, p1, . . . , pn)〉 in the left-hand side of the factorization
formula (5) (at the tree level, V(0) = 1). The operator V(p1, . . . , pn) to the right of
J [no ε−poles] in Eq. (19) is the restriction of V to the scattering amplitude |M(p1, . . . , pn)〉
in the left-hand side of Eq. (5) (i.e., the amplitude with the external soft legs removed).
Since the V factors in Eq. (19) only depends on the colour, flavour and momentum of the
soft and hard partons, their perturbative knowledge determines in a recursive manner (i.e.,
order by order in the loop expansion) the ε-pole part of J at a given order in terms of J
at lower perturbative orders.

At the one-loop level, using Eq. (19) and the known expression [57, 16, 44] of the
one-loop term V(1) of the operator V, we obtain the following expression for the ε-pole
contributions to the soft multiparton current J (1):

J (1)(q1, . . . , qm) = −g2S cΓ
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1/εk with 2L ≥ k ≥ 1. These ε-pole contributions are directly related to the corresponding
contributions to the multiparton scattering amplitudes [44, 52, 53, 54, 55, 56]. The ε-pole
contributions to the one-loop current J (1) have a general structure, whose explicit form can
be directly derived from the known universal structure of the IR and UV divergences of one-
loop scattering amplitudes [57, 16, 44]. Starting from the results in Refs. [57, 16, 44], the
procedure to derive the ε-pole contributions to J (1) is completely analogous to that used in
Refs. [33, 26] for the study of the multiparton collinear limit of scattering amplitudes (see,
in particular, Eqs. (104)–(109) in the arXiv version of Ref. [26] and replace the collinear
splitting matrix Sp(1) with the soft current J (1)). Moreover that procedure can be extended
to higher-loop orders and it leads to a compact representation of the ε-pole contributions
to J at arbitrary perturbative orders (see the analogous procedure in Sect. 6.1 and, in
particular, Eq. (137) in the arXiv version of Ref. [26] and replace Sp with J). Owing to
the complete analogy with the collinear limit studied in Ref. [26], we limit ourselves to
present the final results for the soft limit.

The general all-order representation of the ε-pole contributions to J is

J(q1, . . . , qm) = V(q1, . . . , qm, p1, . . . , pn) J
[no ε−poles](q1, . . . , qm) V

−1(p1, . . . , pn) , (19)

where J [no ε−poles] is obtained from J by properly subtracting its ε-pole part order by order
in the loop expansion. Therefore at each perturbative order J [no ε−poles] is finite in the limit
ε → 0 order by order in the ε expansion around ε = 0. Note that this statement refers to
the loop expansion of J [no ε−poles] with respect to renormalized QCD coupling (the use of
the renormalized QCD coupling removes ε poles of UV origin, which cannot be absorbed
in the V factors of Eq. (19)). Obviously, at the tree level J and J [no ε−poles] coincides
(J (0) = J (0) [no ε−poles]). The colour space operator V(q1, . . . , qm, p1, . . . , pn) is the process-
independent factor [44, 52, 53, 54, 55, 56] that controls the IR ε-pole contributions to the
scattering amplitude |M(q1, . . . , qm, p1, . . . , pn)〉 in the left-hand side of the factorization
formula (5) (at the tree level, V(0) = 1). The operator V(p1, . . . , pn) to the right of
J [no ε−poles] in Eq. (19) is the restriction of V to the scattering amplitude |M(p1, . . . , pn)〉
in the left-hand side of Eq. (5) (i.e., the amplitude with the external soft legs removed).
Since the V factors in Eq. (19) only depends on the colour, flavour and momentum of the
soft and hard partons, their perturbative knowledge determines in a recursive manner (i.e.,
order by order in the loop expansion) the ε-pole part of J at a given order in terms of J
at lower perturbative orders.

At the one-loop level, using Eq. (19) and the known expression [57, 16, 44] of the
one-loop term V(1) of the operator V, we obtain the following expression for the ε-pole
contributions to the soft multiparton current J (1):
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1/εk with 2L ≥ k ≥ 1. These ε-pole contributions are directly related to the corresponding
contributions to the multiparton scattering amplitudes [44, 52, 53, 54, 55, 56]. The ε-pole
contributions to the one-loop current J (1) have a general structure, whose explicit form can
be directly derived from the known universal structure of the IR and UV divergences of one-
loop scattering amplitudes [57, 16, 44]. Starting from the results in Refs. [57, 16, 44], the
procedure to derive the ε-pole contributions to J (1) is completely analogous to that used in
Refs. [33, 26] for the study of the multiparton collinear limit of scattering amplitudes (see,
in particular, Eqs. (104)–(109) in the arXiv version of Ref. [26] and replace the collinear
splitting matrix Sp(1) with the soft current J (1)). Moreover that procedure can be extended
to higher-loop orders and it leads to a compact representation of the ε-pole contributions
to J at arbitrary perturbative orders (see the analogous procedure in Sect. 6.1 and, in
particular, Eq. (137) in the arXiv version of Ref. [26] and replace Sp with J). Owing to
the complete analogy with the collinear limit studied in Ref. [26], we limit ourselves to
present the final results for the soft limit.
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where J [no ε−poles] is obtained from J by properly subtracting its ε-pole part order by order
in the loop expansion. Therefore at each perturbative order J [no ε−poles] is finite in the limit
ε → 0 order by order in the ε expansion around ε = 0. Note that this statement refers to
the loop expansion of J [no ε−poles] with respect to renormalized QCD coupling (the use of
the renormalized QCD coupling removes ε poles of UV origin, which cannot be absorbed
in the V factors of Eq. (19)). Obviously, at the tree level J and J [no ε−poles] coincides
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in the left-hand side of Eq. (5) (i.e., the amplitude with the external soft legs removed).
Since the V factors in Eq. (19) only depends on the colour, flavour and momentum of the
soft and hard partons, their perturbative knowledge determines in a recursive manner (i.e.,
order by order in the loop expansion) the ε-pole part of J at a given order in terms of J
at lower perturbative orders.

At the one-loop level, using Eq. (19) and the known expression [57, 16, 44] of the
one-loop term V(1) of the operator V, we obtain the following expression for the ε-pole
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J (0)(q1, . . . , qm) , T i · T j

] }
+O(ε0) , (20)
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1/εk with 2L ≥ k ≥ 1. These ε-pole contributions are directly related to the corresponding
contributions to the multiparton scattering amplitudes [44, 52, 53, 54, 55, 56]. The ε-pole
contributions to the one-loop current J (1) have a general structure, whose explicit form can
be directly derived from the known universal structure of the IR and UV divergences of one-
loop scattering amplitudes [57, 16, 44]. Starting from the results in Refs. [57, 16, 44], the
procedure to derive the ε-pole contributions to J (1) is completely analogous to that used in
Refs. [33, 26] for the study of the multiparton collinear limit of scattering amplitudes (see,
in particular, Eqs. (104)–(109) in the arXiv version of Ref. [26] and replace the collinear
splitting matrix Sp(1) with the soft current J (1)). Moreover that procedure can be extended
to higher-loop orders and it leads to a compact representation of the ε-pole contributions
to J at arbitrary perturbative orders (see the analogous procedure in Sect. 6.1 and, in
particular, Eq. (137) in the arXiv version of Ref. [26] and replace Sp with J). Owing to
the complete analogy with the collinear limit studied in Ref. [26], we limit ourselves to
present the final results for the soft limit.

The general all-order representation of the ε-pole contributions to J is

J(q1, . . . , qm) = V(q1, . . . , qm, p1, . . . , pn) J
[no ε−poles](q1, . . . , qm) V

−1(p1, . . . , pn) , (19)

where J [no ε−poles] is obtained from J by properly subtracting its ε-pole part order by order
in the loop expansion. Therefore at each perturbative order J [no ε−poles] is finite in the limit
ε → 0 order by order in the ε expansion around ε = 0. Note that this statement refers to
the loop expansion of J [no ε−poles] with respect to renormalized QCD coupling (the use of
the renormalized QCD coupling removes ε poles of UV origin, which cannot be absorbed
in the V factors of Eq. (19)). Obviously, at the tree level J and J [no ε−poles] coincides
(J (0) = J (0) [no ε−poles]). The colour space operator V(q1, . . . , qm, p1, . . . , pn) is the process-
independent factor [44, 52, 53, 54, 55, 56] that controls the IR ε-pole contributions to the
scattering amplitude |M(q1, . . . , qm, p1, . . . , pn)〉 in the left-hand side of the factorization
formula (5) (at the tree level, V(0) = 1). The operator V(p1, . . . , pn) to the right of
J [no ε−poles] in Eq. (19) is the restriction of V to the scattering amplitude |M(p1, . . . , pn)〉
in the left-hand side of Eq. (5) (i.e., the amplitude with the external soft legs removed).
Since the V factors in Eq. (19) only depends on the colour, flavour and momentum of the
soft and hard partons, their perturbative knowledge determines in a recursive manner (i.e.,
order by order in the loop expansion) the ε-pole part of J at a given order in terms of J
at lower perturbative orders.

At the one-loop level, using Eq. (19) and the known expression [57, 16, 44] of the
one-loop term V(1) of the operator V, we obtain the following expression for the ε-pole
contributions to the soft multiparton current J (1):

J (1)(q1, . . . , qm) = −g2S cΓ
{∑
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1
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)
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]
J (0)(q1, . . . , qm)

−
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∑
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µ2

) [
J (0)(q1, . . . , qm) , T i · T j

] }
+O(ε0) , (20)
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1/εk with 2L ≥ k ≥ 1. These ε-pole contributions are directly related to the corresponding
contributions to the multiparton scattering amplitudes [44, 52, 53, 54, 55, 56]. The ε-pole
contributions to the one-loop current J (1) have a general structure, whose explicit form can
be directly derived from the known universal structure of the IR and UV divergences of one-
loop scattering amplitudes [57, 16, 44]. Starting from the results in Refs. [57, 16, 44], the
procedure to derive the ε-pole contributions to J (1) is completely analogous to that used in
Refs. [33, 26] for the study of the multiparton collinear limit of scattering amplitudes (see,
in particular, Eqs. (104)–(109) in the arXiv version of Ref. [26] and replace the collinear
splitting matrix Sp(1) with the soft current J (1)). Moreover that procedure can be extended
to higher-loop orders and it leads to a compact representation of the ε-pole contributions
to J at arbitrary perturbative orders (see the analogous procedure in Sect. 6.1 and, in
particular, Eq. (137) in the arXiv version of Ref. [26] and replace Sp with J). Owing to
the complete analogy with the collinear limit studied in Ref. [26], we limit ourselves to
present the final results for the soft limit.

The general all-order representation of the ε-pole contributions to J is

J(q1, . . . , qm) = V(q1, . . . , qm, p1, . . . , pn) J
[no ε−poles](q1, . . . , qm) V

−1(p1, . . . , pn) , (19)

where J [no ε−poles] is obtained from J by properly subtracting its ε-pole part order by order
in the loop expansion. Therefore at each perturbative order J [no ε−poles] is finite in the limit
ε → 0 order by order in the ε expansion around ε = 0. Note that this statement refers to
the loop expansion of J [no ε−poles] with respect to renormalized QCD coupling (the use of
the renormalized QCD coupling removes ε poles of UV origin, which cannot be absorbed
in the V factors of Eq. (19)). Obviously, at the tree level J and J [no ε−poles] coincides
(J (0) = J (0) [no ε−poles]). The colour space operator V(q1, . . . , qm, p1, . . . , pn) is the process-
independent factor [44, 52, 53, 54, 55, 56] that controls the IR ε-pole contributions to the
scattering amplitude |M(q1, . . . , qm, p1, . . . , pn)〉 in the left-hand side of the factorization
formula (5) (at the tree level, V(0) = 1). The operator V(p1, . . . , pn) to the right of
J [no ε−poles] in Eq. (19) is the restriction of V to the scattering amplitude |M(p1, . . . , pn)〉
in the left-hand side of Eq. (5) (i.e., the amplitude with the external soft legs removed).
Since the V factors in Eq. (19) only depends on the colour, flavour and momentum of the
soft and hard partons, their perturbative knowledge determines in a recursive manner (i.e.,
order by order in the loop expansion) the ε-pole part of J at a given order in terms of J
at lower perturbative orders.

At the one-loop level, using Eq. (19) and the known expression [57, 16, 44] of the
one-loop term V(1) of the operator V, we obtain the following expression for the ε-pole
contributions to the soft multiparton current J (1):

J (1)(q1, . . . , qm) = −g2S cΓ
{∑

k∈S

[
1
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]
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1/εk with 2L ≥ k ≥ 1. These ε-pole contributions are directly related to the corresponding
contributions to the multiparton scattering amplitudes [44, 52, 53, 54, 55, 56]. The ε-pole
contributions to the one-loop current J (1) have a general structure, whose explicit form can
be directly derived from the known universal structure of the IR and UV divergences of one-
loop scattering amplitudes [57, 16, 44]. Starting from the results in Refs. [57, 16, 44], the
procedure to derive the ε-pole contributions to J (1) is completely analogous to that used in
Refs. [33, 26] for the study of the multiparton collinear limit of scattering amplitudes (see,
in particular, Eqs. (104)–(109) in the arXiv version of Ref. [26] and replace the collinear
splitting matrix Sp(1) with the soft current J (1)). Moreover that procedure can be extended
to higher-loop orders and it leads to a compact representation of the ε-pole contributions
to J at arbitrary perturbative orders (see the analogous procedure in Sect. 6.1 and, in
particular, Eq. (137) in the arXiv version of Ref. [26] and replace Sp with J). Owing to
the complete analogy with the collinear limit studied in Ref. [26], we limit ourselves to
present the final results for the soft limit.

The general all-order representation of the ε-pole contributions to J is

J(q1, . . . , qm) = V(q1, . . . , qm, p1, . . . , pn) J
[no ε−poles](q1, . . . , qm) V

−1(p1, . . . , pn) , (19)

where J [no ε−poles] is obtained from J by properly subtracting its ε-pole part order by order
in the loop expansion. Therefore at each perturbative order J [no ε−poles] is finite in the limit
ε → 0 order by order in the ε expansion around ε = 0. Note that this statement refers to
the loop expansion of J [no ε−poles] with respect to renormalized QCD coupling (the use of
the renormalized QCD coupling removes ε poles of UV origin, which cannot be absorbed
in the V factors of Eq. (19)). Obviously, at the tree level J and J [no ε−poles] coincides
(J (0) = J (0) [no ε−poles]). The colour space operator V(q1, . . . , qm, p1, . . . , pn) is the process-
independent factor [44, 52, 53, 54, 55, 56] that controls the IR ε-pole contributions to the
scattering amplitude |M(q1, . . . , qm, p1, . . . , pn)〉 in the left-hand side of the factorization
formula (5) (at the tree level, V(0) = 1). The operator V(p1, . . . , pn) to the right of
J [no ε−poles] in Eq. (19) is the restriction of V to the scattering amplitude |M(p1, . . . , pn)〉
in the left-hand side of Eq. (5) (i.e., the amplitude with the external soft legs removed).
Since the V factors in Eq. (19) only depends on the colour, flavour and momentum of the
soft and hard partons, their perturbative knowledge determines in a recursive manner (i.e.,
order by order in the loop expansion) the ε-pole part of J at a given order in terms of J
at lower perturbative orders.

At the one-loop level, using Eq. (19) and the known expression [57, 16, 44] of the
one-loop term V(1) of the operator V, we obtain the following expression for the ε-pole
contributions to the soft multiparton current J (1):

J (1)(q1, . . . , qm) = −g2S cΓ
{∑
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1/εk with 2L ≥ k ≥ 1. These ε-pole contributions are directly related to the corresponding
contributions to the multiparton scattering amplitudes [44, 52, 53, 54, 55, 56]. The ε-pole
contributions to the one-loop current J (1) have a general structure, whose explicit form can
be directly derived from the known universal structure of the IR and UV divergences of one-
loop scattering amplitudes [57, 16, 44]. Starting from the results in Refs. [57, 16, 44], the
procedure to derive the ε-pole contributions to J (1) is completely analogous to that used in
Refs. [33, 26] for the study of the multiparton collinear limit of scattering amplitudes (see,
in particular, Eqs. (104)–(109) in the arXiv version of Ref. [26] and replace the collinear
splitting matrix Sp(1) with the soft current J (1)). Moreover that procedure can be extended
to higher-loop orders and it leads to a compact representation of the ε-pole contributions
to J at arbitrary perturbative orders (see the analogous procedure in Sect. 6.1 and, in
particular, Eq. (137) in the arXiv version of Ref. [26] and replace Sp with J). Owing to
the complete analogy with the collinear limit studied in Ref. [26], we limit ourselves to
present the final results for the soft limit.

The general all-order representation of the ε-pole contributions to J is

J(q1, . . . , qm) = V(q1, . . . , qm, p1, . . . , pn) J
[no ε−poles](q1, . . . , qm) V

−1(p1, . . . , pn) , (19)

where J [no ε−poles] is obtained from J by properly subtracting its ε-pole part order by order
in the loop expansion. Therefore at each perturbative order J [no ε−poles] is finite in the limit
ε → 0 order by order in the ε expansion around ε = 0. Note that this statement refers to
the loop expansion of J [no ε−poles] with respect to renormalized QCD coupling (the use of
the renormalized QCD coupling removes ε poles of UV origin, which cannot be absorbed
in the V factors of Eq. (19)). Obviously, at the tree level J and J [no ε−poles] coincides
(J (0) = J (0) [no ε−poles]). The colour space operator V(q1, . . . , qm, p1, . . . , pn) is the process-
independent factor [44, 52, 53, 54, 55, 56] that controls the IR ε-pole contributions to the
scattering amplitude |M(q1, . . . , qm, p1, . . . , pn)〉 in the left-hand side of the factorization
formula (5) (at the tree level, V(0) = 1). The operator V(p1, . . . , pn) to the right of
J [no ε−poles] in Eq. (19) is the restriction of V to the scattering amplitude |M(p1, . . . , pn)〉
in the left-hand side of Eq. (5) (i.e., the amplitude with the external soft legs removed).
Since the V factors in Eq. (19) only depends on the colour, flavour and momentum of the
soft and hard partons, their perturbative knowledge determines in a recursive manner (i.e.,
order by order in the loop expansion) the ε-pole part of J at a given order in terms of J
at lower perturbative orders.

At the one-loop level, using Eq. (19) and the known expression [57, 16, 44] of the
one-loop term V(1) of the operator V, we obtain the following expression for the ε-pole
contributions to the soft multiparton current J (1):

J (1)(q1, . . . , qm) = −g2S cΓ
{∑
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• We can apply our formula to specific cases

Valid for m ≥ 1 soft partons 

• For m = 1 it reproduces the poles in 

soft single-quark limit (the radiation of a single soft quark only produces a subdominant
behaviour of O(1/

√
λ) in the right-hand side of Eq. (4)).

The tree-level current for emission of a soft qq̄ pair was computed in Ref. [22], where
the result was explicitly reported at the level of squared amplitudes (i.e., the result refers
to J †J). The corresponding result for the qq̄ current is

J (0)(q1, q2) = − (gSµ
ε)2
∑

i∈H

tc T c
i

pi · j(1, 2)
pi · q12

, (14)

where we have introduced the fermionic current jν(1, 2),

jν(1, 2) ≡
u(q1) γν v(q2)

q212
, q12 = q1 + q2 . (15)

The soft quark and antiquark have momenta qν1 and qν2 , respectively, and u(q) and v(q) are
the customary Dirac spinors. The spin indices (s1 and s2) and the colour indices (α1 and
α2) of the quark and antiquark are embodied in the colour+spin space notation of Eq. (14).
Analogously to Eq. (9), we can consider (〈α1,α2| ⊗ 〈s1, s2| )J(q1, q2) ≡ Jα1,α2

s1,s2
(q1, q2) and

we have (〈α1,α2|⊗ 〈s1, s2| ) tc u(q1) γν v(q2) = tcα1α2
u(s1)(q1) γ

ν v(s2)(q2).

3 One-loop current for multiple soft emission: UV

and IR divergences

The soft singular behaviour of one-loop amplitudes (see Eq. (8)) is controlled by J (0) and
by an additional new ingredient, the one-loop soft current J (1).

The one-loop soft limit for emission of a single soft gluon was worked out independently
by two groups [21, 23], finding results that are in agreement. The analysis of Ref. [21]
is based on the study of colour-ordered subamplitudes, while Ref. [23] considers generic
scattering amplitudes. The results of Refs. [21, 23] are valid for the case of massless hard
partons. The generalization of the results of Ref. [23] to include massive hard partons (such
as heavy quarks) was carried out in Ref. [25]. In the remaining part of this paper we limit
ourselves to consider scattering amplitudes with massless hard partons.

The result of the one-loop current for single gluon emission is [23] (we explicitly write
J (1) a ≡ 〈a|J (1), where a is the colour index of the soft gluon):

J (1) a = − (gS µ
ε)3 cΓ

1

ε2
Γ(1− ε)Γ(1 + ε) ifabc

×
∑

i,j ∈H
i "= j

T b
i T

c
j

(
pνi

pi · q
−

pνj
pj · q

)
εν(q)

(−2pi · q − i0)−ε (−2pj · q − i0)−ε

(−2pi · pj − i0)−ε , (16)

where ‘x − i0’ denotes the customary Feynman prescription for analytic continuation in
different kinematical regions (x > 0 and x < 0) and cΓ is the typical volume factor of
d-dimensional one-loop integrals:

cΓ ≡
Γ(1 + ε)Γ2(1− ε)

(4π)2−ε Γ(1− 2ε)
. (17)
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1/εk with 2L ≥ k ≥ 1. These ε-pole contributions are directly related to the corresponding
contributions to the multiparton scattering amplitudes [44, 52, 53, 54, 55, 56]. The ε-pole
contributions to the one-loop current J (1) have a general structure, whose explicit form can
be directly derived from the known universal structure of the IR and UV divergences of one-
loop scattering amplitudes [57, 16, 44]. Starting from the results in Refs. [57, 16, 44], the
procedure to derive the ε-pole contributions to J (1) is completely analogous to that used in
Refs. [33, 26] for the study of the multiparton collinear limit of scattering amplitudes (see,
in particular, Eqs. (104)–(109) in the arXiv version of Ref. [26] and replace the collinear
splitting matrix Sp(1) with the soft current J (1)). Moreover that procedure can be extended
to higher-loop orders and it leads to a compact representation of the ε-pole contributions
to J at arbitrary perturbative orders (see the analogous procedure in Sect. 6.1 and, in
particular, Eq. (137) in the arXiv version of Ref. [26] and replace Sp with J). Owing to
the complete analogy with the collinear limit studied in Ref. [26], we limit ourselves to
present the final results for the soft limit.

The general all-order representation of the ε-pole contributions to J is

J(q1, . . . , qm) = V(q1, . . . , qm, p1, . . . , pn) J
[no ε−poles](q1, . . . , qm) V

−1(p1, . . . , pn) , (19)

where J [no ε−poles] is obtained from J by properly subtracting its ε-pole part order by order
in the loop expansion. Therefore at each perturbative order J [no ε−poles] is finite in the limit
ε → 0 order by order in the ε expansion around ε = 0. Note that this statement refers to
the loop expansion of J [no ε−poles] with respect to renormalized QCD coupling (the use of
the renormalized QCD coupling removes ε poles of UV origin, which cannot be absorbed
in the V factors of Eq. (19)). Obviously, at the tree level J and J [no ε−poles] coincides
(J (0) = J (0) [no ε−poles]). The colour space operator V(q1, . . . , qm, p1, . . . , pn) is the process-
independent factor [44, 52, 53, 54, 55, 56] that controls the IR ε-pole contributions to the
scattering amplitude |M(q1, . . . , qm, p1, . . . , pn)〉 in the left-hand side of the factorization
formula (5) (at the tree level, V(0) = 1). The operator V(p1, . . . , pn) to the right of
J [no ε−poles] in Eq. (19) is the restriction of V to the scattering amplitude |M(p1, . . . , pn)〉
in the left-hand side of Eq. (5) (i.e., the amplitude with the external soft legs removed).
Since the V factors in Eq. (19) only depends on the colour, flavour and momentum of the
soft and hard partons, their perturbative knowledge determines in a recursive manner (i.e.,
order by order in the loop expansion) the ε-pole part of J at a given order in terms of J
at lower perturbative orders.

At the one-loop level, using Eq. (19) and the known expression [57, 16, 44] of the
one-loop term V(1) of the operator V, we obtain the following expression for the ε-pole
contributions to the soft multiparton current J (1):

J (1)(q1, . . . , qm) = −g2S cΓ
{∑
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1
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]
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−
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] }
+O(ε0) , (20)
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• We can apply our formula to specific cases

Valid for m ≥ 1 soft partons 

• For m = 2, emission of two soft partons (either two gluons or a qqbar pair)

• For two gluons the !-pole structure is known 

• For a qqbar pair the !-pole structure is known 

Zhu (2020)

Zhu (2020) Catani, LC  (2021)
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1/εk with 2L ≥ k ≥ 1. These ε-pole contributions are directly related to the corresponding
contributions to the multiparton scattering amplitudes [44, 52, 53, 54, 55, 56]. The ε-pole
contributions to the one-loop current J (1) have a general structure, whose explicit form can
be directly derived from the known universal structure of the IR and UV divergences of one-
loop scattering amplitudes [57, 16, 44]. Starting from the results in Refs. [57, 16, 44], the
procedure to derive the ε-pole contributions to J (1) is completely analogous to that used in
Refs. [33, 26] for the study of the multiparton collinear limit of scattering amplitudes (see,
in particular, Eqs. (104)–(109) in the arXiv version of Ref. [26] and replace the collinear
splitting matrix Sp(1) with the soft current J (1)). Moreover that procedure can be extended
to higher-loop orders and it leads to a compact representation of the ε-pole contributions
to J at arbitrary perturbative orders (see the analogous procedure in Sect. 6.1 and, in
particular, Eq. (137) in the arXiv version of Ref. [26] and replace Sp with J). Owing to
the complete analogy with the collinear limit studied in Ref. [26], we limit ourselves to
present the final results for the soft limit.

The general all-order representation of the ε-pole contributions to J is

J(q1, . . . , qm) = V(q1, . . . , qm, p1, . . . , pn) J
[no ε−poles](q1, . . . , qm) V

−1(p1, . . . , pn) , (19)

where J [no ε−poles] is obtained from J by properly subtracting its ε-pole part order by order
in the loop expansion. Therefore at each perturbative order J [no ε−poles] is finite in the limit
ε → 0 order by order in the ε expansion around ε = 0. Note that this statement refers to
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At the one-loop level, using Eq. (19) and the known expression [57, 16, 44] of the
one-loop term V(1) of the operator V, we obtain the following expression for the ε-pole
contributions to the soft multiparton current J (1):

J (1)(q1, . . . , qm) = −g2S cΓ
{∑

k∈S

[
1

ε2
Ck +

1

ε
(γk − b0)

]
J (0)(q1, . . . , qm)

+
1

ε

[ ∑

k,l∈S
k #= l

ln

(
−2qk · ql − i0

µ2

)
T k · T l +

∑

i∈H
k∈S

ln

(
−2pi · qk − i0

µ2

)
2T i · T k

]
J (0)(q1, . . . , qm)

−
1

ε

∑

i,j ∈H
i #= j

ln

(
−2pi · pj − i0

µ2

) [
J (0)(q1, . . . , qm) , T i · T j

] }
+O(ε0) , (20)
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• We can apply our formula to specific cases

Valid for m ≥ 1 soft partons 

• For m = 2, emission of two soft partons (either two gluons or a qqbar pair)

• For two gluons the !-pole structure is known 

• For a qqbar pair the !-pole structure is known 

Zhu (2020)

Zhu (2020) Catani, LC  (2021)

To be precise extra exp{-!$E}
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• An alternative expression is 

The case of two soft gluons is studied in Ref. [40]. We have checked that the ε-pole terms
of the one-loop double-gluon current computed in Ref. [40] agree with the corresponding
result that is obtained by using Eq. (20) and the colour conservation relation (10). To be
precise about the absolute normalization of the one-loop current, we think that the factor
e−εγE has to be removed from the expansion parameter in Eq. (3.2) of Ref. [40].

We comment on the behaviour of the one-loop current J (1)(q1, . . . , qm) with respect to
the overall rescaling qk → λqk of all the momenta of the soft partons. To avoid the effects
of branch-cut contributions from crossing different kinematical regions of soft and hard
momenta, with limit ourselves to considering the case with λ > 0. According to Eq. (4)
(see also the discussion below it) and Eq. (5), the tree-level current J (0) behaves as

J (0)(λq1, . . . ,λqm) =
1

(λ)m
J (0)(q1, . . . , qm) , (23)

and the expected one-loop behaviour is

J (1)(λq1, . . . ,λqm) =
(λ)−2ε

(λ)m
J (1)(q1, . . . , qm) , (λ > 0) . (24)

The behaviour as in Eqs. (23) and (24) is indeed observed in the tree-level results of Eqs. (9)
and (14) and in the one-loop soft single-parton current of Eq. (16). Using Eq. (23) and
applying the λ rescaling to the explicit expression in the right-hand side of Eq. (20), we
obtain the result J (1)(λq1, . . . ,λqm) cs=

1
(λ)m (1−2ε lnλ)J (1)(q1, . . . , qm)+O(ε0) (note that we

neglect harmeless contributions proportional to the total colour charge of the hard partons).
This result is perfectly consistent with Eq. (24), since Eq. (20) only embodies the correct
ε-pole contributions to J (1). In particular, in Eq. (20) these contributions are embodied in a
‘minimal’ form by systematically neglecting terms of O(εn) (n ≥ 0), with the sole exception
of terms that arise from the ε-expansion of the overall factor cΓ ((4π)2cΓ = 1+O(ε)). The ε-
pole contributions to J (1) can be expressed in alternative forms with respect to Eq. (20). In
particular, the right-hand side of Eq. (20) can be supplemented with terms of O(εn) (n ≥ 0)
in a manner that restores the behaviour in Eq. (24) to all orders in the ε expansion.

An alternative explicit form of the ε-pole contributions to J (1) for the soft multiparton
(m ≥ 2) limit is as follows

J (1)(q1, . . . , qm) cs= − g2S

(
−q21...m − i0

µ2

)−ε

cΓ
{∑

k∈S

[
1

ε2
Ck +

1

ε
(γk − b0)

]
J (0)(q1, . . . , qm)

+
1

ε

[ ∑

k,l∈S
k #= l

ln

(
−2qk · ql − i0

−q21...m − i0

)
T k · T l +

∑

i∈H
k∈S

%ik(q1...m) 2T i · T k

]
J (0)(q1, . . . , qm)

+
1

ε

∑

i,j ∈H
i #= j

Lij(q1...m)
[
J (0)(q1, . . . , qm) , T i · T j

] }
+O(ε0) , (m ≥ 2) , (25)

where the total soft momentum is denoted by q1...m,

q1...m ≡
∑

k∈S

qk = q1 + · · ·+ qm , (26)
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and we have introduced the logarithmic functions !ik and Lij of hard and soft momenta:

!ik(q1...m) ≡ ln

(
−pi · qk − i0

−pi · q1...m − i0

)
, (27)

Lij(q1...m) = Lji(q1...m) ≡ ln

(
−pi · q1...m − i0

−pi · pj − i0

)
+ ln

(
−2pj · q1...m − i0

−q21...m − i0

)
. (28)

It can be explicitly checked that the two expressions in Eqs. (20) and (25) only differ by
terms of O(ε0) and higher orders in ε while acting onto colour singlet quantities. We note
that the logarithmic functions !ik and Lij in Eqs. (27) and (28) are invariant under the
overall rescaling qk → λqk (λ > 0) of the soft momenta. Therefore, the explicit expression
in the right-hand side of Eq. (25) exactly fulfils the scaling behaviour in Eq. (24). We also
note that both expressions of Eqs. (20) and (25) fulfil the colour flow conservation property
in Eq. (11).

Throughout the paper we use the dimensional regularization procedure to deal with
UV and IR divergences and, therefore, the momenta (and their associated phase space)
of the virtual particles inside loops are analytically continued to d = 4 − 2ε space-time
dimensions [58, 59, 60]. Different variants of dimensional regularization can be used, and
each variant defines a specific regularization scheme (RS). The RSs that are mostly used
are conventional dimensional regularization (CDR) [59, 60], the ’tHooft–Veltman (HV) [58]
scheme, dimensional reduction (DR) [61] and the four-dimensional helicity (4DH) scheme
[62]. The momenta of the external-leg particles in the scattering amplitude can be either
d-dimensional (CDR and DR schemes) or four-dimensional (HV and 4DH schemes). The
number of spin polarization (helicity) states of the gluon also depends on the RS: external-
leg gluons can have either d − 2 = 2 − 2ε polarizations (CDR) or 2 polarizations (HV,
DR, 4DH), and virtual gluons can have either d − 2 = 2 − 2ε polarizations (CDR, HV)
or 2 polarizations (DR, 4DH). Scattering amplitudes and, consequently, soft currents (as
defined by the soft limit) depend on the RS. As for the RS dependence on external-leg
particles, throughout the paper we formally express soft (tree-level and one-loop) currents
in terms of external-leg momenta (pi, qk) and corresponding polarization wave functions
(ε(qk), u(qk), v(qk)): these expressions are formally RS invariant, although momenta and
wave functions implicitly embody an RS dependence (which can be regarded as a depen-
dence of O(ε)). At the one-loop level, soft currents (and scattering amplitudes) have a
residual RS dependence that can be explicitly parametrized by the number of polarization
states hg of virtual gluons. We write hg = 2 − 2εδR and, therefore, we have (this is the
same notation as used, e.g., in Refs. [21, 20])

δR = 1 (CDR, HV) , δR = 0 (4DH, DR) . (29)

To formally express the explicit δR dependence of the one-loop soft current J (1) we then
define

J
(1)
RS ≡ J (1) −

[
J (1)

]
δR=1

, (30)

where both terms in the right-hand side are expressed through the same formal external-leg
variables (momenta and wave functions), which embody an implicit dependence on the RS,
and

[
J (1)

]
δR=1

is obtained by setting δR = 1 in the explicit expression of J (1). Roughly

speaking (e.g., modulo the implicit RS dependence due to the number of polarizations of
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Introduction 
Catani, LC  (2021)

• In order to derive the soft current at one-loop we use the general 
(process-independent) method that was introduced for the single 
gluon soft current at one loop Catani, Grazzini (2000)

• We have evaluated a set of one-loop Feynman diagrams in which the 
external-leg hard partons are coupled to virtual gluons by using the 
eikonal approximation (for both vertices and propagators). Other 
vertices and propagators are computed using customary QCD 
Feynman rules

• We perform the calculation by using both the Feynman gauge and 
the axial gauge  n.A = 0, with and auxiliary light-like (n2 = 0) gauge 
vector n. This provide us with an explicit check of the gauge 
invariance of the procedure and the calculation

• We have performed and independent calculation of all the soft MI 
integrals that enter in our calculation, which are in agreement with 
those encountered in literature Catani, Grazzini (2000)

Anastasiou, Duhr, Dulat, Furlan, Herzog, Mistlberger  (2015)

an auxiliary light-like (n2 = 0) gauge vector nµ. Combining all the contributing Feynman
diagrams, the dependence on the gauge vector cancels at the integrand level (i.e., before
performing the integration over the loop momentum) and the total axial-gauge integrand
coincides with the Feynman gauge integrand: this provides us with an explicit check of the
gauge invariance of the procedure and of the calculation.

As usual in the context of dimensional regularization, scaleless one-loop integrals vanish.
Eventually we have to compute several (non-vanishing) tensor, vector and scalar one-loop
Feynman integrals. Tensor and vector integrals are expressed in terms of scalar integrals
by using customary techniques [66]. One-loop integrals with five external legs (pentagon
integrals; see, e.g. the Feynman diagram in Fig. 1(a)) are expressed [67] in terms of one-loop
integrals with four external legs (box integrals) plus remaining pentagon integrals in 6− 2ε
space-time dimensions, which only contribute at O(ε) (and higher orders in ε). We do not
explicitly evaluate these contributions at O(ε). We eventually express the complete result
in terms of a minimal set of basic one-loop scalar integrals. The set involves customary
two-point and three-point (with at least one on-shell leg) Feynman integrals and some soft
box integrals (box integrals with eikonal propagators). Part of these soft box integrals
was already computed in Ref. [23] and the additional integrals are analogous to those
encountered in Ref. [68]. We have performed an independent calculation of these soft box
integrals and we find agreement with the results reported in Ref. [68] (see ‘soft box 2’
and ‘soft box 4’ in Sect. 4.2 of Ref. [68]). Our final result for the one-loop current J (1) is
reported below.

pi

pj

q(q1)

q̄(q2)

(a)

pi

pj

q(q1)

q̄(q2)

(b)

Figure 1: Example of two one-loop Feynman diagrams that contribute to the one-loop cur-
rent J (1) for soft qq̄ emission. The external-leg hard partons with momenta pi and pj are
coupled to virtual gluons by using the eikonal approximation. The dashed line symbolically
denotes the colour indices and momenta of the additional external legs. The effect of the
tree-level scattering amplitude M(0)(p1, . . . , pn) (see Eq. (8)) is given by an effective point-
like vertex (little black circle) that only depends on the colour structure of M(0) (on the
colour indices of the hard partons).
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• We define tree-level and one-loop rescaled current as follows To present our results, we first define the tree-level and one-loop rescaled currents Ĵ
(0)

and Ĵ
(1)

as follows
J (0)(q1, q2) = (gS µ

ε)2 Ĵ
(0)
(q1, q2) , (33)

J (1)(q1, q2) = (gS µ
ε)4
(
−q212 − i0

)−ε
cΓ Ĵ

(1)
(q1, q2) , (34)

Ĵ
(1)
(q1, q2) = Ĵ

(1, div)
(q1, q2) + Ĵ

(1, fin)
(q1, q2) , (35)

where Ĵ
(1)

is written in terms of two components, Ĵ
(1, div)

and Ĵ
(1, fin)

. The rescaled current

Ĵ
(0)

can be read from comparing Eqs. (14) and (33). The component Ĵ
(1, div)

of Eq. (35)

embodies the ε-pole contributions to J (1), while Ĵ
(1, fin)

includes all the remaining UV/IR

finite contributions at O(ε0) and higher orders in ε. The explicit expressions of Ĵ
(1, div)

and

Ĵ
(1, fin)

are

Ĵ
(1, div)

(q1, q2) = − 2

[
1

ε2
CF +

1

ε

(
3

2
CF −

1

6
(11CA − 4TR Nf )

)]
Ĵ

(0)
(q1, q2)

−
2

ε
jν(1, 2) t

atb
∑

i,j ∈H
i #= j

T a
i T b

j

(
pνi

pi · q12
−

pνj
pj · q12

)
(Lij + "i1 + "j2) , (36)

Ĵ
(1, fin)

(q1, q2) =

[(
−8− (δR − 1)

)
CF +

(
76

9
−

π2

3
+

1

3
(δR − 1)

)
CA −

20

9
TRNf

]
Ĵ

(0)
(q1, q2)

+ jν(1, 2) t
atb

∑

i,j ∈H
i #= j

T a
i T b

j

[(
pνi

pi · q12
−

pνj
pj · q12

)(
L2
ij + ("i1 − "j2)

2
)

+
q212

q212⊥ij

(
pνi

pi · q12
+

pνj
pj · q12

)
2Lij

(
"i1 − "j2

)]
+O(ε) , (37)

where we have used the logarithmic functions of Eqs. (27) and (28) and we have introduced
the shorthand notation "ik(q12) ≡ "ik (with k = 1, 2) and Lij(q12) ≡ Lij (i.e., we omit the
explicit dependence on the argument q12). The kinematical variable q212⊥ ij that is used in
Eq. (37) is

q212⊥ ij =
2(pi · q12)(pj · q12)

pi · pj
− q212 . (38)

We remark that the results in Eqs. (36) and (37) are valid in arbitrary kinematical re-
gions, since the time component (‘energy’) of the outgoing momenta {q1, q2, pi, pj} of the
soft and hard partons can have an arbitrary sign. According to the notation in Eq. (14)
the colour indices α1 and α2 of the soft quark and antiquark are specified by consider-
ing 〈α1,α2|J (1)(q1, q2) ≡ J (1)α1,α2(q1, q2), and this leads to 〈α1,α2| tatb =

(
tatb
)
α1α2

in
Eqs. (36) and (37).

The result in Eq. (36), which follows from our direct computation of J (1), agrees with
the ε-pole contributions that can straightforwardly be obtained by applying the general
results in Eqs. (20) or (25) to the specific case of a soft qq̄ pair (note that this agreement
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(1, fin)

includes all the remaining UV/IR

finite contributions at O(ε0) and higher orders in ε. The explicit expressions of Ĵ
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(1, fin)

includes all the remaining UV/IR

finite contributions at O(ε0) and higher orders in ε. The explicit expressions of Ĵ
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(1)
(q1, q2) , (34)

Ĵ
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(1)

is written in terms of two components, Ĵ
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Ĵ
(1, fin)

(q1, q2) =

[(
−8− (δR − 1)

)
CF +

(
76

9
−

π2

3
+

1

3
(δR − 1)

)
CA −

20

9
TRNf

]
Ĵ
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(1)
(q1, q2) , (34)

Ĵ
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(1, fin)

includes all the remaining UV/IR

finite contributions at O(ε0) and higher orders in ε. The explicit expressions of Ĵ
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(1, div)
(q1, q2) + Ĵ
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(1, div)

and Ĵ
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(0)

and Ĵ
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(1, div)

of Eq. (35)

embodies the ε-pole contributions to J (1), while Ĵ
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Ĵ
(1, div)

(q1, q2) = − 2

[
1

ε2
CF +

1

ε

(
3

2
CF −

1

6
(11CA − 4TR Nf )

)]
Ĵ
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Results 
and we have introduced the logarithmic functions !ik and Lij of hard and soft momenta:

!ik(q1...m) ≡ ln

(
−pi · qk − i0

−pi · q1...m − i0

)
, (27)

Lij(q1...m) = Lji(q1...m) ≡ ln

(
−pi · q1...m − i0

−pi · pj − i0

)
+ ln

(
−2pj · q1...m − i0

−q21...m − i0

)
. (28)

It can be explicitly checked that the two expressions in Eqs. (20) and (25) only differ by
terms of O(ε0) and higher orders in ε while acting onto colour singlet quantities. We note
that the logarithmic functions !ik and Lij in Eqs. (27) and (28) are invariant under the
overall rescaling qk → λqk (λ > 0) of the soft momenta. Therefore, the explicit expression
in the right-hand side of Eq. (25) exactly fulfils the scaling behaviour in Eq. (24). We also
note that both expressions of Eqs. (20) and (25) fulfil the colour flow conservation property
in Eq. (11).

Throughout the paper we use the dimensional regularization procedure to deal with
UV and IR divergences and, therefore, the momenta (and their associated phase space)
of the virtual particles inside loops are analytically continued to d = 4 − 2ε space-time
dimensions [58, 59, 60]. Different variants of dimensional regularization can be used, and
each variant defines a specific regularization scheme (RS). The RSs that are mostly used
are conventional dimensional regularization (CDR) [59, 60], the ’tHooft–Veltman (HV) [58]
scheme, dimensional reduction (DR) [61] and the four-dimensional helicity (4DH) scheme
[62]. The momenta of the external-leg particles in the scattering amplitude can be either
d-dimensional (CDR and DR schemes) or four-dimensional (HV and 4DH schemes). The
number of spin polarization (helicity) states of the gluon also depends on the RS: external-
leg gluons can have either d − 2 = 2 − 2ε polarizations (CDR) or 2 polarizations (HV,
DR, 4DH), and virtual gluons can have either d − 2 = 2 − 2ε polarizations (CDR, HV)
or 2 polarizations (DR, 4DH). Scattering amplitudes and, consequently, soft currents (as
defined by the soft limit) depend on the RS. As for the RS dependence on external-leg
particles, throughout the paper we formally express soft (tree-level and one-loop) currents
in terms of external-leg momenta (pi, qk) and corresponding polarization wave functions
(ε(qk), u(qk), v(qk)): these expressions are formally RS invariant, although momenta and
wave functions implicitly embody an RS dependence (which can be regarded as a depen-
dence of O(ε)). At the one-loop level, soft currents (and scattering amplitudes) have a
residual RS dependence that can be explicitly parametrized by the number of polarization
states hg of virtual gluons. We write hg = 2 − 2εδR and, therefore, we have (this is the
same notation as used, e.g., in Refs. [21, 20])

δR = 1 (CDR, HV) , δR = 0 (4DH, DR) . (29)

To formally express the explicit δR dependence of the one-loop soft current J (1) we then
define

J
(1)
RS ≡ J (1) −

[
J (1)

]
δR=1

, (30)

where both terms in the right-hand side are expressed through the same formal external-leg
variables (momenta and wave functions), which embody an implicit dependence on the RS,
and

[
J (1)

]
δR=1

is obtained by setting δR = 1 in the explicit expression of J (1). Roughly

speaking (e.g., modulo the implicit RS dependence due to the number of polarizations of
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To present our results, we first define the tree-level and one-loop rescaled currents Ĵ
(0)

and Ĵ
(1)

as follows
J (0)(q1, q2) = (gS µ

ε)2 Ĵ
(0)
(q1, q2) , (33)

J (1)(q1, q2) = (gS µ
ε)4
(
−q212 − i0

)−ε
cΓ Ĵ

(1)
(q1, q2) , (34)

Ĵ
(1)
(q1, q2) = Ĵ

(1, div)
(q1, q2) + Ĵ

(1, fin)
(q1, q2) , (35)

where Ĵ
(1)

is written in terms of two components, Ĵ
(1, div)

and Ĵ
(1, fin)

. The rescaled current

Ĵ
(0)

can be read from comparing Eqs. (14) and (33). The component Ĵ
(1, div)

of Eq. (35)

embodies the ε-pole contributions to J (1), while Ĵ
(1, fin)

includes all the remaining UV/IR

finite contributions at O(ε0) and higher orders in ε. The explicit expressions of Ĵ
(1, div)

and

Ĵ
(1, fin)

are

Ĵ
(1, div)

(q1, q2) = − 2

[
1

ε2
CF +

1

ε

(
3

2
CF −

1

6
(11CA − 4TR Nf )

)]
Ĵ

(0)
(q1, q2)

−
2

ε
jν(1, 2) t

atb
∑

i,j ∈H
i #= j

T a
i T b

j

(
pνi

pi · q12
−

pνj
pj · q12

)
(Lij + "i1 + "j2) , (36)

Ĵ
(1, fin)

(q1, q2) =

[(
−8− (δR − 1)

)
CF +

(
76

9
−

π2

3
+

1

3
(δR − 1)

)
CA −

20

9
TRNf

]
Ĵ

(0)
(q1, q2)

+ jν(1, 2) t
atb

∑

i,j ∈H
i #= j

T a
i T b

j

[(
pνi

pi · q12
−

pνj
pj · q12

)(
L2
ij + ("i1 − "j2)

2
)

+
q212

q212⊥ij

(
pνi

pi · q12
+

pνj
pj · q12

)
2Lij

(
"i1 − "j2

)]
+O(ε) , (37)

where we have used the logarithmic functions of Eqs. (27) and (28) and we have introduced
the shorthand notation "ik(q12) ≡ "ik (with k = 1, 2) and Lij(q12) ≡ Lij (i.e., we omit the
explicit dependence on the argument q12). The kinematical variable q212⊥ ij that is used in
Eq. (37) is

q212⊥ ij =
2(pi · q12)(pj · q12)

pi · pj
− q212 . (38)

We remark that the results in Eqs. (36) and (37) are valid in arbitrary kinematical re-
gions, since the time component (‘energy’) of the outgoing momenta {q1, q2, pi, pj} of the
soft and hard partons can have an arbitrary sign. According to the notation in Eq. (14)
the colour indices α1 and α2 of the soft quark and antiquark are specified by consider-
ing 〈α1,α2|J (1)(q1, q2) ≡ J (1)α1,α2(q1, q2), and this leads to 〈α1,α2| tatb =

(
tatb
)
α1α2

in
Eqs. (36) and (37).

The result in Eq. (36), which follows from our direct computation of J (1), agrees with
the ε-pole contributions that can straightforwardly be obtained by applying the general
results in Eqs. (20) or (25) to the specific case of a soft qq̄ pair (note that this agreement
is valid modulo harmless terms that are proportional to the total colour charge

∑
i∈H T i of

the hard partons). The expression in Eq. (36) has a term that is directly proportional to

17

• The explicit expression of the finite component is

Collinear singularity 
if q212 -> 0 (if the 
momenta of the 

soft quark and anti 
quark are parallel)

Results 

Behaviour which is 
present in 

J (0) and additional terms that involve colour (and kinematical) correlations of the soft qq̄
pair with two hard partons. These colour correlations are produced by the colour matrix
factor tatbT a

i T b
j . We remark that these correlations are not purely non-abelian, but they

also include a component that is still present in the abelian limit of commuting colour
matrices (this feature has to be contrasted with the one-loop single soft-gluon case of
Eq. (16), in which correlations are purely non-abelian). In particular, this also implies that
the soft current for lepton-antilepton radiation in massless QED has non-vanishing QED
radiative corrections at one-loop level (see Sect. 6). The kinematical coefficients of these
colour-correlation terms are proportional to the momentum function

Lij + !i1 + !j2 = ln

(
−pi · q1 − i0

−pi · pj − i0

)
+ ln

(
−pj · q2 − i0

−q1 · q2 − i0

)
, (39)

whose real part is the logarithm of a conformally invariant cross ratio, namely,

Re(Lij + !i1 + !j2) = ln

(
|pi · q1| |pj · q2|
|pi · pj| |q1 · q2|

)
. (40)

We note that (analogously to the treatment in Sect. 3) in the computation of Ĵ
(1)
(q1, q2)

we have dressed gluon propagators with one-loop vacuum polarization effects that are due

only to massless partons. In particular, the terms proportional to Nf Ĵ
(0)

in the right-hand
side of Eqs. (36) and (37) are due to the vacuum polarization of Nf massless quarks. Vac-

uum polarization effects of massive quarks can straightforwardly be included in Ĵ
(1)
(q1, q2),

and they produce corresponding (mass-dependent) contributions that are proportional to

Ĵ
(0)
(q1, q2).

We comment on the structure of Ĵ
(1, fin)

. We have explicitly computed it up to O(ε0)

and the result is presented in Eq. (37). The expression of Ĵ
(1, fin)

at O(ε0) is quite compact
and remarkably much simpler than expected. In particular, although it involves momentum
functions of trascendentality equal to two, they are only powers of logarithmic functions
with no additional dependence on dilogarithms Li2. Dilogarithms do appear in the compu-
tation of individual Feynman diagrams and loop integrals at O(ε0), but they cancel in the

complete result for Ĵ
(1, fin)

. The finite component Ĵ
(1, fin)

includes a term that is proportional
to J (0) and additional correlation terms with two hard partons whose colour structure is
exactly analogous to that in Eq. (36) (and it embodies both abelian and non-abelian com-
ponents). We have explicitly checked that no different colour-correlation structures occur
at any higher orders in the ε expansion. The term that is proportional to J (0) explicitly
depends on the RS parameter δR: this dependence exactly agrees with that of the general
result in Eq. (31).

We also comment on the kinematical dependence of the colour correlation terms. At the
tree level the soft-qq̄ current J (0) has a kinematical structure with a rational dependence
on j(1, 2) · pi/pi · q12 (see Eqs. (14) and (15)). In particular, this dependence leads to a
collinear singularity if q212 → 0 (i.e., if the momenta of the soft quark and antiquark are
parallel). Exactly the same rational dependence (though possibly modified by logarithmic

factors) occurs in the one-loop contributions Ĵ
(1, div)

and Ĵ
(1, fin)

. However, by inspection
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(1)
(q1, q2),

and they produce corresponding (mass-dependent) contributions that are proportional to

Ĵ
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To present our results, we first define the tree-level and one-loop rescaled currents Ĵ
(0)

and Ĵ
(1)

as follows
J (0)(q1, q2) = (gS µ

ε)2 Ĵ
(0)
(q1, q2) , (33)

J (1)(q1, q2) = (gS µ
ε)4
(
−q212 − i0

)−ε
cΓ Ĵ

(1)
(q1, q2) , (34)

Ĵ
(1)
(q1, q2) = Ĵ

(1, div)
(q1, q2) + Ĵ

(1, fin)
(q1, q2) , (35)

where Ĵ
(1)

is written in terms of two components, Ĵ
(1, div)

and Ĵ
(1, fin)

. The rescaled current

Ĵ
(0)

can be read from comparing Eqs. (14) and (33). The component Ĵ
(1, div)

of Eq. (35)

embodies the ε-pole contributions to J (1), while Ĵ
(1, fin)

includes all the remaining UV/IR

finite contributions at O(ε0) and higher orders in ε. The explicit expressions of Ĵ
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(1, div)

(q1, q2) = − 2
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1

ε2
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1

ε

(
3

2
CF −

1

6
(11CA − 4TR Nf )

)]
Ĵ

(0)
(q1, q2)

−
2

ε
jν(1, 2) t

atb
∑

i,j ∈H
i #= j

T a
i T b

j

(
pνi

pi · q12
−

pνj
pj · q12

)
(Lij + "i1 + "j2) , (36)

Ĵ
(1, fin)

(q1, q2) =

[(
−8− (δR − 1)

)
CF +

(
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9
−

π2

3
+

1

3
(δR − 1)

)
CA −

20

9
TRNf
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Ĵ

(0)
(q1, q2)
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i T b

j
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q212

q212⊥ij

(
pνi

pi · q12
+
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)
2Lij

(
"i1 − "j2

)]
+O(ε) , (37)

where we have used the logarithmic functions of Eqs. (27) and (28) and we have introduced
the shorthand notation "ik(q12) ≡ "ik (with k = 1, 2) and Lij(q12) ≡ Lij (i.e., we omit the
explicit dependence on the argument q12). The kinematical variable q212⊥ ij that is used in
Eq. (37) is

q212⊥ ij =
2(pi · q12)(pj · q12)

pi · pj
− q212 . (38)

We remark that the results in Eqs. (36) and (37) are valid in arbitrary kinematical re-
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The result in Eq. (36), which follows from our direct computation of J (1), agrees with
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the hard partons). The expression in Eq. (36) has a term that is directly proportional to
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• The explicit expression of the finite component is
Collinear singularity 

if q212 -> 0 (if the 
momenta of the 

soft quark and anti 
quark are parallel)

Results 

Behaviour which is 
present in 
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pair with two hard partons. These colour correlations are produced by the colour matrix
factor tatbT a

i T b
j . We remark that these correlations are not purely non-abelian, but they

also include a component that is still present in the abelian limit of commuting colour
matrices (this feature has to be contrasted with the one-loop single soft-gluon case of
Eq. (16), in which correlations are purely non-abelian). In particular, this also implies that
the soft current for lepton-antilepton radiation in massless QED has non-vanishing QED
radiative corrections at one-loop level (see Sect. 6). The kinematical coefficients of these
colour-correlation terms are proportional to the momentum function

Lij + !i1 + !j2 = ln

(
−pi · q1 − i0

−pi · pj − i0

)
+ ln

(
−pj · q2 − i0

−q1 · q2 − i0

)
, (39)

whose real part is the logarithm of a conformally invariant cross ratio, namely,

Re(Lij + !i1 + !j2) = ln

(
|pi · q1| |pj · q2|
|pi · pj| |q1 · q2|

)
. (40)

We note that (analogously to the treatment in Sect. 3) in the computation of Ĵ
(1)
(q1, q2)

we have dressed gluon propagators with one-loop vacuum polarization effects that are due

only to massless partons. In particular, the terms proportional to Nf Ĵ
(0)

in the right-hand
side of Eqs. (36) and (37) are due to the vacuum polarization of Nf massless quarks. Vac-

uum polarization effects of massive quarks can straightforwardly be included in Ĵ
(1)
(q1, q2),

and they produce corresponding (mass-dependent) contributions that are proportional to

Ĵ
(0)
(q1, q2).

We comment on the structure of Ĵ
(1, fin)

. We have explicitly computed it up to O(ε0)

and the result is presented in Eq. (37). The expression of Ĵ
(1, fin)

at O(ε0) is quite compact
and remarkably much simpler than expected. In particular, although it involves momentum
functions of trascendentality equal to two, they are only powers of logarithmic functions
with no additional dependence on dilogarithms Li2. Dilogarithms do appear in the compu-
tation of individual Feynman diagrams and loop integrals at O(ε0), but they cancel in the

complete result for Ĵ
(1, fin)

. The finite component Ĵ
(1, fin)

includes a term that is proportional
to J (0) and additional correlation terms with two hard partons whose colour structure is
exactly analogous to that in Eq. (36) (and it embodies both abelian and non-abelian com-
ponents). We have explicitly checked that no different colour-correlation structures occur
at any higher orders in the ε expansion. The term that is proportional to J (0) explicitly
depends on the RS parameter δR: this dependence exactly agrees with that of the general
result in Eq. (31).

We also comment on the kinematical dependence of the colour correlation terms. At the
tree level the soft-qq̄ current J (0) has a kinematical structure with a rational dependence
on j(1, 2) · pi/pi · q12 (see Eqs. (14) and (15)). In particular, this dependence leads to a
collinear singularity if q212 → 0 (i.e., if the momenta of the soft quark and antiquark are
parallel). Exactly the same rational dependence (though possibly modified by logarithmic

factors) occurs in the one-loop contributions Ĵ
(1, div)

and Ĵ
(1, fin)

. However, by inspection
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This rational factor has no collinear singularity 
at q212 -> 0, but potentially leads to a 

singularity in the limit 

of Eq. (37) we see that the one-loop interaction at O(ε0) also produces a different type of
kinematical dependence as given by the factor j(1, 2) · pi q212/(pi · q12 q212⊥ij). This rational
factor has no collinear singularity at q212 → 0, but it potentially leads to a singularity in
the limit q212⊥ij → 0. This is a ‘transverse-momentum singularity’, since the kinematical

variable
√

q212⊥ij in Eq. (38) is the transverse component of the momentum q12 of the soft

qq̄ pair with respect to the momenta pi and pj of the colour-correlated hard partons in a
reference frame in which pi and pj are back-to-back.

The transverse-momentum singularity in the current is partly screened by the logarith-
mic function Lij, and we have

1

q212⊥ij

Lij "
q12⊥ij→0

1

q212⊥ij

[
2πi sign(q212) Θ

(
−pi · q12
pi · pj

)
Θ

(
−pj · q12
pi · pj

)
+O

(
q212⊥ij

q212

)]
,

(41)
which shows that the current has a one-loop singularity of absorptive origin. Considering
the physically most relevant kinematical region in which the soft quark and antiquark are
produced in the final state (q01 > 0, q02 > 0), Eq. (41) becomes

1

q212⊥ij

Lij "
q12⊥ij→0

1

q212⊥ij

2πi Θ(−p0i ) Θ(−p0j) , (q01 > 0, q02 > 0) , (42)

which shows that the transverse-momentum singularity is present in the scattering ampli-
tude of a physical process in which the final-state soft qq̄ pair is produced by the collision
of the hard partons i and j in the initial state. We remark that this singularity has a pure
quantum mechanics (loop) origin, and it occurs in the limit q212⊥ij → 0 even if the trans-
verse momenta q1⊥ij and q2⊥ij (q2k⊥ij = 2pi · qk pj · qk/pi · pj, k = 1, 2) of the soft quark and
antiquark are separately large (i.e., they are separately non-vanishing) and q212 is large. We
also note that, setting q12⊥ij = 0 at fixed non-vanishing values of q212 and q1⊥ij (or q2⊥ij),
we have

(
#i1 − #j2

)
= −

(
#j1 − #i2

)
. Therefore, in the limit q212⊥ij → 0 the factor #i1 − #j2 is

(approximately) antisymmetric with respect to the exchange pi ↔ pj and this implies that
we can perform the following replacement in Eq. (37):

tatb T a
i T b

j

Lij

q212⊥ij

(
#i1−#j2

)
−→

q12⊥ij→0
−fabctc T a

i T b
j

π Θ(−p0i )Θ(−p0j)

q212⊥ij

(
#i1−#j2

)
, (q01, q

0
2 > 0) ,

(43)
and it follows that, in the kinematical region with q01 > 0 and q02 > 0, the transverse-
momentum singularity has a purely non-abelian character (see the factor fabc in the right-
hand side of the relation (43)).

As we have just discussed, the singularity of the soft-qq̄ current in the limit q12⊥ij →
0 originates from one-loop interactions of the two soft partons. Therefore, we expect
the presence of the transverse-momentum singularity also in the case of double soft-gluon
emission at one-loop level. The one-loop double-gluon current computed in Ref. [40] indeed
shows singular terms at q12⊥ij → 0.

We have also computed the soft-qq̄ one-loop current J (1) by explicitly evaluating its
dependence on the RS parameter δR to all orders in ε. Using the notation of Eq. (30) and
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To present our results, we first define the tree-level and one-loop rescaled currents Ĵ
(0)

and Ĵ
(1)

as follows
J (0)(q1, q2) = (gS µ

ε)2 Ĵ
(0)
(q1, q2) , (33)

J (1)(q1, q2) = (gS µ
ε)4
(
−q212 − i0

)−ε
cΓ Ĵ

(1)
(q1, q2) , (34)

Ĵ
(1)
(q1, q2) = Ĵ

(1, div)
(q1, q2) + Ĵ

(1, fin)
(q1, q2) , (35)

where Ĵ
(1)

is written in terms of two components, Ĵ
(1, div)

and Ĵ
(1, fin)

. The rescaled current

Ĵ
(0)

can be read from comparing Eqs. (14) and (33). The component Ĵ
(1, div)

of Eq. (35)

embodies the ε-pole contributions to J (1), while Ĵ
(1, fin)

includes all the remaining UV/IR

finite contributions at O(ε0) and higher orders in ε. The explicit expressions of Ĵ
(1, div)

and

Ĵ
(1, fin)

are

Ĵ
(1, div)

(q1, q2) = − 2

[
1

ε2
CF +

1

ε

(
3

2
CF −

1

6
(11CA − 4TR Nf )

)]
Ĵ

(0)
(q1, q2)

−
2

ε
jν(1, 2) t

atb
∑

i,j ∈H
i #= j

T a
i T b

j

(
pνi

pi · q12
−

pνj
pj · q12

)
(Lij + "i1 + "j2) , (36)

Ĵ
(1, fin)

(q1, q2) =

[(
−8− (δR − 1)

)
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9
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π2

3
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1

3
(δR − 1)
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20
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TRNf
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(q1, q2)
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atb

∑

i,j ∈H
i #= j

T a
i T b
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[(
pνi

pi · q12
−

pνj
pj · q12

)(
L2
ij + ("i1 − "j2)

2
)

+
q212

q212⊥ij

(
pνi

pi · q12
+

pνj
pj · q12

)
2Lij

(
"i1 − "j2

)]
+O(ε) , (37)

where we have used the logarithmic functions of Eqs. (27) and (28) and we have introduced
the shorthand notation "ik(q12) ≡ "ik (with k = 1, 2) and Lij(q12) ≡ Lij (i.e., we omit the
explicit dependence on the argument q12). The kinematical variable q212⊥ ij that is used in
Eq. (37) is

q212⊥ ij =
2(pi · q12)(pj · q12)

pi · pj
− q212 . (38)

We remark that the results in Eqs. (36) and (37) are valid in arbitrary kinematical re-
gions, since the time component (‘energy’) of the outgoing momenta {q1, q2, pi, pj} of the
soft and hard partons can have an arbitrary sign. According to the notation in Eq. (14)
the colour indices α1 and α2 of the soft quark and antiquark are specified by consider-
ing 〈α1,α2|J (1)(q1, q2) ≡ J (1)α1,α2(q1, q2), and this leads to 〈α1,α2| tatb =

(
tatb
)
α1α2

in
Eqs. (36) and (37).

The result in Eq. (36), which follows from our direct computation of J (1), agrees with
the ε-pole contributions that can straightforwardly be obtained by applying the general
results in Eqs. (20) or (25) to the specific case of a soft qq̄ pair (note that this agreement
is valid modulo harmless terms that are proportional to the total colour charge

∑
i∈H T i of

the hard partons). The expression in Eq. (36) has a term that is directly proportional to
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of Eq. (37) we see that the one-loop interaction at O(ε0) also produces a different type of
kinematical dependence as given by the factor j(1, 2) · pi q212/(pi · q12 q212⊥ij). This rational
factor has no collinear singularity at q212 → 0, but it potentially leads to a singularity in
the limit q212⊥ij → 0. This is a ‘transverse-momentum singularity’, since the kinematical

variable
√

q212⊥ij in Eq. (38) is the transverse component of the momentum q12 of the soft

qq̄ pair with respect to the momenta pi and pj of the colour-correlated hard partons in a
reference frame in which pi and pj are back-to-back.

The transverse-momentum singularity in the current is partly screened by the logarith-
mic function Lij, and we have

1

q212⊥ij

Lij "
q12⊥ij→0

1

q212⊥ij

[
2πi sign(q212) Θ

(
−pi · q12
pi · pj

)
Θ

(
−pj · q12
pi · pj

)
+O

(
q212⊥ij

q212

)]
,

(41)
which shows that the current has a one-loop singularity of absorptive origin. Considering
the physically most relevant kinematical region in which the soft quark and antiquark are
produced in the final state (q01 > 0, q02 > 0), Eq. (41) becomes

1

q212⊥ij

Lij "
q12⊥ij→0

1

q212⊥ij

2πi Θ(−p0i ) Θ(−p0j) , (q01 > 0, q02 > 0) , (42)

which shows that the transverse-momentum singularity is present in the scattering ampli-
tude of a physical process in which the final-state soft qq̄ pair is produced by the collision
of the hard partons i and j in the initial state. We remark that this singularity has a pure
quantum mechanics (loop) origin, and it occurs in the limit q212⊥ij → 0 even if the trans-
verse momenta q1⊥ij and q2⊥ij (q2k⊥ij = 2pi · qk pj · qk/pi · pj, k = 1, 2) of the soft quark and
antiquark are separately large (i.e., they are separately non-vanishing) and q212 is large. We
also note that, setting q12⊥ij = 0 at fixed non-vanishing values of q212 and q1⊥ij (or q2⊥ij),
we have

(
#i1 − #j2

)
= −

(
#j1 − #i2

)
. Therefore, in the limit q212⊥ij → 0 the factor #i1 − #j2 is

(approximately) antisymmetric with respect to the exchange pi ↔ pj and this implies that
we can perform the following replacement in Eq. (37):

tatb T a
i T b

j

Lij

q212⊥ij

(
#i1−#j2

)
−→

q12⊥ij→0
−fabctc T a

i T b
j

π Θ(−p0i )Θ(−p0j)

q212⊥ij

(
#i1−#j2

)
, (q01, q

0
2 > 0) ,

(43)
and it follows that, in the kinematical region with q01 > 0 and q02 > 0, the transverse-
momentum singularity has a purely non-abelian character (see the factor fabc in the right-
hand side of the relation (43)).

As we have just discussed, the singularity of the soft-qq̄ current in the limit q12⊥ij →
0 originates from one-loop interactions of the two soft partons. Therefore, we expect
the presence of the transverse-momentum singularity also in the case of double soft-gluon
emission at one-loop level. The one-loop double-gluon current computed in Ref. [40] indeed
shows singular terms at q12⊥ij → 0.

We have also computed the soft-qq̄ one-loop current J (1) by explicitly evaluating its
dependence on the RS parameter δR to all orders in ε. Using the notation of Eq. (30) and
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and it follows that, in the kinematical region with q01 > 0 and q02 > 0, the transverse-
momentum singularity has a purely non-abelian character (see the factor fabc in the right-
hand side of the relation (43)).

As we have just discussed, the singularity of the soft-qq̄ current in the limit q12⊥ij →
0 originates from one-loop interactions of the two soft partons. Therefore, we expect
the presence of the transverse-momentum singularity also in the case of double soft-gluon
emission at one-loop level. The one-loop double-gluon current computed in Ref. [40] indeed
shows singular terms at q12⊥ij → 0.

We have also computed the soft-qq̄ one-loop current J (1) by explicitly evaluating its
dependence on the RS parameter δR to all orders in ε. Using the notation of Eq. (30) and
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and it follows that, in the kinematical region with q01 > 0 and q02 > 0, the transverse-
momentum singularity has a purely non-abelian character (see the factor fabc in the right-
hand side of the relation (43)).

As we have just discussed, the singularity of the soft-qq̄ current in the limit q12⊥ij →
0 originates from one-loop interactions of the two soft partons. Therefore, we expect
the presence of the transverse-momentum singularity also in the case of double soft-gluon
emission at one-loop level. The one-loop double-gluon current computed in Ref. [40] indeed
shows singular terms at q12⊥ij → 0.

We have also computed the soft-qq̄ one-loop current J (1) by explicitly evaluating its
dependence on the RS parameter δR to all orders in ε. Using the notation of Eq. (30) and
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of Eq. (37) we see that the one-loop interaction at O(ε0) also produces a different type of
kinematical dependence as given by the factor j(1, 2) · pi q212/(pi · q12 q212⊥ij). This rational
factor has no collinear singularity at q212 → 0, but it potentially leads to a singularity in
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which shows that the transverse-momentum singularity is present in the scattering ampli-
tude of a physical process in which the final-state soft qq̄ pair is produced by the collision
of the hard partons i and j in the initial state. We remark that this singularity has a pure
quantum mechanics (loop) origin, and it occurs in the limit q212⊥ij → 0 even if the trans-
verse momenta q1⊥ij and q2⊥ij (q2k⊥ij = 2pi · qk pj · qk/pi · pj, k = 1, 2) of the soft quark and
antiquark are separately large (i.e., they are separately non-vanishing) and q212 is large. We
also note that, setting q12⊥ij = 0 at fixed non-vanishing values of q212 and q1⊥ij (or q2⊥ij),
we have
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= −
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(approximately) antisymmetric with respect to the exchange pi ↔ pj and this implies that
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and it follows that, in the kinematical region with q01 > 0 and q02 > 0, the transverse-
momentum singularity has a purely non-abelian character (see the factor fabc in the right-
hand side of the relation (43)).

As we have just discussed, the singularity of the soft-qq̄ current in the limit q12⊥ij →
0 originates from one-loop interactions of the two soft partons. Therefore, we expect
the presence of the transverse-momentum singularity also in the case of double soft-gluon
emission at one-loop level. The one-loop double-gluon current computed in Ref. [40] indeed
shows singular terms at q12⊥ij → 0.

We have also computed the soft-qq̄ one-loop current J (1) by explicitly evaluating its
dependence on the RS parameter δR to all orders in ε. Using the notation of Eq. (30) and
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considering the rescaled currents in Eqs. (33) and (35), we find the result

Ĵ
(1, fin)

RS (q1, q2) = − (δR − 1)
1

1− ε

[
CF − CA

1− 4ε+ 2ε2

(1− 2ε)(3− 2ε)

]
Ĵ

(0)
(q1, q2) . (44)

Note that the δR dependence at one-loop order is completely factorized with respect to J (0).
We also note that this factorized structure and the explicit expression of the ε-dependent
factor in Eq. (44) are exactly equal to the corresponding RS dependence of the splitting
function, Split(g → q(q1)q̄(q2)), of one-loop scattering amplitudes for radiation of a qq̄ pair
in the collinear limit [21, 20, 27].

The one-loop current J (1) for soft-qq̄ emission has been independently computed in
Ref. [40], and the corresponding result is presented in Sect. 3.3 therein. We first note
that the one-loop result of Ref. [40] differs from our result already at the level of ε-pole
contributions. However, we also note that we can remove such difference by adjusting
the relative size of the four contributions in the right-hand side of Eq. (3.20) of Ref. [40].

More precisely, we modify the size of M s.l. by applying the replacement
(
− 4

Nc
+ Nc

2

)
→

(
−CF + Nc

2

)
= 1

2Nc
to its colour coefficient (see the line 10 of Eq. (3.21)). We have contacted

the author of Ref. [40] and he agreed with this correction. Performing such replacement,
we have explicitly checked that the expression of J (1) in Eq.(3.20) of Ref. [40] agrees with
our result (modulo the overall normalization of the one-loop current, which is not clearly
specified in Ref. [40]) for both the ε-pole terms and the finite contributions at O(ε0).
However, we note that this check and comparison involve some ‘limitations’. The explicit
result of Ref. [40] only refers to the ‘time-like’ region, namely to the kinematical region in
which the soft partons and all the hard partons are physically produced in the final state.
Moreover, the result of Ref. [40] is specified for fixed (four dimensional) helicities of the soft
quark and antiquark, and the comparison with our result requires the repeated use of the
Schouten identity (which, precisely speaking, is valid only in four space-time dimensions)
for the product of helicity spinors.

5 Soft qq̄ radiation: squared amplitudes and current

Using the colour+spin space notation of Sect. 2, the squared amplitude |M|2 (summed
over the colours and spins of its external legs) is written as follows

|M|2 = 〈M|M〉 . (45)

Accordingly, the square of the soft-emission factorization formula in Eq. (5) gives

|M(q1, . . . , qm, p1, . . . , pn)|2 % 〈M(p1, . . . , pn)| |J(q1, . . . , qm) |2 |M(p1, . . . , pn)〉 , (46)

where, analogously to Eqs. (7) and (8), the symbol % means that we have neglected contri-
butions that are subdominant in the soft multiparton limit (i.e., the contributions that are
denoted by the dots on the right-hand side of Eq. (5)). In the right-hand side of Eq. (46),
|J |2 denotes the all-loop squared current summed over the colours {c1, . . . , cm} and spins
{s1, . . . , sm} of the soft partons:

|J(q1, . . . , qm)|2 =
[
J c1,...,cm
s1,...,sm

(q1, . . . , qm)
]†
J c1,...,cm
s1,...,sm

(q1, . . . , qm)

≡ [J(q1, . . . , qm)]
†
J(q1, . . . , qm) . (47)
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Ĵ

(0)
(q1, q2) . (44)

Note that the δR dependence at one-loop order is completely factorized with respect to J (0).
We also note that this factorized structure and the explicit expression of the ε-dependent
factor in Eq. (44) are exactly equal to the corresponding RS dependence of the splitting
function, Split(g → q(q1)q̄(q2)), of one-loop scattering amplitudes for radiation of a qq̄ pair
in the collinear limit [21, 20, 27].

The one-loop current J (1) for soft-qq̄ emission has been independently computed in
Ref. [40], and the corresponding result is presented in Sect. 3.3 therein. We first note
that the one-loop result of Ref. [40] differs from our result already at the level of ε-pole
contributions. However, we also note that we can remove such difference by adjusting
the relative size of the four contributions in the right-hand side of Eq. (3.20) of Ref. [40].

More precisely, we modify the size of M s.l. by applying the replacement
(
− 4

Nc
+ Nc

2

)
→

(
−CF + Nc

2

)
= 1

2Nc
to its colour coefficient (see the line 10 of Eq. (3.21)). We have contacted

the author of Ref. [40] and he agreed with this correction. Performing such replacement,
we have explicitly checked that the expression of J (1) in Eq.(3.20) of Ref. [40] agrees with
our result (modulo the overall normalization of the one-loop current, which is not clearly
specified in Ref. [40]) for both the ε-pole terms and the finite contributions at O(ε0).
However, we note that this check and comparison involve some ‘limitations’. The explicit
result of Ref. [40] only refers to the ‘time-like’ region, namely to the kinematical region in
which the soft partons and all the hard partons are physically produced in the final state.
Moreover, the result of Ref. [40] is specified for fixed (four dimensional) helicities of the soft
quark and antiquark, and the comparison with our result requires the repeated use of the
Schouten identity (which, precisely speaking, is valid only in four space-time dimensions)
for the product of helicity spinors.

5 Soft qq̄ radiation: squared amplitudes and current

Using the colour+spin space notation of Sect. 2, the squared amplitude |M|2 (summed
over the colours and spins of its external legs) is written as follows

|M|2 = 〈M|M〉 . (45)
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|J |2 denotes the all-loop squared current summed over the colours {c1, . . . , cm} and spins
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Note that the δR dependence at one-loop order is completely factorized with respect to J (0).
We also note that this factorized structure and the explicit expression of the ε-dependent
factor in Eq. (44) are exactly equal to the corresponding RS dependence of the splitting
function, Split(g → q(q1)q̄(q2)), of one-loop scattering amplitudes for radiation of a qq̄ pair
in the collinear limit [21, 20, 27].

The one-loop current J (1) for soft-qq̄ emission has been independently computed in
Ref. [40], and the corresponding result is presented in Sect. 3.3 therein. We first note
that the one-loop result of Ref. [40] differs from our result already at the level of ε-pole
contributions. However, we also note that we can remove such difference by adjusting
the relative size of the four contributions in the right-hand side of Eq. (3.20) of Ref. [40].
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we have explicitly checked that the expression of J (1) in Eq.(3.20) of Ref. [40] agrees with
our result (modulo the overall normalization of the one-loop current, which is not clearly
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However, we note that this check and comparison involve some ‘limitations’. The explicit
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we have explicitly checked that the expression of J (1) in Eq.(3.20) of Ref. [40] agrees with
our result (modulo the overall normalization of the one-loop current, which is not clearly
specified in Ref. [40]) for both the ε-pole terms and the finite contributions at O(ε0).
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where, analogously to Eqs. (7) and (8), the symbol % means that we have neglected contri-
butions that are subdominant in the soft multiparton limit (i.e., the contributions that are
denoted by the dots on the right-hand side of Eq. (5)). In the right-hand side of Eq. (46),
|J |2 denotes the all-loop squared current summed over the colours {c1, . . . , cm} and spins
{s1, . . . , sm} of the soft partons:
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The squared current |J |2 is a colour operator that depends on the colour charges (and mo-
menta) of the hard partons in M(p1, . . . , pn). These colour charges produce colour correla-
tions and, therefore, the right-hand side of Eq. (46) is not proportional to |M(p1, . . . , pn)|2
in the case of a generic scattering amplitude†. As remarked on in Sect. 2, J is simply
proportional to the unit operator in the spin subspace of the hard partons. Therefore, we
note that the squared current |J |2 of Eq. (47) still applies to spin-polarized hard-scattering
processes, namely, to processes in which the spin polarizations of the hard partons are fixed
(rather than summed over). Obviously, Eqs. (45)–(47) can also be properly generalized to
the case in which the spin polarizations of one or more soft partons are fixed.

In the following part of this Section, we only consider soft-qq̄ radiation and the corre-
sponding soft current J(q1, q2) (see Eq. (14) and Sect. 4). We define the loop expansion of
the squared current as follows

|J(q1, q2)|2 ≡ (gS µ
ε)4 |Ĵ(q1, q2)|2(0") + (gS µ

ε)6
(
|q212|

)−ε
cΓ |Ĵ(q1, q2)|2(1") +O(g8S) , (48)

where |Ĵ |2(0") and |Ĵ |2(1") are the tree-level (0 loop) and one-loop rescaled contributions to

|J |2, respectively.

5.1 The tree-level squared current

The tree-level squared current in Eq. (48) is

|Ĵ(q1, q2)|2(0") =
[
Ĵ

(0)
(q1, q2)

]†
Ĵ

(0)
(q1, q2) , (49)

where Ĵ
(0)

is the rescaled current in Eqs. (14) and (33). The computation of the right-hand
side of Eq. (49) is straightforward and the explicit result was first presented in Sect. 3.2 of
Ref. [22]. We have

|Ĵ(q1, q2)|2(0") = TR

∑

i,j∈H

T i · T j Iij(q1, q2) , (50)

where the momentum-dependent function Iij(q1, q2) is (see Eq. (96) in Ref. [22])

Iij(q1, q2) =
(pi · q1) (pj · q2) + (pj · q1) (pi · q2)− (pi · pj) (q1 · q2)

(q1 · q2)2 (pi · q12) (pj · q12)
. (51)

Using colour charge conservation (see Eq. (10)), the tree-level squared current |Ĵ |2(0")
can be recast in the following different form

|Ĵ(q1, q2)|2(0") cs= −
1

2
TR

∑

i,j ∈H
i #= j

T i · T j wij(q1, q2) , (52)

†Colour correlations can be simplified in the case of scattering amplitudes with two and three hard
partons (see Sect. 5.3).
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Note that the δR dependence at one-loop order is completely factorized with respect to J (0).
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we have explicitly checked that the expression of J (1) in Eq.(3.20) of Ref. [40] agrees with
our result (modulo the overall normalization of the one-loop current, which is not clearly
specified in Ref. [40]) for both the ε-pole terms and the finite contributions at O(ε0).
However, we note that this check and comparison involve some ‘limitations’. The explicit
result of Ref. [40] only refers to the ‘time-like’ region, namely to the kinematical region in
which the soft partons and all the hard partons are physically produced in the final state.
Moreover, the result of Ref. [40] is specified for fixed (four dimensional) helicities of the soft
quark and antiquark, and the comparison with our result requires the repeated use of the
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• The tree-level squared current is

The squared current |J |2 is a colour operator that depends on the colour charges (and mo-
menta) of the hard partons in M(p1, . . . , pn). These colour charges produce colour correla-
tions and, therefore, the right-hand side of Eq. (46) is not proportional to |M(p1, . . . , pn)|2
in the case of a generic scattering amplitude†. As remarked on in Sect. 2, J is simply
proportional to the unit operator in the spin subspace of the hard partons. Therefore, we
note that the squared current |J |2 of Eq. (47) still applies to spin-polarized hard-scattering
processes, namely, to processes in which the spin polarizations of the hard partons are fixed
(rather than summed over). Obviously, Eqs. (45)–(47) can also be properly generalized to
the case in which the spin polarizations of one or more soft partons are fixed.

In the following part of this Section, we only consider soft-qq̄ radiation and the corre-
sponding soft current J(q1, q2) (see Eq. (14) and Sect. 4). We define the loop expansion of
the squared current as follows
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where |Ĵ |2(0") and |Ĵ |2(1") are the tree-level (0 loop) and one-loop rescaled contributions to

|J |2, respectively.
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where Ĵ
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is the rescaled current in Eqs. (14) and (33). The computation of the right-hand
side of Eq. (49) is straightforward and the explicit result was first presented in Sect. 3.2 of
Ref. [22]. We have

|Ĵ(q1, q2)|2(0") = TR

∑
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T i · T j Iij(q1, q2) , (50)

where the momentum-dependent function Iij(q1, q2) is (see Eq. (96) in Ref. [22])

Iij(q1, q2) =
(pi · q1) (pj · q2) + (pj · q1) (pi · q2)− (pi · pj) (q1 · q2)

(q1 · q2)2 (pi · q12) (pj · q12)
. (51)

Using colour charge conservation (see Eq. (10)), the tree-level squared current |Ĵ |2(0")
can be recast in the following different form

|Ĵ(q1, q2)|2(0") cs= −
1
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†Colour correlations can be simplified in the case of scattering amplitudes with two and three hard
partons (see Sect. 5.3).
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(0)

is the rescaled current in Eqs. (14) and (33). The computation of the right-hand
side of Eq. (49) is straightforward and the explicit result was first presented in Sect. 3.2 of
Ref. [22]. We have
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where the soft function wij is

wij(q1, q2) = Iii(q1, q2) + Ijj(q1, q2)− 2 Iij(q1, q2) . (53)

The expressions in the right-hand side of Eqs. (50) and (52) are not identical at the algebraic
level, but they are fully equivalent by acting onto scattering amplitudes (or, generically,
colour-singlet states). The expression in Eq. (52) has a more straightforward physical inter-
pretation, since the function wij(q1, q2) is directly related (see Sect. 5.3.1) to the intensity
of soft-qq̄ radiation from two hard partons, i and j, in a colour-singlet configuration.

The tree-level squared current in Eqs. (50) or (52) produces two-particle correlations
between the hard partons. Their colour structure has the form of dipole contributions T i·T j.
We note that the momentum-dependent functions Iij(q1, q2) and wij(q1, q2) are symmetric
with respect to the exchange q1 ↔ q2 (they are also symmetric with respect to pi ↔ pj).
In contrast, our result for the one-loop squared current (see Sect. 5.2) produces both two-
particle and three-particle correlations and, moreover, it involves also an antisymmetric
dependence on the momenta q1 and q2.

5.2 The one-loop squared current

The one-loop squared current in Eq. (48) is

|Ĵ(q1, q2)|2(1!) =
(
−q212 − i0

|q212|

)−ε [
Ĵ

(0)
(q1, q2)

]†
Ĵ

(1)
(q1, q2) + h.c. , (54)

where ‘h.c’ denotes the hermitian-conjugate contribution, and the rescaled currents Ĵ
(0)

and Ĵ
(0)

are defined in Eqs. (33) and (34).

The explicit computation of Eq. (54) produces some contributions that involve the
fully-symmetric colour tensor dabc,

dabc =
1

TR

Tr
(
{ta, tb} tc

)
. (55)

with indices {a, b, c} in the adjoint representation of SU(Nc). The presence of dabc is a
distinctive feature of (squared) currents for radiation of soft quarks and antiquarks.

Using dabc we also define the d-conjugated (quadratic) charge operator D̃i of the parton
i as follows

D̃a
i ≡ dabc T b

i T
c
i . (56)

Performing the SU(Nc) colour algebra, we explicitly find

i = q : D̃a
i =

1

2
dA T a

i , (57)

i = q̄ : D̃a
i = −

1

2
dA T a

i , (58)

i = g : D̃a
i =

1

2
CA Da

i , 〈b|Da|c〉 = dbac , (59)
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Using colour charge conservation, the tree-level current can be recast 
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|Ĵ(q1, q2)|2(0") = TR

∑

i,j∈H

T i · T j Iij(q1, q2) , (50)

where the momentum-dependent function Iij(q1, q2) is (see Eq. (96) in Ref. [22])

Iij(q1, q2) =
(pi · q1) (pj · q2) + (pj · q1) (pi · q2)− (pi · pj) (q1 · q2)

(q1 · q2)2 (pi · q12) (pj · q12)
. (51)

Using colour charge conservation (see Eq. (10)), the tree-level squared current |Ĵ |2(0")
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∑

i,j∈H

T i · T j Iij(q1, q2) , (50)

where the momentum-dependent function Iij(q1, q2) is (see Eq. (96) in Ref. [22])

Iij(q1, q2) =
(pi · q1) (pj · q2) + (pj · q1) (pi · q2)− (pi · pj) (q1 · q2)

(q1 · q2)2 (pi · q12) (pj · q12)
. (51)

Using colour charge conservation (see Eq. (10)), the tree-level squared current |Ĵ |2(0")
can be recast in the following different form

|Ĵ(q1, q2)|2(0") cs= −
1

2
TR

∑

i,j ∈H
i #= j

T i · T j wij(q1, q2) , (52)

†Colour correlations can be simplified in the case of scattering amplitudes with two and three hard
partons (see Sect. 5.3).
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where the soft function wij is

wij(q1, q2) = Iii(q1, q2) + Ijj(q1, q2)− 2 Iij(q1, q2) . (53)

The expressions in the right-hand side of Eqs. (50) and (52) are not identical at the algebraic
level, but they are fully equivalent by acting onto scattering amplitudes (or, generically,
colour-singlet states). The expression in Eq. (52) has a more straightforward physical inter-
pretation, since the function wij(q1, q2) is directly related (see Sect. 5.3.1) to the intensity
of soft-qq̄ radiation from two hard partons, i and j, in a colour-singlet configuration.

The tree-level squared current in Eqs. (50) or (52) produces two-particle correlations
between the hard partons. Their colour structure has the form of dipole contributions T i·T j.
We note that the momentum-dependent functions Iij(q1, q2) and wij(q1, q2) are symmetric
with respect to the exchange q1 ↔ q2 (they are also symmetric with respect to pi ↔ pj).
In contrast, our result for the one-loop squared current (see Sect. 5.2) produces both two-
particle and three-particle correlations and, moreover, it involves also an antisymmetric
dependence on the momenta q1 and q2.

5.2 The one-loop squared current

The one-loop squared current in Eq. (48) is

|Ĵ(q1, q2)|2(1!) =
(
−q212 − i0

|q212|

)−ε [
Ĵ

(0)
(q1, q2)

]†
Ĵ

(1)
(q1, q2) + h.c. , (54)

where ‘h.c’ denotes the hermitian-conjugate contribution, and the rescaled currents Ĵ
(0)

and Ĵ
(0)

are defined in Eqs. (33) and (34).

The explicit computation of Eq. (54) produces some contributions that involve the
fully-symmetric colour tensor dabc,

dabc =
1

TR

Tr
(
{ta, tb} tc

)
. (55)

with indices {a, b, c} in the adjoint representation of SU(Nc). The presence of dabc is a
distinctive feature of (squared) currents for radiation of soft quarks and antiquarks.

Using dabc we also define the d-conjugated (quadratic) charge operator D̃i of the parton
i as follows

D̃a
i ≡ dabc T b

i T
c
i . (56)

Performing the SU(Nc) colour algebra, we explicitly find

i = q : D̃a
i =

1

2
dA T a

i , (57)

i = q̄ : D̃a
i = −

1

2
dA T a

i , (58)

i = g : D̃a
i =

1

2
CA Da

i , 〈b|Da|c〉 = dbac , (59)
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where the soft function wij is

wij(q1, q2) = Iii(q1, q2) + Ijj(q1, q2)− 2 Iij(q1, q2) . (53)

The expressions in the right-hand side of Eqs. (50) and (52) are not identical at the algebraic
level, but they are fully equivalent by acting onto scattering amplitudes (or, generically,
colour-singlet states). The expression in Eq. (52) has a more straightforward physical inter-
pretation, since the function wij(q1, q2) is directly related (see Sect. 5.3.1) to the intensity
of soft-qq̄ radiation from two hard partons, i and j, in a colour-singlet configuration.

The tree-level squared current in Eqs. (50) or (52) produces two-particle correlations
between the hard partons. Their colour structure has the form of dipole contributions T i·T j.
We note that the momentum-dependent functions Iij(q1, q2) and wij(q1, q2) are symmetric
with respect to the exchange q1 ↔ q2 (they are also symmetric with respect to pi ↔ pj).
In contrast, our result for the one-loop squared current (see Sect. 5.2) produces both two-
particle and three-particle correlations and, moreover, it involves also an antisymmetric
dependence on the momenta q1 and q2.

5.2 The one-loop squared current

The one-loop squared current in Eq. (48) is

|Ĵ(q1, q2)|2(1!) =
(
−q212 − i0

|q212|

)−ε [
Ĵ

(0)
(q1, q2)

]†
Ĵ

(1)
(q1, q2) + h.c. , (54)

where ‘h.c’ denotes the hermitian-conjugate contribution, and the rescaled currents Ĵ
(0)

and Ĵ
(0)

are defined in Eqs. (33) and (34).

The explicit computation of Eq. (54) produces some contributions that involve the
fully-symmetric colour tensor dabc,

dabc =
1

TR

Tr
(
{ta, tb} tc

)
. (55)

with indices {a, b, c} in the adjoint representation of SU(Nc). The presence of dabc is a
distinctive feature of (squared) currents for radiation of soft quarks and antiquarks.

Using dabc we also define the d-conjugated (quadratic) charge operator D̃i of the parton
i as follows

D̃a
i ≡ dabc T b

i T
c
i . (56)

Performing the SU(Nc) colour algebra, we explicitly find

i = q : D̃a
i =

1

2
dA T a

i , (57)

i = q̄ : D̃a
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1

2
dA T a

i , (58)
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2
CA Da

i , 〈b|Da|c〉 = dbac , (59)
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The expressions in the right-hand side of Eqs. (50) and (52) are not identical at the algebraic
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pretation, since the function wij(q1, q2) is directly related (see Sect. 5.3.1) to the intensity
of soft-qq̄ radiation from two hard partons, i and j, in a colour-singlet configuration.

The tree-level squared current in Eqs. (50) or (52) produces two-particle correlations
between the hard partons. Their colour structure has the form of dipole contributions T i·T j.
We note that the momentum-dependent functions Iij(q1, q2) and wij(q1, q2) are symmetric
with respect to the exchange q1 ↔ q2 (they are also symmetric with respect to pi ↔ pj).
In contrast, our result for the one-loop squared current (see Sect. 5.2) produces both two-
particle and three-particle correlations and, moreover, it involves also an antisymmetric
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Ĵ

(0)
(q1, q2)

]†
Ĵ
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with indices {a, b, c} in the adjoint representation of SU(Nc). The presence of dabc is a
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pretation, since the function wij(q1, q2) is directly related (see Sect. 5.3.1) to the intensity
of soft-qq̄ radiation from two hard partons, i and j, in a colour-singlet configuration.

The tree-level squared current in Eqs. (50) or (52) produces two-particle correlations
between the hard partons. Their colour structure has the form of dipole contributions T i·T j.
We note that the momentum-dependent functions Iij(q1, q2) and wij(q1, q2) are symmetric
with respect to the exchange q1 ↔ q2 (they are also symmetric with respect to pi ↔ pj).
In contrast, our result for the one-loop squared current (see Sect. 5.2) produces both two-
particle and three-particle correlations and, moreover, it involves also an antisymmetric
dependence on the momenta q1 and q2.
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with indices {a, b, c} in the adjoint representation of SU(Nc). The presence of dabc is a
distinctive feature of (squared) currents for radiation of soft quarks and antiquarks.

Using dabc we also define the d-conjugated (quadratic) charge operator D̃i of the parton
i as follows
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where the soft function wij is

wij(q1, q2) = Iii(q1, q2) + Ijj(q1, q2)− 2 Iij(q1, q2) . (53)

The expressions in the right-hand side of Eqs. (50) and (52) are not identical at the algebraic
level, but they are fully equivalent by acting onto scattering amplitudes (or, generically,
colour-singlet states). The expression in Eq. (52) has a more straightforward physical inter-
pretation, since the function wij(q1, q2) is directly related (see Sect. 5.3.1) to the intensity
of soft-qq̄ radiation from two hard partons, i and j, in a colour-singlet configuration.

The tree-level squared current in Eqs. (50) or (52) produces two-particle correlations
between the hard partons. Their colour structure has the form of dipole contributions T i·T j.
We note that the momentum-dependent functions Iij(q1, q2) and wij(q1, q2) are symmetric
with respect to the exchange q1 ↔ q2 (they are also symmetric with respect to pi ↔ pj).
In contrast, our result for the one-loop squared current (see Sect. 5.2) produces both two-
particle and three-particle correlations and, moreover, it involves also an antisymmetric
dependence on the momenta q1 and q2.
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with indices {a, b, c} in the adjoint representation of SU(Nc). The presence of dabc is a
distinctive feature of (squared) currents for radiation of soft quarks and antiquarks.

Using dabc we also define the d-conjugated (quadratic) charge operator D̃i of the parton
i as follows

D̃a
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Performing the SU(Nc) colour algebra, we explicitly find
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where the soft function wij is

wij(q1, q2) = Iii(q1, q2) + Ijj(q1, q2)− 2 Iij(q1, q2) . (53)

The expressions in the right-hand side of Eqs. (50) and (52) are not identical at the algebraic
level, but they are fully equivalent by acting onto scattering amplitudes (or, generically,
colour-singlet states). The expression in Eq. (52) has a more straightforward physical inter-
pretation, since the function wij(q1, q2) is directly related (see Sect. 5.3.1) to the intensity
of soft-qq̄ radiation from two hard partons, i and j, in a colour-singlet configuration.

The tree-level squared current in Eqs. (50) or (52) produces two-particle correlations
between the hard partons. Their colour structure has the form of dipole contributions T i·T j.
We note that the momentum-dependent functions Iij(q1, q2) and wij(q1, q2) are symmetric
with respect to the exchange q1 ↔ q2 (they are also symmetric with respect to pi ↔ pj).
In contrast, our result for the one-loop squared current (see Sect. 5.2) produces both two-
particle and three-particle correlations and, moreover, it involves also an antisymmetric
dependence on the momenta q1 and q2.

5.2 The one-loop squared current
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with indices {a, b, c} in the adjoint representation of SU(Nc). The presence of dabc is a
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i as follows
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The expressions in the right-hand side of Eqs. (50) and (52) are not identical at the algebraic
level, but they are fully equivalent by acting onto scattering amplitudes (or, generically,
colour-singlet states). The expression in Eq. (52) has a more straightforward physical inter-
pretation, since the function wij(q1, q2) is directly related (see Sect. 5.3.1) to the intensity
of soft-qq̄ radiation from two hard partons, i and j, in a colour-singlet configuration.

The tree-level squared current in Eqs. (50) or (52) produces two-particle correlations
between the hard partons. Their colour structure has the form of dipole contributions T i·T j.
We note that the momentum-dependent functions Iij(q1, q2) and wij(q1, q2) are symmetric
with respect to the exchange q1 ↔ q2 (they are also symmetric with respect to pi ↔ pj).
In contrast, our result for the one-loop squared current (see Sect. 5.2) produces both two-
particle and three-particle correlations and, moreover, it involves also an antisymmetric
dependence on the momenta q1 and q2.

5.2 The one-loop squared current

The one-loop squared current in Eq. (48) is
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where ‘h.c’ denotes the hermitian-conjugate contribution, and the rescaled currents Ĵ
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and Ĵ
(0)

are defined in Eqs. (33) and (34).

The explicit computation of Eq. (54) produces some contributions that involve the
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)
. (55)

with indices {a, b, c} in the adjoint representation of SU(Nc). The presence of dabc is a
distinctive feature of (squared) currents for radiation of soft quarks and antiquarks.

Using dabc we also define the d-conjugated (quadratic) charge operator D̃i of the parton
i as follows

D̃a
i ≡ dabc T b

i T
c
i . (56)

Performing the SU(Nc) colour algebra, we explicitly find
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i =
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We define the d-conjugated (quadratic) charge 
operator Di of the parton i

where we have used

dabcddbc = dA δad , dA =
N2

c − 4

Nc

. (60)

Note that the tensor dabc is odd under charge conjugation. This fact is responsible for
the opposite overall sign between the d-charge D̃i and the colour charge T i of quarks
and antiquarks (see Eqs. (57) and (58)). Analogously, in the gluon case the d-charge
〈b|Da

i |c〉 in Eq. (59) is symmetric with respect to b ↔ c, while the colour charge 〈b|T a
i |c〉 is

antisymmetric with respect to b ↔ c.

The explicit expression of the one-loop squared current |Ĵ(q1, q2)|2(1!) is obtained by

inserting Ĵ
(0)

(see Eqs. (14) and (33)) and Ĵ
(1)

(see Eqs. (35)–(37)) in the right-hand side
of Eq. (54), and by performing the sum over the colours and spins of the soft quark and
antiquark. We find the following result:

|Ĵ(q1, q2)|2(1!) = −
1

2
TR

∑

i,j ∈H
i "= j

[
T i · T j w[S]

ij (q1, q2) + D̃i · T j w[A]
ij (q1, q2)

]

−TR

∑

i,j,k∈H
dist.{i,j,k}

T a
i T b

j T
c
k

[
fabc F [S]

ijk(q1, q2) + dabc
(
F [A]
ijk (q1, q2)−

1

2
F [A]
iji (q1, q2)−

1

2
F [A]
ijj (q1, q2)

)]
,

(61)

which is valid to arbitrary orders in the ε expansion. The ε dependence is embodied in
the c-number functions w[S], w[A], F [S] and F [A]. The dependence on the colours of the
hard partons is due to the colour charges T a

i and D̃a
i . The structure of Eq. (61) involves

contributions with both two hard-parton correlations and three hard-parton correlations. In
the case of three hard-parton correlations, the subscript ‘dist.{i, j, k}’ in

∑
i,j,k∈H

dist.{i,j,k}
denotes

the sum over distinct hard-parton indices i, j and k (i.e., i %= j, j %= k, k %= i).

The functions w[S]
ij , w

[A]
ij , F [S]

ijk and F [A]
ijk in Eq. (61) depend on the momenta of the hard

partons and on the momenta q1 and q2 of the soft quark and antiquark. The superscript
[S] in w[S]

ij and F [S]
ijk denotes the fact that these functions are symmetric under the exchange

q1 ↔ q2 of the momenta of the soft quark and antiquark:

w[S]
ij (q1, q2) = w[S]

ij (q2, q1) , F [S]
ijk(q1, q2) = F [S]

ijk(q2, q1) . (62)

Analogously, the superscript [A] in w[A]
ij and F [A]

ijk highlights the fact that these functions
are antisymmetric under the exchange q1 ↔ q2:

w[A]
ij (q1, q2) = −w[A]

ij (q2, q1) , F [A]
ijk (q1, q2) = −F [A]

ijk (q2, q1) . (63)

Therefore, w[A] and F [A] produce a quark–antiquark charge asymmetry in the one-loop
squared current. We note that the charge-asymmetry contributions appear in Eq. (61)
with the associated colour factors D̃i ·T j = dabcT a

i T b
i T

c
j and dabcT a

i T b
j T

c
k that have a linear

dependence on the colour tensor dabc (which is odd under charge conjugation). The charge-
asymmetry contributions to |J(q1, q2)|2 have a quantum origin and are characteristic of the
radiation of soft quark–antiquark pairs (the squared current |J(q1, . . . , qm)|2 for radiation of
m soft gluons is instead fully symmetric with respect to the soft-gluon momenta q1, . . . , qm).
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where the soft function wij is
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The expressions in the right-hand side of Eqs. (50) and (52) are not identical at the algebraic
level, but they are fully equivalent by acting onto scattering amplitudes (or, generically,
colour-singlet states). The expression in Eq. (52) has a more straightforward physical inter-
pretation, since the function wij(q1, q2) is directly related (see Sect. 5.3.1) to the intensity
of soft-qq̄ radiation from two hard partons, i and j, in a colour-singlet configuration.

The tree-level squared current in Eqs. (50) or (52) produces two-particle correlations
between the hard partons. Their colour structure has the form of dipole contributions T i·T j.
We note that the momentum-dependent functions Iij(q1, q2) and wij(q1, q2) are symmetric
with respect to the exchange q1 ↔ q2 (they are also symmetric with respect to pi ↔ pj).
In contrast, our result for the one-loop squared current (see Sect. 5.2) produces both two-
particle and three-particle correlations and, moreover, it involves also an antisymmetric
dependence on the momenta q1 and q2.
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where ‘h.c’ denotes the hermitian-conjugate contribution, and the rescaled currents Ĵ
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The explicit computation of Eq. (54) produces some contributions that involve the
fully-symmetric colour tensor dabc,
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with indices {a, b, c} in the adjoint representation of SU(Nc). The presence of dabc is a
distinctive feature of (squared) currents for radiation of soft quarks and antiquarks.

Using dabc we also define the d-conjugated (quadratic) charge operator D̃i of the parton
i as follows
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where the soft function wij is

wij(q1, q2) = Iii(q1, q2) + Ijj(q1, q2)− 2 Iij(q1, q2) . (53)

The expressions in the right-hand side of Eqs. (50) and (52) are not identical at the algebraic
level, but they are fully equivalent by acting onto scattering amplitudes (or, generically,
colour-singlet states). The expression in Eq. (52) has a more straightforward physical inter-
pretation, since the function wij(q1, q2) is directly related (see Sect. 5.3.1) to the intensity
of soft-qq̄ radiation from two hard partons, i and j, in a colour-singlet configuration.

The tree-level squared current in Eqs. (50) or (52) produces two-particle correlations
between the hard partons. Their colour structure has the form of dipole contributions T i·T j.
We note that the momentum-dependent functions Iij(q1, q2) and wij(q1, q2) are symmetric
with respect to the exchange q1 ↔ q2 (they are also symmetric with respect to pi ↔ pj).
In contrast, our result for the one-loop squared current (see Sect. 5.2) produces both two-
particle and three-particle correlations and, moreover, it involves also an antisymmetric
dependence on the momenta q1 and q2.
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(q1, q2) + h.c. , (54)
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We define the d-conjugated (quadratic) charge 
operator Di of the parton i

where we have used

dabcddbc = dA δad , dA =
N2

c − 4

Nc

. (60)

Note that the tensor dabc is odd under charge conjugation. This fact is responsible for
the opposite overall sign between the d-charge D̃i and the colour charge T i of quarks
and antiquarks (see Eqs. (57) and (58)). Analogously, in the gluon case the d-charge
〈b|Da

i |c〉 in Eq. (59) is symmetric with respect to b ↔ c, while the colour charge 〈b|T a
i |c〉 is

antisymmetric with respect to b ↔ c.

The explicit expression of the one-loop squared current |Ĵ(q1, q2)|2(1!) is obtained by

inserting Ĵ
(0)

(see Eqs. (14) and (33)) and Ĵ
(1)

(see Eqs. (35)–(37)) in the right-hand side
of Eq. (54), and by performing the sum over the colours and spins of the soft quark and
antiquark. We find the following result:

|Ĵ(q1, q2)|2(1!) = −
1

2
TR

∑

i,j ∈H
i "= j

[
T i · T j w[S]

ij (q1, q2) + D̃i · T j w[A]
ij (q1, q2)

]

−TR

∑

i,j,k∈H
dist.{i,j,k}

T a
i T b

j T
c
k

[
fabc F [S]

ijk(q1, q2) + dabc
(
F [A]
ijk (q1, q2)−

1

2
F [A]
iji (q1, q2)−

1

2
F [A]
ijj (q1, q2)

)]
,

(61)

which is valid to arbitrary orders in the ε expansion. The ε dependence is embodied in
the c-number functions w[S], w[A], F [S] and F [A]. The dependence on the colours of the
hard partons is due to the colour charges T a

i and D̃a
i . The structure of Eq. (61) involves

contributions with both two hard-parton correlations and three hard-parton correlations. In
the case of three hard-parton correlations, the subscript ‘dist.{i, j, k}’ in

∑
i,j,k∈H

dist.{i,j,k}
denotes

the sum over distinct hard-parton indices i, j and k (i.e., i %= j, j %= k, k %= i).

The functions w[S]
ij , w

[A]
ij , F [S]

ijk and F [A]
ijk in Eq. (61) depend on the momenta of the hard

partons and on the momenta q1 and q2 of the soft quark and antiquark. The superscript
[S] in w[S]

ij and F [S]
ijk denotes the fact that these functions are symmetric under the exchange

q1 ↔ q2 of the momenta of the soft quark and antiquark:

w[S]
ij (q1, q2) = w[S]

ij (q2, q1) , F [S]
ijk(q1, q2) = F [S]

ijk(q2, q1) . (62)

Analogously, the superscript [A] in w[A]
ij and F [A]

ijk highlights the fact that these functions
are antisymmetric under the exchange q1 ↔ q2:

w[A]
ij (q1, q2) = −w[A]

ij (q2, q1) , F [A]
ijk (q1, q2) = −F [A]

ijk (q2, q1) . (63)

Therefore, w[A] and F [A] produce a quark–antiquark charge asymmetry in the one-loop
squared current. We note that the charge-asymmetry contributions appear in Eq. (61)
with the associated colour factors D̃i ·T j = dabcT a

i T b
i T

c
j and dabcT a

i T b
j T

c
k that have a linear

dependence on the colour tensor dabc (which is odd under charge conjugation). The charge-
asymmetry contributions to |J(q1, q2)|2 have a quantum origin and are characteristic of the
radiation of soft quark–antiquark pairs (the squared current |J(q1, . . . , qm)|2 for radiation of
m soft gluons is instead fully symmetric with respect to the soft-gluon momenta q1, . . . , qm).

23

Valid to arbitrary orders in the ! expansion

Two hard-parton 
correlations
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At arbitrary orders in the ε expansion, the two-particle correlation function w[A]

ij is directly

related to F [A]
ijk as follows

w[A]
ij (q1, q2) =

[
F [A]
iji (q1, q2) + F [A]

jii (q1, q2)
]
−
(
i ↔ j

)
. (69)

In contrast to w[S]
ij , we note that w[A]

ij is antisymmetric under the exchange i ↔ j of the

hard-parton momenta. In particular, this antisymmetry of w[A]
ij implies that in the sum

over i and j of Eq. (61) we can replace D̃i · T j by its antisymmetric component, namely,

D̃i · T j →
(
D̃i · T j − D̃j · T i

)
/2. Inserting Eq. (68) in Eq. (69), w[A]

ij has the following
expression:

w[A]
ij (q1, q2) =

{
wij(q1, q2)

[
−
2

ε
("i1 + "j2) + ("i1 − "j2)

2
]

(70)

+
[
Iii(q1, q2)− Ijj(q1, q2)

] 2 q212
q212⊥ij

LijR

(
"i1 − "j2

)
+O(ε)

}
− (q1 ↔ q2) .

By inspection of Eqs. (66)–(70) we note that only the function F [S]
ijk exhibits a discon-

tinuity with respect to the momenta of the hard partons (see Θ(in)
ij in Eqs. (65) and (67)).

The discontinuity contributes in the kinematical region where two hard-parton momenta i
and j have negative time component (p0i < 0 and p0j < 0), namely, the partons i and j col-
lide in the physical initial state. This discontinuity term of the squared current in Eq. (61)
originates as interference between a one-loop absorptive (imaginary) contribution and the
antihermitian colour factor ifabc T a

i T b
j T

c
k (we recall that i, j and k refer to three distinct

partons). Actually, the entire term proportional to fabc T a
i T b

j T
c
k in Eq. (61) has this ori-

gin§ as absorptive/colour interference (the absorptive term being related to the kinematical
region where q01 > 0 and q02 > 0).

As discussed in Sect. 4 (see Eqs. (41)–(43) and accompanying comments) the one-
loop current of soft-qq̄ emission has a transverse-momentum singularity at q12⊥ij → 0.
This singularity has a non-abelian character and an absorptive origin. At the level of the
one-loop squared current, this singularity does appear in the function F [S]

ijk (see the term

(q212⊥ij)
−1 Θ(in)

ij in Eq. (67)), while it is absent in all the other contributions (in Eqs. (66),
(68) and (70) we see the term (q212⊥ij)

−1 LijR → (q212)
−1, which is not singular at q12⊥ij → 0).

Therefore, the transverse-momentum singularity at q12⊥ij → 0 contributes through colour
correlation fabc T a

i T b
j T

c
k to one-loop squared amplitudes for the class of processes with

initial-state colliding partons i and j and two or more final-state hard partons (as recalled
below in Eq. (71), the colour correlation vanishes if there is only one final-state hard parton).
This class of processes includes, for instance, dijet (or heavy-quark pair) production in
hadron–hadron collisions and the transverse-momentum singularity is directly related to
the transverse momentum of the dijet system (heavy-quark pair). Interestingly, we note
that this is the same class of processes that is sensistive to effects due to the violation
of strict collinear factorization [26]. However, we remark on the fact that the transverse-
momentum singularity at q12⊥ij → 0 and violation of strict collinear factorization are

§The one-loop squared current for single soft-gluon radiation [23] has three-particle correlations of the
type fabc T a

i T b
j T

c
k , which have an analogous origin as absorptive/colour interference.
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Explicit results of the ! expansion of the functions w and F

We present the explicit result of the ε expansion of the functions w[S], w[A], F [S] and F [A]

up to O(ε0). More precisely, we limit ourselves to presenting the expressions of these func-
tions in the kinematical region where q01 > 0 and q02 > 0 (i.e., the soft quark and antiquark
are produced in the physical final state), which is the most relevant physical region‡. In
this region, the squared current depends (see Eqs. (36) and (37)) on the logarithms "i1±"j2
(which are purely real, independently of whether the momenta pi and pj are physically

incoming or outgoing) and on the real part LijR and discontinuity Θ(in)
ij of the logarithm

Lij. We have (see Eqs. (27) and (28))

"i1+"j2 = ln
(pi · q1)(pj · q2)
(pi · q12)(pj · q12)

, "i1−"j2 = ln
(pi · q1)(pj · q12)
(pi · q12)(pj · q2)

, Lij = LijR+2iπ Θ(in)
ij , (64)

where

LijR = ln
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(pi · pj)(q1 · q2)
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(
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q212⊥ij

q212

)
, Θ(in)

ij ≡ Θ(−p0i )Θ(−p0j) . (65)

The function w[S]
ij has the following expression in the region where q01 > 0 and q02 > 0:

w[S]
ij (q1, q2) =
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wij(q1, q2)
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)
+O(ε)

}
+ (q1 ↔ q2) . (66)

This function (which is symmetric under the exchange i ↔ j) controls the size of the
one-loop radiative corrections to the tree-level colour dipole correlations T i · T j.

We note that w[S]
ij also depends on colour coefficients, while F [S]

ijk , w
[A]
ij and F [A]

ijk only
depends on parton momenta.

The function F [S]
ijk is associated with non-abelian three-particle correlations with colour

charge factor fabcT a
i T b

j T
c
k . In the region where q01 > 0 and q02 > 0, we have the explicit

result

F [S]
ijk(q2, q1) = 2π Iki(q1, q2)

{
LijR + "i1 + "j2

+ Θ(in)
ij

[
2
(1
ε
− LijR

)
− 2

q212
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]
+O(ε)

}
+ (q1 ↔ q2) . (67)

The charge-asymmetry contributions to Eq. (61) can be expressed through the function

F [A]
ijk . In the region where q01 > 0 and q02 > 0 we have

F [A]
ijk (q2, q1) =

{
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[
−
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2 + 2
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+ O(ε)
}
− (q1 ↔ q2) . (68)

‡Expressions in other kinematical regions can be obtained by using the fully general one-loop current
in Eqs. (36) and (37).
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of Eq. (37) we see that the one-loop interaction at O(ε0) also produces a different type of
kinematical dependence as given by the factor j(1, 2) · pi q212/(pi · q12 q212⊥ij). This rational
factor has no collinear singularity at q212 → 0, but it potentially leads to a singularity in
the limit q212⊥ij → 0. This is a ‘transverse-momentum singularity’, since the kinematical

variable
√

q212⊥ij in Eq. (38) is the transverse component of the momentum q12 of the soft

qq̄ pair with respect to the momenta pi and pj of the colour-correlated hard partons in a
reference frame in which pi and pj are back-to-back.

The transverse-momentum singularity in the current is partly screened by the logarith-
mic function Lij, and we have

1

q212⊥ij

Lij "
q12⊥ij→0

1

q212⊥ij

[
2πi sign(q212) Θ

(
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pi · pj

)
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(
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)
+O

(
q212⊥ij

q212

)]
,

(41)
which shows that the current has a one-loop singularity of absorptive origin. Considering
the physically most relevant kinematical region in which the soft quark and antiquark are
produced in the final state (q01 > 0, q02 > 0), Eq. (41) becomes

1

q212⊥ij

Lij "
q12⊥ij→0

1

q212⊥ij

2πi Θ(−p0i ) Θ(−p0j) , (q01 > 0, q02 > 0) , (42)

which shows that the transverse-momentum singularity is present in the scattering ampli-
tude of a physical process in which the final-state soft qq̄ pair is produced by the collision
of the hard partons i and j in the initial state. We remark that this singularity has a pure
quantum mechanics (loop) origin, and it occurs in the limit q212⊥ij → 0 even if the trans-
verse momenta q1⊥ij and q2⊥ij (q2k⊥ij = 2pi · qk pj · qk/pi · pj, k = 1, 2) of the soft quark and
antiquark are separately large (i.e., they are separately non-vanishing) and q212 is large. We
also note that, setting q12⊥ij = 0 at fixed non-vanishing values of q212 and q1⊥ij (or q2⊥ij),
we have

(
#i1 − #j2

)
= −

(
#j1 − #i2

)
. Therefore, in the limit q212⊥ij → 0 the factor #i1 − #j2 is

(approximately) antisymmetric with respect to the exchange pi ↔ pj and this implies that
we can perform the following replacement in Eq. (37):
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(43)
and it follows that, in the kinematical region with q01 > 0 and q02 > 0, the transverse-
momentum singularity has a purely non-abelian character (see the factor fabc in the right-
hand side of the relation (43)).

As we have just discussed, the singularity of the soft-qq̄ current in the limit q12⊥ij →
0 originates from one-loop interactions of the two soft partons. Therefore, we expect
the presence of the transverse-momentum singularity also in the case of double soft-gluon
emission at one-loop level. The one-loop double-gluon current computed in Ref. [40] indeed
shows singular terms at q12⊥ij → 0.

We have also computed the soft-qq̄ one-loop current J (1) by explicitly evaluating its
dependence on the RS parameter δR to all orders in ε. Using the notation of Eq. (30) and
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We present the explicit result of the ε expansion of the functions w[S], w[A], F [S] and F [A]

up to O(ε0). More precisely, we limit ourselves to presenting the expressions of these func-
tions in the kinematical region where q01 > 0 and q02 > 0 (i.e., the soft quark and antiquark
are produced in the physical final state), which is the most relevant physical region‡. In
this region, the squared current depends (see Eqs. (36) and (37)) on the logarithms "i1±"j2
(which are purely real, independently of whether the momenta pi and pj are physically

incoming or outgoing) and on the real part LijR and discontinuity Θ(in)
ij of the logarithm

Lij. We have (see Eqs. (27) and (28))

"i1+"j2 = ln
(pi · q1)(pj · q2)
(pi · q12)(pj · q12)

, "i1−"j2 = ln
(pi · q1)(pj · q12)
(pi · q12)(pj · q2)

, Lij = LijR+2iπ Θ(in)
ij , (64)

where

LijR = ln
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(pi · pj)(q1 · q2)

= ln

(
1 +

q212⊥ij

q212

)
, Θ(in)

ij ≡ Θ(−p0i )Θ(−p0j) . (65)

The function w[S]
ij has the following expression in the region where q01 > 0 and q02 > 0:

w[S]
ij (q1, q2) =

{
wij(q1, q2)

[
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[
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(
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)
+O(ε)

}
+ (q1 ↔ q2) . (66)

This function (which is symmetric under the exchange i ↔ j) controls the size of the
one-loop radiative corrections to the tree-level colour dipole correlations T i · T j.

We note that w[S]
ij also depends on colour coefficients, while F [S]

ijk , w
[A]
ij and F [A]

ijk only
depends on parton momenta.

The function F [S]
ijk is associated with non-abelian three-particle correlations with colour

charge factor fabcT a
i T b

j T
c
k . In the region where q01 > 0 and q02 > 0, we have the explicit

result

F [S]
ijk(q2, q1) = 2π Iki(q1, q2)

{
LijR + "i1 + "j2

+ Θ(in)
ij

[
2
(1
ε
− LijR

)
− 2

q212
q212⊥ij

("i1 − "j2)
]
+O(ε)

}
+ (q1 ↔ q2) . (67)

The charge-asymmetry contributions to Eq. (61) can be expressed through the function

F [A]
ijk . In the region where q01 > 0 and q02 > 0 we have

F [A]
ijk (q2, q1) =

{
Iki(q1, q2)

[
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2 + 2
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+ O(ε)
}
− (q1 ↔ q2) . (68)

‡Expressions in other kinematical regions can be obtained by using the fully general one-loop current
in Eqs. (36) and (37).
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of Eq. (37) we see that the one-loop interaction at O(ε0) also produces a different type of
kinematical dependence as given by the factor j(1, 2) · pi q212/(pi · q12 q212⊥ij). This rational
factor has no collinear singularity at q212 → 0, but it potentially leads to a singularity in
the limit q212⊥ij → 0. This is a ‘transverse-momentum singularity’, since the kinematical

variable
√

q212⊥ij in Eq. (38) is the transverse component of the momentum q12 of the soft

qq̄ pair with respect to the momenta pi and pj of the colour-correlated hard partons in a
reference frame in which pi and pj are back-to-back.

The transverse-momentum singularity in the current is partly screened by the logarith-
mic function Lij, and we have

1

q212⊥ij

Lij "
q12⊥ij→0

1

q212⊥ij

[
2πi sign(q212) Θ

(
−pi · q12
pi · pj

)
Θ

(
−pj · q12
pi · pj

)
+O

(
q212⊥ij

q212

)]
,

(41)
which shows that the current has a one-loop singularity of absorptive origin. Considering
the physically most relevant kinematical region in which the soft quark and antiquark are
produced in the final state (q01 > 0, q02 > 0), Eq. (41) becomes

1

q212⊥ij

Lij "
q12⊥ij→0

1

q212⊥ij

2πi Θ(−p0i ) Θ(−p0j) , (q01 > 0, q02 > 0) , (42)

which shows that the transverse-momentum singularity is present in the scattering ampli-
tude of a physical process in which the final-state soft qq̄ pair is produced by the collision
of the hard partons i and j in the initial state. We remark that this singularity has a pure
quantum mechanics (loop) origin, and it occurs in the limit q212⊥ij → 0 even if the trans-
verse momenta q1⊥ij and q2⊥ij (q2k⊥ij = 2pi · qk pj · qk/pi · pj, k = 1, 2) of the soft quark and
antiquark are separately large (i.e., they are separately non-vanishing) and q212 is large. We
also note that, setting q12⊥ij = 0 at fixed non-vanishing values of q212 and q1⊥ij (or q2⊥ij),
we have

(
#i1 − #j2

)
= −

(
#j1 − #i2

)
. Therefore, in the limit q212⊥ij → 0 the factor #i1 − #j2 is

(approximately) antisymmetric with respect to the exchange pi ↔ pj and this implies that
we can perform the following replacement in Eq. (37):
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(43)
and it follows that, in the kinematical region with q01 > 0 and q02 > 0, the transverse-
momentum singularity has a purely non-abelian character (see the factor fabc in the right-
hand side of the relation (43)).

As we have just discussed, the singularity of the soft-qq̄ current in the limit q12⊥ij →
0 originates from one-loop interactions of the two soft partons. Therefore, we expect
the presence of the transverse-momentum singularity also in the case of double soft-gluon
emission at one-loop level. The one-loop double-gluon current computed in Ref. [40] indeed
shows singular terms at q12⊥ij → 0.

We have also computed the soft-qq̄ one-loop current J (1) by explicitly evaluating its
dependence on the RS parameter δR to all orders in ε. Using the notation of Eq. (30) and
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We present the explicit result of the ε expansion of the functions w[S], w[A], F [S] and F [A]

up to O(ε0). More precisely, we limit ourselves to presenting the expressions of these func-
tions in the kinematical region where q01 > 0 and q02 > 0 (i.e., the soft quark and antiquark
are produced in the physical final state), which is the most relevant physical region‡. In
this region, the squared current depends (see Eqs. (36) and (37)) on the logarithms "i1±"j2
(which are purely real, independently of whether the momenta pi and pj are physically

incoming or outgoing) and on the real part LijR and discontinuity Θ(in)
ij of the logarithm

Lij. We have (see Eqs. (27) and (28))

"i1+"j2 = ln
(pi · q1)(pj · q2)
(pi · q12)(pj · q12)

, "i1−"j2 = ln
(pi · q1)(pj · q12)
(pi · q12)(pj · q2)

, Lij = LijR+2iπ Θ(in)
ij , (64)

where
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ij ≡ Θ(−p0i )Θ(−p0j) . (65)

The function w[S]
ij has the following expression in the region where q01 > 0 and q02 > 0:

w[S]
ij (q1, q2) =
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)
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}
+ (q1 ↔ q2) . (66)

This function (which is symmetric under the exchange i ↔ j) controls the size of the
one-loop radiative corrections to the tree-level colour dipole correlations T i · T j.

We note that w[S]
ij also depends on colour coefficients, while F [S]

ijk , w
[A]
ij and F [A]

ijk only
depends on parton momenta.

The function F [S]
ijk is associated with non-abelian three-particle correlations with colour

charge factor fabcT a
i T b

j T
c
k . In the region where q01 > 0 and q02 > 0, we have the explicit

result

F [S]
ijk(q2, q1) = 2π Iki(q1, q2)

{
LijR + "i1 + "j2

+ Θ(in)
ij

[
2
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)
− 2
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]
+O(ε)

}
+ (q1 ↔ q2) . (67)

The charge-asymmetry contributions to Eq. (61) can be expressed through the function

F [A]
ijk . In the region where q01 > 0 and q02 > 0 we have

F [A]
ijk (q2, q1) =

{
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[
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}
− (q1 ↔ q2) . (68)

‡Expressions in other kinematical regions can be obtained by using the fully general one-loop current
in Eqs. (36) and (37).
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of Eq. (37) we see that the one-loop interaction at O(ε0) also produces a different type of
kinematical dependence as given by the factor j(1, 2) · pi q212/(pi · q12 q212⊥ij). This rational
factor has no collinear singularity at q212 → 0, but it potentially leads to a singularity in
the limit q212⊥ij → 0. This is a ‘transverse-momentum singularity’, since the kinematical

variable
√

q212⊥ij in Eq. (38) is the transverse component of the momentum q12 of the soft

qq̄ pair with respect to the momenta pi and pj of the colour-correlated hard partons in a
reference frame in which pi and pj are back-to-back.

The transverse-momentum singularity in the current is partly screened by the logarith-
mic function Lij, and we have

1
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Lij "
q12⊥ij→0

1

q212⊥ij

[
2πi sign(q212) Θ

(
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)
Θ
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)
+O
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)]
,

(41)
which shows that the current has a one-loop singularity of absorptive origin. Considering
the physically most relevant kinematical region in which the soft quark and antiquark are
produced in the final state (q01 > 0, q02 > 0), Eq. (41) becomes
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Lij "
q12⊥ij→0

1

q212⊥ij

2πi Θ(−p0i ) Θ(−p0j) , (q01 > 0, q02 > 0) , (42)

which shows that the transverse-momentum singularity is present in the scattering ampli-
tude of a physical process in which the final-state soft qq̄ pair is produced by the collision
of the hard partons i and j in the initial state. We remark that this singularity has a pure
quantum mechanics (loop) origin, and it occurs in the limit q212⊥ij → 0 even if the trans-
verse momenta q1⊥ij and q2⊥ij (q2k⊥ij = 2pi · qk pj · qk/pi · pj, k = 1, 2) of the soft quark and
antiquark are separately large (i.e., they are separately non-vanishing) and q212 is large. We
also note that, setting q12⊥ij = 0 at fixed non-vanishing values of q212 and q1⊥ij (or q2⊥ij),
we have

(
#i1 − #j2

)
= −

(
#j1 − #i2

)
. Therefore, in the limit q212⊥ij → 0 the factor #i1 − #j2 is

(approximately) antisymmetric with respect to the exchange pi ↔ pj and this implies that
we can perform the following replacement in Eq. (37):

tatb T a
i T b

j

Lij

q212⊥ij

(
#i1−#j2

)
−→

q12⊥ij→0
−fabctc T a

i T b
j

π Θ(−p0i )Θ(−p0j)

q212⊥ij

(
#i1−#j2

)
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0
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(43)
and it follows that, in the kinematical region with q01 > 0 and q02 > 0, the transverse-
momentum singularity has a purely non-abelian character (see the factor fabc in the right-
hand side of the relation (43)).

As we have just discussed, the singularity of the soft-qq̄ current in the limit q12⊥ij →
0 originates from one-loop interactions of the two soft partons. Therefore, we expect
the presence of the transverse-momentum singularity also in the case of double soft-gluon
emission at one-loop level. The one-loop double-gluon current computed in Ref. [40] indeed
shows singular terms at q12⊥ij → 0.

We have also computed the soft-qq̄ one-loop current J (1) by explicitly evaluating its
dependence on the RS parameter δR to all orders in ε. Using the notation of Eq. (30) and
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At arbitrary orders in the ε expansion, the two-particle correlation function w[A]
ij is directly

related to F [A]
ijk as follows

w[A]
ij (q1, q2) =

[
F [A]
iji (q1, q2) + F [A]

jii (q1, q2)
]
−
(
i ↔ j

)
. (69)

In contrast to w[S]
ij , we note that w[A]

ij is antisymmetric under the exchange i ↔ j of the

hard-parton momenta. In particular, this antisymmetry of w[A]
ij implies that in the sum

over i and j of Eq. (61) we can replace D̃i · T j by its antisymmetric component, namely,

D̃i · T j →
(
D̃i · T j − D̃j · T i

)
/2. Inserting Eq. (68) in Eq. (69), w[A]

ij has the following
expression:

w[A]
ij (q1, q2) =

{
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[
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(70)

+
[
Iii(q1, q2)− Ijj(q1, q2)

] 2 q212
q212⊥ij

LijR

(
"i1 − "j2

)
+O(ε)

}
− (q1 ↔ q2) .

By inspection of Eqs. (66)–(70) we note that only the function F [S]
ijk exhibits a discon-

tinuity with respect to the momenta of the hard partons (see Θ(in)
ij in Eqs. (65) and (67)).

The discontinuity contributes in the kinematical region where two hard-parton momenta i
and j have negative time component (p0i < 0 and p0j < 0), namely, the partons i and j col-
lide in the physical initial state. This discontinuity term of the squared current in Eq. (61)
originates as interference between a one-loop absorptive (imaginary) contribution and the
antihermitian colour factor ifabc T a

i T b
j T

c
k (we recall that i, j and k refer to three distinct

partons). Actually, the entire term proportional to fabc T a
i T b

j T
c
k in Eq. (61) has this ori-

gin§ as absorptive/colour interference (the absorptive term being related to the kinematical
region where q01 > 0 and q02 > 0).

As discussed in Sect. 4 (see Eqs. (41)–(43) and accompanying comments) the one-
loop current of soft-qq̄ emission has a transverse-momentum singularity at q12⊥ij → 0.
This singularity has a non-abelian character and an absorptive origin. At the level of the
one-loop squared current, this singularity does appear in the function F [S]

ijk (see the term

(q212⊥ij)
−1 Θ(in)

ij in Eq. (67)), while it is absent in all the other contributions (in Eqs. (66),
(68) and (70) we see the term (q212⊥ij)

−1 LijR → (q212)
−1, which is not singular at q12⊥ij → 0).

Therefore, the transverse-momentum singularity at q12⊥ij → 0 contributes through colour
correlation fabc T a

i T b
j T

c
k to one-loop squared amplitudes for the class of processes with

initial-state colliding partons i and j and two or more final-state hard partons (as recalled
below in Eq. (71), the colour correlation vanishes if there is only one final-state hard parton).
This class of processes includes, for instance, dijet (or heavy-quark pair) production in
hadron–hadron collisions and the transverse-momentum singularity is directly related to
the transverse momentum of the dijet system (heavy-quark pair). Interestingly, we note
that this is the same class of processes that is sensistive to effects due to the violation
of strict collinear factorization [26]. However, we remark on the fact that the transverse-
momentum singularity at q12⊥ij → 0 and violation of strict collinear factorization are

§The one-loop squared current for single soft-gluon radiation [23] has three-particle correlations of the
type fabc T a

i T b
j T

c
k , which have an analogous origin as absorptive/colour interference.
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of Eq. (37) we see that the one-loop interaction at O(ε0) also produces a different type of
kinematical dependence as given by the factor j(1, 2) · pi q212/(pi · q12 q212⊥ij). This rational
factor has no collinear singularity at q212 → 0, but it potentially leads to a singularity in
the limit q212⊥ij → 0. This is a ‘transverse-momentum singularity’, since the kinematical

variable
√

q212⊥ij in Eq. (38) is the transverse component of the momentum q12 of the soft

qq̄ pair with respect to the momenta pi and pj of the colour-correlated hard partons in a
reference frame in which pi and pj are back-to-back.

The transverse-momentum singularity in the current is partly screened by the logarith-
mic function Lij, and we have

1

q212⊥ij

Lij "
q12⊥ij→0

1

q212⊥ij

[
2πi sign(q212) Θ

(
−pi · q12
pi · pj

)
Θ

(
−pj · q12
pi · pj

)
+O

(
q212⊥ij

q212

)]
,

(41)
which shows that the current has a one-loop singularity of absorptive origin. Considering
the physically most relevant kinematical region in which the soft quark and antiquark are
produced in the final state (q01 > 0, q02 > 0), Eq. (41) becomes

1

q212⊥ij

Lij "
q12⊥ij→0

1

q212⊥ij

2πi Θ(−p0i ) Θ(−p0j) , (q01 > 0, q02 > 0) , (42)

which shows that the transverse-momentum singularity is present in the scattering ampli-
tude of a physical process in which the final-state soft qq̄ pair is produced by the collision
of the hard partons i and j in the initial state. We remark that this singularity has a pure
quantum mechanics (loop) origin, and it occurs in the limit q212⊥ij → 0 even if the trans-
verse momenta q1⊥ij and q2⊥ij (q2k⊥ij = 2pi · qk pj · qk/pi · pj, k = 1, 2) of the soft quark and
antiquark are separately large (i.e., they are separately non-vanishing) and q212 is large. We
also note that, setting q12⊥ij = 0 at fixed non-vanishing values of q212 and q1⊥ij (or q2⊥ij),
we have

(
#i1 − #j2

)
= −

(
#j1 − #i2

)
. Therefore, in the limit q212⊥ij → 0 the factor #i1 − #j2 is

(approximately) antisymmetric with respect to the exchange pi ↔ pj and this implies that
we can perform the following replacement in Eq. (37):

tatb T a
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j

Lij

q212⊥ij

(
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)
−→

q12⊥ij→0
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j
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(
#i1−#j2

)
, (q01, q

0
2 > 0) ,

(43)
and it follows that, in the kinematical region with q01 > 0 and q02 > 0, the transverse-
momentum singularity has a purely non-abelian character (see the factor fabc in the right-
hand side of the relation (43)).

As we have just discussed, the singularity of the soft-qq̄ current in the limit q12⊥ij →
0 originates from one-loop interactions of the two soft partons. Therefore, we expect
the presence of the transverse-momentum singularity also in the case of double soft-gluon
emission at one-loop level. The one-loop double-gluon current computed in Ref. [40] indeed
shows singular terms at q12⊥ij → 0.

We have also computed the soft-qq̄ one-loop current J (1) by explicitly evaluating its
dependence on the RS parameter δR to all orders in ε. Using the notation of Eq. (30) and
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• The one-loop squared current

where we have used

dabcddbc = dA δad , dA =
N2

c − 4

Nc

. (60)

Note that the tensor dabc is odd under charge conjugation. This fact is responsible for
the opposite overall sign between the d-charge D̃i and the colour charge T i of quarks
and antiquarks (see Eqs. (57) and (58)). Analogously, in the gluon case the d-charge
〈b|Da

i |c〉 in Eq. (59) is symmetric with respect to b ↔ c, while the colour charge 〈b|T a
i |c〉 is

antisymmetric with respect to b ↔ c.

The explicit expression of the one-loop squared current |Ĵ(q1, q2)|2(1!) is obtained by

inserting Ĵ
(0)

(see Eqs. (14) and (33)) and Ĵ
(1)

(see Eqs. (35)–(37)) in the right-hand side
of Eq. (54), and by performing the sum over the colours and spins of the soft quark and
antiquark. We find the following result:

|Ĵ(q1, q2)|2(1!) = −
1

2
TR

∑
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i "= j

[
T i · T j w[S]

ij (q1, q2) + D̃i · T j w[A]
ij (q1, q2)

]

−TR

∑

i,j,k∈H
dist.{i,j,k}

T a
i T b

j T
c
k

[
fabc F [S]

ijk(q1, q2) + dabc
(
F [A]
ijk (q1, q2)−

1

2
F [A]
iji (q1, q2)−

1

2
F [A]
ijj (q1, q2)

)]
,

(61)

which is valid to arbitrary orders in the ε expansion. The ε dependence is embodied in
the c-number functions w[S], w[A], F [S] and F [A]. The dependence on the colours of the
hard partons is due to the colour charges T a

i and D̃a
i . The structure of Eq. (61) involves

contributions with both two hard-parton correlations and three hard-parton correlations. In
the case of three hard-parton correlations, the subscript ‘dist.{i, j, k}’ in

∑
i,j,k∈H

dist.{i,j,k}
denotes

the sum over distinct hard-parton indices i, j and k (i.e., i %= j, j %= k, k %= i).

The functions w[S]
ij , w

[A]
ij , F [S]

ijk and F [A]
ijk in Eq. (61) depend on the momenta of the hard

partons and on the momenta q1 and q2 of the soft quark and antiquark. The superscript
[S] in w[S]

ij and F [S]
ijk denotes the fact that these functions are symmetric under the exchange

q1 ↔ q2 of the momenta of the soft quark and antiquark:

w[S]
ij (q1, q2) = w[S]

ij (q2, q1) , F [S]
ijk(q1, q2) = F [S]

ijk(q2, q1) . (62)

Analogously, the superscript [A] in w[A]
ij and F [A]

ijk highlights the fact that these functions
are antisymmetric under the exchange q1 ↔ q2:

w[A]
ij (q1, q2) = −w[A]

ij (q2, q1) , F [A]
ijk (q1, q2) = −F [A]

ijk (q2, q1) . (63)

Therefore, w[A] and F [A] produce a quark–antiquark charge asymmetry in the one-loop
squared current. We note that the charge-asymmetry contributions appear in Eq. (61)
with the associated colour factors D̃i ·T j = dabcT a

i T b
i T

c
j and dabcT a

i T b
j T

c
k that have a linear

dependence on the colour tensor dabc (which is odd under charge conjugation). The charge-
asymmetry contributions to |J(q1, q2)|2 have a quantum origin and are characteristic of the
radiation of soft quark–antiquark pairs (the squared current |J(q1, . . . , qm)|2 for radiation of
m soft gluons is instead fully symmetric with respect to the soft-gluon momenta q1, . . . , qm).
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A few comments about the charge-asymmetry

We present the explicit result of the ε expansion of the functions w[S], w[A], F [S] and F [A]

up to O(ε0). More precisely, we limit ourselves to presenting the expressions of these func-
tions in the kinematical region where q01 > 0 and q02 > 0 (i.e., the soft quark and antiquark
are produced in the physical final state), which is the most relevant physical region‡. In
this region, the squared current depends (see Eqs. (36) and (37)) on the logarithms "i1±"j2
(which are purely real, independently of whether the momenta pi and pj are physically

incoming or outgoing) and on the real part LijR and discontinuity Θ(in)
ij of the logarithm

Lij. We have (see Eqs. (27) and (28))

"i1+"j2 = ln
(pi · q1)(pj · q2)
(pi · q12)(pj · q12)

, "i1−"j2 = ln
(pi · q1)(pj · q12)
(pi · q12)(pj · q2)

, Lij = LijR+2iπ Θ(in)
ij , (64)

where

LijR = ln
(pi · q12)(pj · q12)
(pi · pj)(q1 · q2)

= ln

(
1 +

q212⊥ij

q212

)
, Θ(in)

ij ≡ Θ(−p0i )Θ(−p0j) . (65)

The function w[S]
ij has the following expression in the region where q01 > 0 and q02 > 0:

w[S]
ij (q1, q2) =

{
wij(q1, q2)

[
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+
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+
1

3
CA

(11
ε

+
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)
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2
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ε
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2
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−CA

[
Iii(q1, q2)− Ijj(q1, q2)

] q212
q212⊥ij

LijR

(
"i1 − "j2

)
+O(ε)

}
+ (q1 ↔ q2) . (66)

This function (which is symmetric under the exchange i ↔ j) controls the size of the
one-loop radiative corrections to the tree-level colour dipole correlations T i · T j.

We note that w[S]
ij also depends on colour coefficients, while F [S]

ijk , w
[A]
ij and F [A]

ijk only
depends on parton momenta.

The function F [S]
ijk is associated with non-abelian three-particle correlations with colour

charge factor fabcT a
i T b

j T
c
k . In the region where q01 > 0 and q02 > 0, we have the explicit

result

F [S]
ijk(q2, q1) = 2π Iki(q1, q2)

{
LijR + "i1 + "j2

+ Θ(in)
ij

[
2
(1
ε
− LijR

)
− 2

q212
q212⊥ij

("i1 − "j2)
]
+O(ε)

}
+ (q1 ↔ q2) . (67)

The charge-asymmetry contributions to Eq. (61) can be expressed through the function

F [A]
ijk . In the region where q01 > 0 and q02 > 0 we have

F [A]
ijk (q2, q1) =

{
Iki(q1, q2)

[
−
2

ε
("i1 + "j2) + ("i1 − "j2)

2 + 2
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q212⊥ij

LijR

(
"i1 − "j2

)]

+ O(ε)
}
− (q1 ↔ q2) . (68)

‡Expressions in other kinematical regions can be obtained by using the fully general one-loop current
in Eqs. (36) and (37).
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of Eq. (37) we see that the one-loop interaction at O(ε0) also produces a different type of
kinematical dependence as given by the factor j(1, 2) · pi q212/(pi · q12 q212⊥ij). This rational
factor has no collinear singularity at q212 → 0, but it potentially leads to a singularity in
the limit q212⊥ij → 0. This is a ‘transverse-momentum singularity’, since the kinematical

variable
√

q212⊥ij in Eq. (38) is the transverse component of the momentum q12 of the soft

qq̄ pair with respect to the momenta pi and pj of the colour-correlated hard partons in a
reference frame in which pi and pj are back-to-back.

The transverse-momentum singularity in the current is partly screened by the logarith-
mic function Lij, and we have

1

q212⊥ij

Lij "
q12⊥ij→0

1

q212⊥ij

[
2πi sign(q212) Θ

(
−pi · q12
pi · pj

)
Θ

(
−pj · q12
pi · pj

)
+O

(
q212⊥ij

q212

)]
,

(41)
which shows that the current has a one-loop singularity of absorptive origin. Considering
the physically most relevant kinematical region in which the soft quark and antiquark are
produced in the final state (q01 > 0, q02 > 0), Eq. (41) becomes

1

q212⊥ij

Lij "
q12⊥ij→0

1

q212⊥ij

2πi Θ(−p0i ) Θ(−p0j) , (q01 > 0, q02 > 0) , (42)

which shows that the transverse-momentum singularity is present in the scattering ampli-
tude of a physical process in which the final-state soft qq̄ pair is produced by the collision
of the hard partons i and j in the initial state. We remark that this singularity has a pure
quantum mechanics (loop) origin, and it occurs in the limit q212⊥ij → 0 even if the trans-
verse momenta q1⊥ij and q2⊥ij (q2k⊥ij = 2pi · qk pj · qk/pi · pj, k = 1, 2) of the soft quark and
antiquark are separately large (i.e., they are separately non-vanishing) and q212 is large. We
also note that, setting q12⊥ij = 0 at fixed non-vanishing values of q212 and q1⊥ij (or q2⊥ij),
we have

(
#i1 − #j2

)
= −

(
#j1 − #i2

)
. Therefore, in the limit q212⊥ij → 0 the factor #i1 − #j2 is

(approximately) antisymmetric with respect to the exchange pi ↔ pj and this implies that
we can perform the following replacement in Eq. (37):
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(
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)
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)
, (q01, q

0
2 > 0) ,

(43)
and it follows that, in the kinematical region with q01 > 0 and q02 > 0, the transverse-
momentum singularity has a purely non-abelian character (see the factor fabc in the right-
hand side of the relation (43)).

As we have just discussed, the singularity of the soft-qq̄ current in the limit q12⊥ij →
0 originates from one-loop interactions of the two soft partons. Therefore, we expect
the presence of the transverse-momentum singularity also in the case of double soft-gluon
emission at one-loop level. The one-loop double-gluon current computed in Ref. [40] indeed
shows singular terms at q12⊥ij → 0.

We have also computed the soft-qq̄ one-loop current J (1) by explicitly evaluating its
dependence on the RS parameter δR to all orders in ε. Using the notation of Eq. (30) and
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We present the explicit result of the ε expansion of the functions w[S], w[A], F [S] and F [A]

up to O(ε0). More precisely, we limit ourselves to presenting the expressions of these func-
tions in the kinematical region where q01 > 0 and q02 > 0 (i.e., the soft quark and antiquark
are produced in the physical final state), which is the most relevant physical region‡. In
this region, the squared current depends (see Eqs. (36) and (37)) on the logarithms "i1±"j2
(which are purely real, independently of whether the momenta pi and pj are physically

incoming or outgoing) and on the real part LijR and discontinuity Θ(in)
ij of the logarithm

Lij. We have (see Eqs. (27) and (28))

"i1+"j2 = ln
(pi · q1)(pj · q2)
(pi · q12)(pj · q12)

, "i1−"j2 = ln
(pi · q1)(pj · q12)
(pi · q12)(pj · q2)

, Lij = LijR+2iπ Θ(in)
ij , (64)

where

LijR = ln
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= ln

(
1 +
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)
, Θ(in)

ij ≡ Θ(−p0i )Θ(−p0j) . (65)

The function w[S]
ij has the following expression in the region where q01 > 0 and q02 > 0:

w[S]
ij (q1, q2) =

{
wij(q1, q2)
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)
+O(ε)

}
+ (q1 ↔ q2) . (66)

This function (which is symmetric under the exchange i ↔ j) controls the size of the
one-loop radiative corrections to the tree-level colour dipole correlations T i · T j.

We note that w[S]
ij also depends on colour coefficients, while F [S]

ijk , w
[A]
ij and F [A]

ijk only
depends on parton momenta.

The function F [S]
ijk is associated with non-abelian three-particle correlations with colour

charge factor fabcT a
i T b

j T
c
k . In the region where q01 > 0 and q02 > 0, we have the explicit

result

F [S]
ijk(q2, q1) = 2π Iki(q1, q2)

{
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}
+ (q1 ↔ q2) . (67)

The charge-asymmetry contributions to Eq. (61) can be expressed through the function

F [A]
ijk . In the region where q01 > 0 and q02 > 0 we have

F [A]
ijk (q2, q1) =

{
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‡Expressions in other kinematical regions can be obtained by using the fully general one-loop current
in Eqs. (36) and (37).
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of Eq. (37) we see that the one-loop interaction at O(ε0) also produces a different type of
kinematical dependence as given by the factor j(1, 2) · pi q212/(pi · q12 q212⊥ij). This rational
factor has no collinear singularity at q212 → 0, but it potentially leads to a singularity in
the limit q212⊥ij → 0. This is a ‘transverse-momentum singularity’, since the kinematical

variable
√

q212⊥ij in Eq. (38) is the transverse component of the momentum q12 of the soft

qq̄ pair with respect to the momenta pi and pj of the colour-correlated hard partons in a
reference frame in which pi and pj are back-to-back.

The transverse-momentum singularity in the current is partly screened by the logarith-
mic function Lij, and we have

1
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,

(41)
which shows that the current has a one-loop singularity of absorptive origin. Considering
the physically most relevant kinematical region in which the soft quark and antiquark are
produced in the final state (q01 > 0, q02 > 0), Eq. (41) becomes
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2πi Θ(−p0i ) Θ(−p0j) , (q01 > 0, q02 > 0) , (42)

which shows that the transverse-momentum singularity is present in the scattering ampli-
tude of a physical process in which the final-state soft qq̄ pair is produced by the collision
of the hard partons i and j in the initial state. We remark that this singularity has a pure
quantum mechanics (loop) origin, and it occurs in the limit q212⊥ij → 0 even if the trans-
verse momenta q1⊥ij and q2⊥ij (q2k⊥ij = 2pi · qk pj · qk/pi · pj, k = 1, 2) of the soft quark and
antiquark are separately large (i.e., they are separately non-vanishing) and q212 is large. We
also note that, setting q12⊥ij = 0 at fixed non-vanishing values of q212 and q1⊥ij (or q2⊥ij),
we have

(
#i1 − #j2

)
= −

(
#j1 − #i2

)
. Therefore, in the limit q212⊥ij → 0 the factor #i1 − #j2 is

(approximately) antisymmetric with respect to the exchange pi ↔ pj and this implies that
we can perform the following replacement in Eq. (37):
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(43)
and it follows that, in the kinematical region with q01 > 0 and q02 > 0, the transverse-
momentum singularity has a purely non-abelian character (see the factor fabc in the right-
hand side of the relation (43)).

As we have just discussed, the singularity of the soft-qq̄ current in the limit q12⊥ij →
0 originates from one-loop interactions of the two soft partons. Therefore, we expect
the presence of the transverse-momentum singularity also in the case of double soft-gluon
emission at one-loop level. The one-loop double-gluon current computed in Ref. [40] indeed
shows singular terms at q12⊥ij → 0.

We have also computed the soft-qq̄ one-loop current J (1) by explicitly evaluating its
dependence on the RS parameter δR to all orders in ε. Using the notation of Eq. (30) and

19

We present the explicit result of the ε expansion of the functions w[S], w[A], F [S] and F [A]

up to O(ε0). More precisely, we limit ourselves to presenting the expressions of these func-
tions in the kinematical region where q01 > 0 and q02 > 0 (i.e., the soft quark and antiquark
are produced in the physical final state), which is the most relevant physical region‡. In
this region, the squared current depends (see Eqs. (36) and (37)) on the logarithms "i1±"j2
(which are purely real, independently of whether the momenta pi and pj are physically

incoming or outgoing) and on the real part LijR and discontinuity Θ(in)
ij of the logarithm

Lij. We have (see Eqs. (27) and (28))
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The function w[S]
ij has the following expression in the region where q01 > 0 and q02 > 0:
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This function (which is symmetric under the exchange i ↔ j) controls the size of the
one-loop radiative corrections to the tree-level colour dipole correlations T i · T j.

We note that w[S]
ij also depends on colour coefficients, while F [S]

ijk , w
[A]
ij and F [A]

ijk only
depends on parton momenta.

The function F [S]
ijk is associated with non-abelian three-particle correlations with colour

charge factor fabcT a
i T b

j T
c
k . In the region where q01 > 0 and q02 > 0, we have the explicit

result
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The charge-asymmetry contributions to Eq. (61) can be expressed through the function
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ijk . In the region where q01 > 0 and q02 > 0 we have
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‡Expressions in other kinematical regions can be obtained by using the fully general one-loop current
in Eqs. (36) and (37).
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of Eq. (37) we see that the one-loop interaction at O(ε0) also produces a different type of
kinematical dependence as given by the factor j(1, 2) · pi q212/(pi · q12 q212⊥ij). This rational
factor has no collinear singularity at q212 → 0, but it potentially leads to a singularity in
the limit q212⊥ij → 0. This is a ‘transverse-momentum singularity’, since the kinematical

variable
√

q212⊥ij in Eq. (38) is the transverse component of the momentum q12 of the soft

qq̄ pair with respect to the momenta pi and pj of the colour-correlated hard partons in a
reference frame in which pi and pj are back-to-back.

The transverse-momentum singularity in the current is partly screened by the logarith-
mic function Lij, and we have

1

q212⊥ij

Lij "
q12⊥ij→0

1

q212⊥ij

[
2πi sign(q212) Θ

(
−pi · q12
pi · pj

)
Θ

(
−pj · q12
pi · pj

)
+O

(
q212⊥ij

q212

)]
,

(41)
which shows that the current has a one-loop singularity of absorptive origin. Considering
the physically most relevant kinematical region in which the soft quark and antiquark are
produced in the final state (q01 > 0, q02 > 0), Eq. (41) becomes

1

q212⊥ij

Lij "
q12⊥ij→0

1

q212⊥ij

2πi Θ(−p0i ) Θ(−p0j) , (q01 > 0, q02 > 0) , (42)

which shows that the transverse-momentum singularity is present in the scattering ampli-
tude of a physical process in which the final-state soft qq̄ pair is produced by the collision
of the hard partons i and j in the initial state. We remark that this singularity has a pure
quantum mechanics (loop) origin, and it occurs in the limit q212⊥ij → 0 even if the trans-
verse momenta q1⊥ij and q2⊥ij (q2k⊥ij = 2pi · qk pj · qk/pi · pj, k = 1, 2) of the soft quark and
antiquark are separately large (i.e., they are separately non-vanishing) and q212 is large. We
also note that, setting q12⊥ij = 0 at fixed non-vanishing values of q212 and q1⊥ij (or q2⊥ij),
we have

(
#i1 − #j2

)
= −

(
#j1 − #i2

)
. Therefore, in the limit q212⊥ij → 0 the factor #i1 − #j2 is

(approximately) antisymmetric with respect to the exchange pi ↔ pj and this implies that
we can perform the following replacement in Eq. (37):

tatb T a
i T b

j

Lij

q212⊥ij

(
#i1−#j2

)
−→

q12⊥ij→0
−fabctc T a

i T b
j

π Θ(−p0i )Θ(−p0j)

q212⊥ij

(
#i1−#j2

)
, (q01, q

0
2 > 0) ,

(43)
and it follows that, in the kinematical region with q01 > 0 and q02 > 0, the transverse-
momentum singularity has a purely non-abelian character (see the factor fabc in the right-
hand side of the relation (43)).

As we have just discussed, the singularity of the soft-qq̄ current in the limit q12⊥ij →
0 originates from one-loop interactions of the two soft partons. Therefore, we expect
the presence of the transverse-momentum singularity also in the case of double soft-gluon
emission at one-loop level. The one-loop double-gluon current computed in Ref. [40] indeed
shows singular terms at q12⊥ij → 0.

We have also computed the soft-qq̄ one-loop current J (1) by explicitly evaluating its
dependence on the RS parameter δR to all orders in ε. Using the notation of Eq. (30) and
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At arbitrary orders in the ε expansion, the two-particle correlation function w[A]
ij is directly

related to F [A]
ijk as follows

w[A]
ij (q1, q2) =

[
F [A]
iji (q1, q2) + F [A]

jii (q1, q2)
]
−
(
i ↔ j

)
. (69)

In contrast to w[S]
ij , we note that w[A]

ij is antisymmetric under the exchange i ↔ j of the

hard-parton momenta. In particular, this antisymmetry of w[A]
ij implies that in the sum

over i and j of Eq. (61) we can replace D̃i · T j by its antisymmetric component, namely,

D̃i · T j →
(
D̃i · T j − D̃j · T i

)
/2. Inserting Eq. (68) in Eq. (69), w[A]

ij has the following
expression:

w[A]
ij (q1, q2) =

{
wij(q1, q2)

[
−
2

ε
("i1 + "j2) + ("i1 − "j2)

2
]

(70)

+
[
Iii(q1, q2)− Ijj(q1, q2)

] 2 q212
q212⊥ij

LijR

(
"i1 − "j2

)
+O(ε)

}
− (q1 ↔ q2) .

By inspection of Eqs. (66)–(70) we note that only the function F [S]
ijk exhibits a discon-

tinuity with respect to the momenta of the hard partons (see Θ(in)
ij in Eqs. (65) and (67)).

The discontinuity contributes in the kinematical region where two hard-parton momenta i
and j have negative time component (p0i < 0 and p0j < 0), namely, the partons i and j col-
lide in the physical initial state. This discontinuity term of the squared current in Eq. (61)
originates as interference between a one-loop absorptive (imaginary) contribution and the
antihermitian colour factor ifabc T a

i T b
j T

c
k (we recall that i, j and k refer to three distinct

partons). Actually, the entire term proportional to fabc T a
i T b

j T
c
k in Eq. (61) has this ori-

gin§ as absorptive/colour interference (the absorptive term being related to the kinematical
region where q01 > 0 and q02 > 0).

As discussed in Sect. 4 (see Eqs. (41)–(43) and accompanying comments) the one-
loop current of soft-qq̄ emission has a transverse-momentum singularity at q12⊥ij → 0.
This singularity has a non-abelian character and an absorptive origin. At the level of the
one-loop squared current, this singularity does appear in the function F [S]

ijk (see the term

(q212⊥ij)
−1 Θ(in)

ij in Eq. (67)), while it is absent in all the other contributions (in Eqs. (66),
(68) and (70) we see the term (q212⊥ij)

−1 LijR → (q212)
−1, which is not singular at q12⊥ij → 0).

Therefore, the transverse-momentum singularity at q12⊥ij → 0 contributes through colour
correlation fabc T a

i T b
j T

c
k to one-loop squared amplitudes for the class of processes with

initial-state colliding partons i and j and two or more final-state hard partons (as recalled
below in Eq. (71), the colour correlation vanishes if there is only one final-state hard parton).
This class of processes includes, for instance, dijet (or heavy-quark pair) production in
hadron–hadron collisions and the transverse-momentum singularity is directly related to
the transverse momentum of the dijet system (heavy-quark pair). Interestingly, we note
that this is the same class of processes that is sensistive to effects due to the violation
of strict collinear factorization [26]. However, we remark on the fact that the transverse-
momentum singularity at q12⊥ij → 0 and violation of strict collinear factorization are

§The one-loop squared current for single soft-gluon radiation [23] has three-particle correlations of the
type fabc T a

i T b
j T

c
k , which have an analogous origin as absorptive/colour interference.
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of Eq. (37) we see that the one-loop interaction at O(ε0) also produces a different type of
kinematical dependence as given by the factor j(1, 2) · pi q212/(pi · q12 q212⊥ij). This rational
factor has no collinear singularity at q212 → 0, but it potentially leads to a singularity in
the limit q212⊥ij → 0. This is a ‘transverse-momentum singularity’, since the kinematical

variable
√

q212⊥ij in Eq. (38) is the transverse component of the momentum q12 of the soft

qq̄ pair with respect to the momenta pi and pj of the colour-correlated hard partons in a
reference frame in which pi and pj are back-to-back.

The transverse-momentum singularity in the current is partly screened by the logarith-
mic function Lij, and we have

1

q212⊥ij

Lij "
q12⊥ij→0

1

q212⊥ij

[
2πi sign(q212) Θ

(
−pi · q12
pi · pj

)
Θ

(
−pj · q12
pi · pj

)
+O

(
q212⊥ij

q212

)]
,

(41)
which shows that the current has a one-loop singularity of absorptive origin. Considering
the physically most relevant kinematical region in which the soft quark and antiquark are
produced in the final state (q01 > 0, q02 > 0), Eq. (41) becomes

1

q212⊥ij

Lij "
q12⊥ij→0

1

q212⊥ij

2πi Θ(−p0i ) Θ(−p0j) , (q01 > 0, q02 > 0) , (42)

which shows that the transverse-momentum singularity is present in the scattering ampli-
tude of a physical process in which the final-state soft qq̄ pair is produced by the collision
of the hard partons i and j in the initial state. We remark that this singularity has a pure
quantum mechanics (loop) origin, and it occurs in the limit q212⊥ij → 0 even if the trans-
verse momenta q1⊥ij and q2⊥ij (q2k⊥ij = 2pi · qk pj · qk/pi · pj, k = 1, 2) of the soft quark and
antiquark are separately large (i.e., they are separately non-vanishing) and q212 is large. We
also note that, setting q12⊥ij = 0 at fixed non-vanishing values of q212 and q1⊥ij (or q2⊥ij),
we have

(
#i1 − #j2

)
= −

(
#j1 − #i2

)
. Therefore, in the limit q212⊥ij → 0 the factor #i1 − #j2 is

(approximately) antisymmetric with respect to the exchange pi ↔ pj and this implies that
we can perform the following replacement in Eq. (37):

tatb T a
i T b

j

Lij

q212⊥ij

(
#i1−#j2

)
−→

q12⊥ij→0
−fabctc T a

i T b
j

π Θ(−p0i )Θ(−p0j)

q212⊥ij

(
#i1−#j2

)
, (q01, q

0
2 > 0) ,

(43)
and it follows that, in the kinematical region with q01 > 0 and q02 > 0, the transverse-
momentum singularity has a purely non-abelian character (see the factor fabc in the right-
hand side of the relation (43)).

As we have just discussed, the singularity of the soft-qq̄ current in the limit q12⊥ij →
0 originates from one-loop interactions of the two soft partons. Therefore, we expect
the presence of the transverse-momentum singularity also in the case of double soft-gluon
emission at one-loop level. The one-loop double-gluon current computed in Ref. [40] indeed
shows singular terms at q12⊥ij → 0.

We have also computed the soft-qq̄ one-loop current J (1) by explicitly evaluating its
dependence on the RS parameter δR to all orders in ε. Using the notation of Eq. (30) and
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The charge-asymmetry 
contributions are not vanishing only 

for specific classes of scattering 
amplitudes and quantities that are 

not invariant under charge 
conjugation

The charge-asymmetry 
contributions give a vanishing effect 

after phase-space symmetric 
integration over q1 and q2
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• The one-loop squared current

where we have used

dabcddbc = dA δad , dA =
N2

c − 4

Nc

. (60)

Note that the tensor dabc is odd under charge conjugation. This fact is responsible for
the opposite overall sign between the d-charge D̃i and the colour charge T i of quarks
and antiquarks (see Eqs. (57) and (58)). Analogously, in the gluon case the d-charge
〈b|Da

i |c〉 in Eq. (59) is symmetric with respect to b ↔ c, while the colour charge 〈b|T a
i |c〉 is

antisymmetric with respect to b ↔ c.

The explicit expression of the one-loop squared current |Ĵ(q1, q2)|2(1!) is obtained by

inserting Ĵ
(0)

(see Eqs. (14) and (33)) and Ĵ
(1)

(see Eqs. (35)–(37)) in the right-hand side
of Eq. (54), and by performing the sum over the colours and spins of the soft quark and
antiquark. We find the following result:

|Ĵ(q1, q2)|2(1!) = −
1

2
TR

∑

i,j ∈H
i "= j

[
T i · T j w[S]

ij (q1, q2) + D̃i · T j w[A]
ij (q1, q2)

]

−TR

∑

i,j,k∈H
dist.{i,j,k}

T a
i T b

j T
c
k

[
fabc F [S]

ijk(q1, q2) + dabc
(
F [A]
ijk (q1, q2)−

1

2
F [A]
iji (q1, q2)−

1

2
F [A]
ijj (q1, q2)

)]
,

(61)

which is valid to arbitrary orders in the ε expansion. The ε dependence is embodied in
the c-number functions w[S], w[A], F [S] and F [A]. The dependence on the colours of the
hard partons is due to the colour charges T a

i and D̃a
i . The structure of Eq. (61) involves

contributions with both two hard-parton correlations and three hard-parton correlations. In
the case of three hard-parton correlations, the subscript ‘dist.{i, j, k}’ in

∑
i,j,k∈H

dist.{i,j,k}
denotes

the sum over distinct hard-parton indices i, j and k (i.e., i %= j, j %= k, k %= i).

The functions w[S]
ij , w

[A]
ij , F [S]

ijk and F [A]
ijk in Eq. (61) depend on the momenta of the hard

partons and on the momenta q1 and q2 of the soft quark and antiquark. The superscript
[S] in w[S]

ij and F [S]
ijk denotes the fact that these functions are symmetric under the exchange

q1 ↔ q2 of the momenta of the soft quark and antiquark:

w[S]
ij (q1, q2) = w[S]

ij (q2, q1) , F [S]
ijk(q1, q2) = F [S]

ijk(q2, q1) . (62)

Analogously, the superscript [A] in w[A]
ij and F [A]

ijk highlights the fact that these functions
are antisymmetric under the exchange q1 ↔ q2:

w[A]
ij (q1, q2) = −w[A]

ij (q2, q1) , F [A]
ijk (q1, q2) = −F [A]

ijk (q2, q1) . (63)

Therefore, w[A] and F [A] produce a quark–antiquark charge asymmetry in the one-loop
squared current. We note that the charge-asymmetry contributions appear in Eq. (61)
with the associated colour factors D̃i ·T j = dabcT a

i T b
i T

c
j and dabcT a

i T b
j T

c
k that have a linear

dependence on the colour tensor dabc (which is odd under charge conjugation). The charge-
asymmetry contributions to |J(q1, q2)|2 have a quantum origin and are characteristic of the
radiation of soft quark–antiquark pairs (the squared current |J(q1, . . . , qm)|2 for radiation of
m soft gluons is instead fully symmetric with respect to the soft-gluon momenta q1, . . . , qm).
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A few comments about the charge-asymmetry

We present the explicit result of the ε expansion of the functions w[S], w[A], F [S] and F [A]

up to O(ε0). More precisely, we limit ourselves to presenting the expressions of these func-
tions in the kinematical region where q01 > 0 and q02 > 0 (i.e., the soft quark and antiquark
are produced in the physical final state), which is the most relevant physical region‡. In
this region, the squared current depends (see Eqs. (36) and (37)) on the logarithms "i1±"j2
(which are purely real, independently of whether the momenta pi and pj are physically

incoming or outgoing) and on the real part LijR and discontinuity Θ(in)
ij of the logarithm

Lij. We have (see Eqs. (27) and (28))

"i1+"j2 = ln
(pi · q1)(pj · q2)
(pi · q12)(pj · q12)

, "i1−"j2 = ln
(pi · q1)(pj · q12)
(pi · q12)(pj · q2)

, Lij = LijR+2iπ Θ(in)
ij , (64)

where

LijR = ln
(pi · q12)(pj · q12)
(pi · pj)(q1 · q2)

= ln

(
1 +

q212⊥ij

q212

)
, Θ(in)

ij ≡ Θ(−p0i )Θ(−p0j) . (65)

The function w[S]
ij has the following expression in the region where q01 > 0 and q02 > 0:

w[S]
ij (q1, q2) =

{
wij(q1, q2)

[
−CF

( 2

ε2
+

3

ε
− π2 + 8 + (δR − 1)

)
−

4

3
TR Nf

(1
ε
+

5

3

)

+
1

3
CA

(11
ε

+
76

3
− π2 + (δR − 1)

)
+

1

2
CA

( 2

ε
(LijR + "i1 + "j2)− L2

ijR − ("i1 − "j2)
2
)]

−CA

[
Iii(q1, q2)− Ijj(q1, q2)

] q212
q212⊥ij

LijR

(
"i1 − "j2

)
+O(ε)

}
+ (q1 ↔ q2) . (66)

This function (which is symmetric under the exchange i ↔ j) controls the size of the
one-loop radiative corrections to the tree-level colour dipole correlations T i · T j.

We note that w[S]
ij also depends on colour coefficients, while F [S]

ijk , w
[A]
ij and F [A]

ijk only
depends on parton momenta.

The function F [S]
ijk is associated with non-abelian three-particle correlations with colour

charge factor fabcT a
i T b

j T
c
k . In the region where q01 > 0 and q02 > 0, we have the explicit

result

F [S]
ijk(q2, q1) = 2π Iki(q1, q2)

{
LijR + "i1 + "j2

+ Θ(in)
ij

[
2
(1
ε
− LijR

)
− 2

q212
q212⊥ij

("i1 − "j2)
]
+O(ε)

}
+ (q1 ↔ q2) . (67)

The charge-asymmetry contributions to Eq. (61) can be expressed through the function

F [A]
ijk . In the region where q01 > 0 and q02 > 0 we have

F [A]
ijk (q2, q1) =

{
Iki(q1, q2)

[
−
2

ε
("i1 + "j2) + ("i1 − "j2)

2 + 2
q212

q212⊥ij

LijR

(
"i1 − "j2

)]

+ O(ε)
}
− (q1 ↔ q2) . (68)

‡Expressions in other kinematical regions can be obtained by using the fully general one-loop current
in Eqs. (36) and (37).
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of Eq. (37) we see that the one-loop interaction at O(ε0) also produces a different type of
kinematical dependence as given by the factor j(1, 2) · pi q212/(pi · q12 q212⊥ij). This rational
factor has no collinear singularity at q212 → 0, but it potentially leads to a singularity in
the limit q212⊥ij → 0. This is a ‘transverse-momentum singularity’, since the kinematical

variable
√

q212⊥ij in Eq. (38) is the transverse component of the momentum q12 of the soft

qq̄ pair with respect to the momenta pi and pj of the colour-correlated hard partons in a
reference frame in which pi and pj are back-to-back.

The transverse-momentum singularity in the current is partly screened by the logarith-
mic function Lij, and we have

1

q212⊥ij

Lij "
q12⊥ij→0

1

q212⊥ij

[
2πi sign(q212) Θ

(
−pi · q12
pi · pj

)
Θ

(
−pj · q12
pi · pj

)
+O

(
q212⊥ij

q212

)]
,

(41)
which shows that the current has a one-loop singularity of absorptive origin. Considering
the physically most relevant kinematical region in which the soft quark and antiquark are
produced in the final state (q01 > 0, q02 > 0), Eq. (41) becomes

1

q212⊥ij

Lij "
q12⊥ij→0

1

q212⊥ij

2πi Θ(−p0i ) Θ(−p0j) , (q01 > 0, q02 > 0) , (42)

which shows that the transverse-momentum singularity is present in the scattering ampli-
tude of a physical process in which the final-state soft qq̄ pair is produced by the collision
of the hard partons i and j in the initial state. We remark that this singularity has a pure
quantum mechanics (loop) origin, and it occurs in the limit q212⊥ij → 0 even if the trans-
verse momenta q1⊥ij and q2⊥ij (q2k⊥ij = 2pi · qk pj · qk/pi · pj, k = 1, 2) of the soft quark and
antiquark are separately large (i.e., they are separately non-vanishing) and q212 is large. We
also note that, setting q12⊥ij = 0 at fixed non-vanishing values of q212 and q1⊥ij (or q2⊥ij),
we have

(
#i1 − #j2

)
= −

(
#j1 − #i2

)
. Therefore, in the limit q212⊥ij → 0 the factor #i1 − #j2 is

(approximately) antisymmetric with respect to the exchange pi ↔ pj and this implies that
we can perform the following replacement in Eq. (37):

tatb T a
i T b

j

Lij

q212⊥ij

(
#i1−#j2

)
−→

q12⊥ij→0
−fabctc T a

i T b
j

π Θ(−p0i )Θ(−p0j)

q212⊥ij

(
#i1−#j2

)
, (q01, q

0
2 > 0) ,

(43)
and it follows that, in the kinematical region with q01 > 0 and q02 > 0, the transverse-
momentum singularity has a purely non-abelian character (see the factor fabc in the right-
hand side of the relation (43)).

As we have just discussed, the singularity of the soft-qq̄ current in the limit q12⊥ij →
0 originates from one-loop interactions of the two soft partons. Therefore, we expect
the presence of the transverse-momentum singularity also in the case of double soft-gluon
emission at one-loop level. The one-loop double-gluon current computed in Ref. [40] indeed
shows singular terms at q12⊥ij → 0.

We have also computed the soft-qq̄ one-loop current J (1) by explicitly evaluating its
dependence on the RS parameter δR to all orders in ε. Using the notation of Eq. (30) and
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We present the explicit result of the ε expansion of the functions w[S], w[A], F [S] and F [A]

up to O(ε0). More precisely, we limit ourselves to presenting the expressions of these func-
tions in the kinematical region where q01 > 0 and q02 > 0 (i.e., the soft quark and antiquark
are produced in the physical final state), which is the most relevant physical region‡. In
this region, the squared current depends (see Eqs. (36) and (37)) on the logarithms "i1±"j2
(which are purely real, independently of whether the momenta pi and pj are physically

incoming or outgoing) and on the real part LijR and discontinuity Θ(in)
ij of the logarithm

Lij. We have (see Eqs. (27) and (28))

"i1+"j2 = ln
(pi · q1)(pj · q2)
(pi · q12)(pj · q12)

, "i1−"j2 = ln
(pi · q1)(pj · q12)
(pi · q12)(pj · q2)

, Lij = LijR+2iπ Θ(in)
ij , (64)

where
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1 +
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)
, Θ(in)

ij ≡ Θ(−p0i )Θ(−p0j) . (65)

The function w[S]
ij has the following expression in the region where q01 > 0 and q02 > 0:

w[S]
ij (q1, q2) =

{
wij(q1, q2)

[
−CF

( 2

ε2
+

3

ε
− π2 + 8 + (δR − 1)
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−
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] q212
q212⊥ij

LijR

(
"i1 − "j2

)
+O(ε)

}
+ (q1 ↔ q2) . (66)

This function (which is symmetric under the exchange i ↔ j) controls the size of the
one-loop radiative corrections to the tree-level colour dipole correlations T i · T j.

We note that w[S]
ij also depends on colour coefficients, while F [S]

ijk , w
[A]
ij and F [A]

ijk only
depends on parton momenta.

The function F [S]
ijk is associated with non-abelian three-particle correlations with colour

charge factor fabcT a
i T b

j T
c
k . In the region where q01 > 0 and q02 > 0, we have the explicit

result

F [S]
ijk(q2, q1) = 2π Iki(q1, q2)

{
LijR + "i1 + "j2

+ Θ(in)
ij

[
2
(1
ε
− LijR

)
− 2

q212
q212⊥ij

("i1 − "j2)
]
+O(ε)

}
+ (q1 ↔ q2) . (67)

The charge-asymmetry contributions to Eq. (61) can be expressed through the function

F [A]
ijk . In the region where q01 > 0 and q02 > 0 we have

F [A]
ijk (q2, q1) =

{
Iki(q1, q2)

[
−
2

ε
("i1 + "j2) + ("i1 − "j2)

2 + 2
q212

q212⊥ij

LijR

(
"i1 − "j2

)]

+ O(ε)
}
− (q1 ↔ q2) . (68)

‡Expressions in other kinematical regions can be obtained by using the fully general one-loop current
in Eqs. (36) and (37).
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of Eq. (37) we see that the one-loop interaction at O(ε0) also produces a different type of
kinematical dependence as given by the factor j(1, 2) · pi q212/(pi · q12 q212⊥ij). This rational
factor has no collinear singularity at q212 → 0, but it potentially leads to a singularity in
the limit q212⊥ij → 0. This is a ‘transverse-momentum singularity’, since the kinematical

variable
√

q212⊥ij in Eq. (38) is the transverse component of the momentum q12 of the soft

qq̄ pair with respect to the momenta pi and pj of the colour-correlated hard partons in a
reference frame in which pi and pj are back-to-back.

The transverse-momentum singularity in the current is partly screened by the logarith-
mic function Lij, and we have

1

q212⊥ij

Lij "
q12⊥ij→0

1

q212⊥ij

[
2πi sign(q212) Θ

(
−pi · q12
pi · pj

)
Θ

(
−pj · q12
pi · pj

)
+O

(
q212⊥ij

q212

)]
,

(41)
which shows that the current has a one-loop singularity of absorptive origin. Considering
the physically most relevant kinematical region in which the soft quark and antiquark are
produced in the final state (q01 > 0, q02 > 0), Eq. (41) becomes

1

q212⊥ij

Lij "
q12⊥ij→0

1

q212⊥ij

2πi Θ(−p0i ) Θ(−p0j) , (q01 > 0, q02 > 0) , (42)

which shows that the transverse-momentum singularity is present in the scattering ampli-
tude of a physical process in which the final-state soft qq̄ pair is produced by the collision
of the hard partons i and j in the initial state. We remark that this singularity has a pure
quantum mechanics (loop) origin, and it occurs in the limit q212⊥ij → 0 even if the trans-
verse momenta q1⊥ij and q2⊥ij (q2k⊥ij = 2pi · qk pj · qk/pi · pj, k = 1, 2) of the soft quark and
antiquark are separately large (i.e., they are separately non-vanishing) and q212 is large. We
also note that, setting q12⊥ij = 0 at fixed non-vanishing values of q212 and q1⊥ij (or q2⊥ij),
we have

(
#i1 − #j2

)
= −

(
#j1 − #i2

)
. Therefore, in the limit q212⊥ij → 0 the factor #i1 − #j2 is

(approximately) antisymmetric with respect to the exchange pi ↔ pj and this implies that
we can perform the following replacement in Eq. (37):

tatb T a
i T b

j

Lij

q212⊥ij

(
#i1−#j2

)
−→

q12⊥ij→0
−fabctc T a

i T b
j

π Θ(−p0i )Θ(−p0j)

q212⊥ij

(
#i1−#j2

)
, (q01, q

0
2 > 0) ,

(43)
and it follows that, in the kinematical region with q01 > 0 and q02 > 0, the transverse-
momentum singularity has a purely non-abelian character (see the factor fabc in the right-
hand side of the relation (43)).

As we have just discussed, the singularity of the soft-qq̄ current in the limit q12⊥ij →
0 originates from one-loop interactions of the two soft partons. Therefore, we expect
the presence of the transverse-momentum singularity also in the case of double soft-gluon
emission at one-loop level. The one-loop double-gluon current computed in Ref. [40] indeed
shows singular terms at q12⊥ij → 0.

We have also computed the soft-qq̄ one-loop current J (1) by explicitly evaluating its
dependence on the RS parameter δR to all orders in ε. Using the notation of Eq. (30) and
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We present the explicit result of the ε expansion of the functions w[S], w[A], F [S] and F [A]

up to O(ε0). More precisely, we limit ourselves to presenting the expressions of these func-
tions in the kinematical region where q01 > 0 and q02 > 0 (i.e., the soft quark and antiquark
are produced in the physical final state), which is the most relevant physical region‡. In
this region, the squared current depends (see Eqs. (36) and (37)) on the logarithms "i1±"j2
(which are purely real, independently of whether the momenta pi and pj are physically

incoming or outgoing) and on the real part LijR and discontinuity Θ(in)
ij of the logarithm

Lij. We have (see Eqs. (27) and (28))

"i1+"j2 = ln
(pi · q1)(pj · q2)
(pi · q12)(pj · q12)

, "i1−"j2 = ln
(pi · q1)(pj · q12)
(pi · q12)(pj · q2)

, Lij = LijR+2iπ Θ(in)
ij , (64)

where

LijR = ln
(pi · q12)(pj · q12)
(pi · pj)(q1 · q2)

= ln

(
1 +

q212⊥ij

q212

)
, Θ(in)

ij ≡ Θ(−p0i )Θ(−p0j) . (65)

The function w[S]
ij has the following expression in the region where q01 > 0 and q02 > 0:

w[S]
ij (q1, q2) =

{
wij(q1, q2)

[
−CF

( 2

ε2
+

3

ε
− π2 + 8 + (δR − 1)

)
−

4

3
TR Nf

(1
ε
+

5

3

)

+
1

3
CA

(11
ε

+
76

3
− π2 + (δR − 1)

)
+

1

2
CA

( 2

ε
(LijR + "i1 + "j2)− L2

ijR − ("i1 − "j2)
2
)]

−CA

[
Iii(q1, q2)− Ijj(q1, q2)

] q212
q212⊥ij

LijR

(
"i1 − "j2

)
+O(ε)

}
+ (q1 ↔ q2) . (66)

This function (which is symmetric under the exchange i ↔ j) controls the size of the
one-loop radiative corrections to the tree-level colour dipole correlations T i · T j.

We note that w[S]
ij also depends on colour coefficients, while F [S]

ijk , w
[A]
ij and F [A]

ijk only
depends on parton momenta.

The function F [S]
ijk is associated with non-abelian three-particle correlations with colour

charge factor fabcT a
i T b

j T
c
k . In the region where q01 > 0 and q02 > 0, we have the explicit

result

F [S]
ijk(q2, q1) = 2π Iki(q1, q2)

{
LijR + "i1 + "j2

+ Θ(in)
ij

[
2
(1
ε
− LijR

)
− 2

q212
q212⊥ij

("i1 − "j2)
]
+O(ε)

}
+ (q1 ↔ q2) . (67)

The charge-asymmetry contributions to Eq. (61) can be expressed through the function

F [A]
ijk . In the region where q01 > 0 and q02 > 0 we have

F [A]
ijk (q2, q1) =

{
Iki(q1, q2)

[
−
2

ε
("i1 + "j2) + ("i1 − "j2)

2 + 2
q212

q212⊥ij

LijR

(
"i1 − "j2

)]

+ O(ε)
}
− (q1 ↔ q2) . (68)

‡Expressions in other kinematical regions can be obtained by using the fully general one-loop current
in Eqs. (36) and (37).
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of Eq. (37) we see that the one-loop interaction at O(ε0) also produces a different type of
kinematical dependence as given by the factor j(1, 2) · pi q212/(pi · q12 q212⊥ij). This rational
factor has no collinear singularity at q212 → 0, but it potentially leads to a singularity in
the limit q212⊥ij → 0. This is a ‘transverse-momentum singularity’, since the kinematical

variable
√

q212⊥ij in Eq. (38) is the transverse component of the momentum q12 of the soft

qq̄ pair with respect to the momenta pi and pj of the colour-correlated hard partons in a
reference frame in which pi and pj are back-to-back.

The transverse-momentum singularity in the current is partly screened by the logarith-
mic function Lij, and we have

1

q212⊥ij

Lij "
q12⊥ij→0

1

q212⊥ij

[
2πi sign(q212) Θ

(
−pi · q12
pi · pj

)
Θ

(
−pj · q12
pi · pj

)
+O

(
q212⊥ij

q212

)]
,

(41)
which shows that the current has a one-loop singularity of absorptive origin. Considering
the physically most relevant kinematical region in which the soft quark and antiquark are
produced in the final state (q01 > 0, q02 > 0), Eq. (41) becomes

1

q212⊥ij

Lij "
q12⊥ij→0

1

q212⊥ij

2πi Θ(−p0i ) Θ(−p0j) , (q01 > 0, q02 > 0) , (42)

which shows that the transverse-momentum singularity is present in the scattering ampli-
tude of a physical process in which the final-state soft qq̄ pair is produced by the collision
of the hard partons i and j in the initial state. We remark that this singularity has a pure
quantum mechanics (loop) origin, and it occurs in the limit q212⊥ij → 0 even if the trans-
verse momenta q1⊥ij and q2⊥ij (q2k⊥ij = 2pi · qk pj · qk/pi · pj, k = 1, 2) of the soft quark and
antiquark are separately large (i.e., they are separately non-vanishing) and q212 is large. We
also note that, setting q12⊥ij = 0 at fixed non-vanishing values of q212 and q1⊥ij (or q2⊥ij),
we have

(
#i1 − #j2

)
= −

(
#j1 − #i2

)
. Therefore, in the limit q212⊥ij → 0 the factor #i1 − #j2 is

(approximately) antisymmetric with respect to the exchange pi ↔ pj and this implies that
we can perform the following replacement in Eq. (37):

tatb T a
i T b

j

Lij

q212⊥ij

(
#i1−#j2

)
−→

q12⊥ij→0
−fabctc T a

i T b
j

π Θ(−p0i )Θ(−p0j)

q212⊥ij

(
#i1−#j2

)
, (q01, q

0
2 > 0) ,

(43)
and it follows that, in the kinematical region with q01 > 0 and q02 > 0, the transverse-
momentum singularity has a purely non-abelian character (see the factor fabc in the right-
hand side of the relation (43)).

As we have just discussed, the singularity of the soft-qq̄ current in the limit q12⊥ij →
0 originates from one-loop interactions of the two soft partons. Therefore, we expect
the presence of the transverse-momentum singularity also in the case of double soft-gluon
emission at one-loop level. The one-loop double-gluon current computed in Ref. [40] indeed
shows singular terms at q12⊥ij → 0.

We have also computed the soft-qq̄ one-loop current J (1) by explicitly evaluating its
dependence on the RS parameter δR to all orders in ε. Using the notation of Eq. (30) and

19

At arbitrary orders in the ε expansion, the two-particle correlation function w[A]
ij is directly

related to F [A]
ijk as follows

w[A]
ij (q1, q2) =

[
F [A]
iji (q1, q2) + F [A]

jii (q1, q2)
]
−
(
i ↔ j

)
. (69)

In contrast to w[S]
ij , we note that w[A]

ij is antisymmetric under the exchange i ↔ j of the

hard-parton momenta. In particular, this antisymmetry of w[A]
ij implies that in the sum

over i and j of Eq. (61) we can replace D̃i · T j by its antisymmetric component, namely,

D̃i · T j →
(
D̃i · T j − D̃j · T i

)
/2. Inserting Eq. (68) in Eq. (69), w[A]

ij has the following
expression:

w[A]
ij (q1, q2) =

{
wij(q1, q2)

[
−
2

ε
("i1 + "j2) + ("i1 − "j2)

2
]

(70)

+
[
Iii(q1, q2)− Ijj(q1, q2)

] 2 q212
q212⊥ij

LijR

(
"i1 − "j2

)
+O(ε)

}
− (q1 ↔ q2) .

By inspection of Eqs. (66)–(70) we note that only the function F [S]
ijk exhibits a discon-

tinuity with respect to the momenta of the hard partons (see Θ(in)
ij in Eqs. (65) and (67)).

The discontinuity contributes in the kinematical region where two hard-parton momenta i
and j have negative time component (p0i < 0 and p0j < 0), namely, the partons i and j col-
lide in the physical initial state. This discontinuity term of the squared current in Eq. (61)
originates as interference between a one-loop absorptive (imaginary) contribution and the
antihermitian colour factor ifabc T a

i T b
j T

c
k (we recall that i, j and k refer to three distinct

partons). Actually, the entire term proportional to fabc T a
i T b

j T
c
k in Eq. (61) has this ori-

gin§ as absorptive/colour interference (the absorptive term being related to the kinematical
region where q01 > 0 and q02 > 0).

As discussed in Sect. 4 (see Eqs. (41)–(43) and accompanying comments) the one-
loop current of soft-qq̄ emission has a transverse-momentum singularity at q12⊥ij → 0.
This singularity has a non-abelian character and an absorptive origin. At the level of the
one-loop squared current, this singularity does appear in the function F [S]

ijk (see the term

(q212⊥ij)
−1 Θ(in)

ij in Eq. (67)), while it is absent in all the other contributions (in Eqs. (66),
(68) and (70) we see the term (q212⊥ij)

−1 LijR → (q212)
−1, which is not singular at q12⊥ij → 0).

Therefore, the transverse-momentum singularity at q12⊥ij → 0 contributes through colour
correlation fabc T a

i T b
j T

c
k to one-loop squared amplitudes for the class of processes with

initial-state colliding partons i and j and two or more final-state hard partons (as recalled
below in Eq. (71), the colour correlation vanishes if there is only one final-state hard parton).
This class of processes includes, for instance, dijet (or heavy-quark pair) production in
hadron–hadron collisions and the transverse-momentum singularity is directly related to
the transverse momentum of the dijet system (heavy-quark pair). Interestingly, we note
that this is the same class of processes that is sensistive to effects due to the violation
of strict collinear factorization [26]. However, we remark on the fact that the transverse-
momentum singularity at q12⊥ij → 0 and violation of strict collinear factorization are

§The one-loop squared current for single soft-gluon radiation [23] has three-particle correlations of the
type fabc T a

i T b
j T

c
k , which have an analogous origin as absorptive/colour interference.
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of Eq. (37) we see that the one-loop interaction at O(ε0) also produces a different type of
kinematical dependence as given by the factor j(1, 2) · pi q212/(pi · q12 q212⊥ij). This rational
factor has no collinear singularity at q212 → 0, but it potentially leads to a singularity in
the limit q212⊥ij → 0. This is a ‘transverse-momentum singularity’, since the kinematical

variable
√

q212⊥ij in Eq. (38) is the transverse component of the momentum q12 of the soft

qq̄ pair with respect to the momenta pi and pj of the colour-correlated hard partons in a
reference frame in which pi and pj are back-to-back.

The transverse-momentum singularity in the current is partly screened by the logarith-
mic function Lij, and we have

1

q212⊥ij

Lij "
q12⊥ij→0

1

q212⊥ij

[
2πi sign(q212) Θ

(
−pi · q12
pi · pj

)
Θ

(
−pj · q12
pi · pj

)
+O

(
q212⊥ij

q212

)]
,

(41)
which shows that the current has a one-loop singularity of absorptive origin. Considering
the physically most relevant kinematical region in which the soft quark and antiquark are
produced in the final state (q01 > 0, q02 > 0), Eq. (41) becomes

1

q212⊥ij

Lij "
q12⊥ij→0

1

q212⊥ij

2πi Θ(−p0i ) Θ(−p0j) , (q01 > 0, q02 > 0) , (42)

which shows that the transverse-momentum singularity is present in the scattering ampli-
tude of a physical process in which the final-state soft qq̄ pair is produced by the collision
of the hard partons i and j in the initial state. We remark that this singularity has a pure
quantum mechanics (loop) origin, and it occurs in the limit q212⊥ij → 0 even if the trans-
verse momenta q1⊥ij and q2⊥ij (q2k⊥ij = 2pi · qk pj · qk/pi · pj, k = 1, 2) of the soft quark and
antiquark are separately large (i.e., they are separately non-vanishing) and q212 is large. We
also note that, setting q12⊥ij = 0 at fixed non-vanishing values of q212 and q1⊥ij (or q2⊥ij),
we have

(
#i1 − #j2

)
= −

(
#j1 − #i2

)
. Therefore, in the limit q212⊥ij → 0 the factor #i1 − #j2 is

(approximately) antisymmetric with respect to the exchange pi ↔ pj and this implies that
we can perform the following replacement in Eq. (37):

tatb T a
i T b

j

Lij

q212⊥ij

(
#i1−#j2

)
−→

q12⊥ij→0
−fabctc T a

i T b
j

π Θ(−p0i )Θ(−p0j)

q212⊥ij

(
#i1−#j2

)
, (q01, q

0
2 > 0) ,

(43)
and it follows that, in the kinematical region with q01 > 0 and q02 > 0, the transverse-
momentum singularity has a purely non-abelian character (see the factor fabc in the right-
hand side of the relation (43)).

As we have just discussed, the singularity of the soft-qq̄ current in the limit q12⊥ij →
0 originates from one-loop interactions of the two soft partons. Therefore, we expect
the presence of the transverse-momentum singularity also in the case of double soft-gluon
emission at one-loop level. The one-loop double-gluon current computed in Ref. [40] indeed
shows singular terms at q12⊥ij → 0.

We have also computed the soft-qq̄ one-loop current J (1) by explicitly evaluating its
dependence on the RS parameter δR to all orders in ε. Using the notation of Eq. (30) and
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The charge-asymmetry 
contributions give non-vanishing 
effects to quantities in which the 
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either directly (bottom or charm 

quark) or indirectly (e.g., through its 
fragmentation function), in the final 

state
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• The one-loop squared current

where we have used

dabcddbc = dA δad , dA =
N2

c − 4

Nc

. (60)

Note that the tensor dabc is odd under charge conjugation. This fact is responsible for
the opposite overall sign between the d-charge D̃i and the colour charge T i of quarks
and antiquarks (see Eqs. (57) and (58)). Analogously, in the gluon case the d-charge
〈b|Da

i |c〉 in Eq. (59) is symmetric with respect to b ↔ c, while the colour charge 〈b|T a
i |c〉 is

antisymmetric with respect to b ↔ c.

The explicit expression of the one-loop squared current |Ĵ(q1, q2)|2(1!) is obtained by

inserting Ĵ
(0)

(see Eqs. (14) and (33)) and Ĵ
(1)

(see Eqs. (35)–(37)) in the right-hand side
of Eq. (54), and by performing the sum over the colours and spins of the soft quark and
antiquark. We find the following result:

|Ĵ(q1, q2)|2(1!) = −
1

2
TR

∑

i,j ∈H
i "= j

[
T i · T j w[S]

ij (q1, q2) + D̃i · T j w[A]
ij (q1, q2)

]

−TR

∑

i,j,k∈H
dist.{i,j,k}

T a
i T b

j T
c
k

[
fabc F [S]

ijk(q1, q2) + dabc
(
F [A]
ijk (q1, q2)−

1

2
F [A]
iji (q1, q2)−

1

2
F [A]
ijj (q1, q2)

)]
,

(61)

which is valid to arbitrary orders in the ε expansion. The ε dependence is embodied in
the c-number functions w[S], w[A], F [S] and F [A]. The dependence on the colours of the
hard partons is due to the colour charges T a

i and D̃a
i . The structure of Eq. (61) involves

contributions with both two hard-parton correlations and three hard-parton correlations. In
the case of three hard-parton correlations, the subscript ‘dist.{i, j, k}’ in

∑
i,j,k∈H

dist.{i,j,k}
denotes

the sum over distinct hard-parton indices i, j and k (i.e., i %= j, j %= k, k %= i).

The functions w[S]
ij , w

[A]
ij , F [S]

ijk and F [A]
ijk in Eq. (61) depend on the momenta of the hard

partons and on the momenta q1 and q2 of the soft quark and antiquark. The superscript
[S] in w[S]

ij and F [S]
ijk denotes the fact that these functions are symmetric under the exchange

q1 ↔ q2 of the momenta of the soft quark and antiquark:

w[S]
ij (q1, q2) = w[S]

ij (q2, q1) , F [S]
ijk(q1, q2) = F [S]

ijk(q2, q1) . (62)

Analogously, the superscript [A] in w[A]
ij and F [A]

ijk highlights the fact that these functions
are antisymmetric under the exchange q1 ↔ q2:

w[A]
ij (q1, q2) = −w[A]

ij (q2, q1) , F [A]
ijk (q1, q2) = −F [A]

ijk (q2, q1) . (63)

Therefore, w[A] and F [A] produce a quark–antiquark charge asymmetry in the one-loop
squared current. We note that the charge-asymmetry contributions appear in Eq. (61)
with the associated colour factors D̃i ·T j = dabcT a

i T b
i T

c
j and dabcT a

i T b
j T

c
k that have a linear

dependence on the colour tensor dabc (which is odd under charge conjugation). The charge-
asymmetry contributions to |J(q1, q2)|2 have a quantum origin and are characteristic of the
radiation of soft quark–antiquark pairs (the squared current |J(q1, . . . , qm)|2 for radiation of
m soft gluons is instead fully symmetric with respect to the soft-gluon momenta q1, . . . , qm).
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A few comments about the charge-asymmetry

We present the explicit result of the ε expansion of the functions w[S], w[A], F [S] and F [A]

up to O(ε0). More precisely, we limit ourselves to presenting the expressions of these func-
tions in the kinematical region where q01 > 0 and q02 > 0 (i.e., the soft quark and antiquark
are produced in the physical final state), which is the most relevant physical region‡. In
this region, the squared current depends (see Eqs. (36) and (37)) on the logarithms "i1±"j2
(which are purely real, independently of whether the momenta pi and pj are physically

incoming or outgoing) and on the real part LijR and discontinuity Θ(in)
ij of the logarithm

Lij. We have (see Eqs. (27) and (28))

"i1+"j2 = ln
(pi · q1)(pj · q2)
(pi · q12)(pj · q12)

, "i1−"j2 = ln
(pi · q1)(pj · q12)
(pi · q12)(pj · q2)

, Lij = LijR+2iπ Θ(in)
ij , (64)

where

LijR = ln
(pi · q12)(pj · q12)
(pi · pj)(q1 · q2)

= ln

(
1 +

q212⊥ij

q212

)
, Θ(in)

ij ≡ Θ(−p0i )Θ(−p0j) . (65)

The function w[S]
ij has the following expression in the region where q01 > 0 and q02 > 0:

w[S]
ij (q1, q2) =

{
wij(q1, q2)

[
−CF
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−CA
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Iii(q1, q2)− Ijj(q1, q2)

] q212
q212⊥ij

LijR

(
"i1 − "j2

)
+O(ε)

}
+ (q1 ↔ q2) . (66)

This function (which is symmetric under the exchange i ↔ j) controls the size of the
one-loop radiative corrections to the tree-level colour dipole correlations T i · T j.

We note that w[S]
ij also depends on colour coefficients, while F [S]

ijk , w
[A]
ij and F [A]

ijk only
depends on parton momenta.

The function F [S]
ijk is associated with non-abelian three-particle correlations with colour

charge factor fabcT a
i T b

j T
c
k . In the region where q01 > 0 and q02 > 0, we have the explicit

result

F [S]
ijk(q2, q1) = 2π Iki(q1, q2)

{
LijR + "i1 + "j2

+ Θ(in)
ij

[
2
(1
ε
− LijR

)
− 2

q212
q212⊥ij

("i1 − "j2)
]
+O(ε)

}
+ (q1 ↔ q2) . (67)

The charge-asymmetry contributions to Eq. (61) can be expressed through the function

F [A]
ijk . In the region where q01 > 0 and q02 > 0 we have

F [A]
ijk (q2, q1) =

{
Iki(q1, q2)

[
−
2

ε
("i1 + "j2) + ("i1 − "j2)

2 + 2
q212

q212⊥ij

LijR

(
"i1 − "j2

)]

+ O(ε)
}
− (q1 ↔ q2) . (68)

‡Expressions in other kinematical regions can be obtained by using the fully general one-loop current
in Eqs. (36) and (37).
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of Eq. (37) we see that the one-loop interaction at O(ε0) also produces a different type of
kinematical dependence as given by the factor j(1, 2) · pi q212/(pi · q12 q212⊥ij). This rational
factor has no collinear singularity at q212 → 0, but it potentially leads to a singularity in
the limit q212⊥ij → 0. This is a ‘transverse-momentum singularity’, since the kinematical

variable
√

q212⊥ij in Eq. (38) is the transverse component of the momentum q12 of the soft

qq̄ pair with respect to the momenta pi and pj of the colour-correlated hard partons in a
reference frame in which pi and pj are back-to-back.

The transverse-momentum singularity in the current is partly screened by the logarith-
mic function Lij, and we have

1

q212⊥ij

Lij "
q12⊥ij→0

1

q212⊥ij

[
2πi sign(q212) Θ

(
−pi · q12
pi · pj

)
Θ

(
−pj · q12
pi · pj

)
+O

(
q212⊥ij

q212

)]
,

(41)
which shows that the current has a one-loop singularity of absorptive origin. Considering
the physically most relevant kinematical region in which the soft quark and antiquark are
produced in the final state (q01 > 0, q02 > 0), Eq. (41) becomes

1

q212⊥ij

Lij "
q12⊥ij→0

1

q212⊥ij

2πi Θ(−p0i ) Θ(−p0j) , (q01 > 0, q02 > 0) , (42)

which shows that the transverse-momentum singularity is present in the scattering ampli-
tude of a physical process in which the final-state soft qq̄ pair is produced by the collision
of the hard partons i and j in the initial state. We remark that this singularity has a pure
quantum mechanics (loop) origin, and it occurs in the limit q212⊥ij → 0 even if the trans-
verse momenta q1⊥ij and q2⊥ij (q2k⊥ij = 2pi · qk pj · qk/pi · pj, k = 1, 2) of the soft quark and
antiquark are separately large (i.e., they are separately non-vanishing) and q212 is large. We
also note that, setting q12⊥ij = 0 at fixed non-vanishing values of q212 and q1⊥ij (or q2⊥ij),
we have

(
#i1 − #j2

)
= −

(
#j1 − #i2

)
. Therefore, in the limit q212⊥ij → 0 the factor #i1 − #j2 is

(approximately) antisymmetric with respect to the exchange pi ↔ pj and this implies that
we can perform the following replacement in Eq. (37):

tatb T a
i T b

j

Lij

q212⊥ij

(
#i1−#j2

)
−→

q12⊥ij→0
−fabctc T a

i T b
j

π Θ(−p0i )Θ(−p0j)

q212⊥ij

(
#i1−#j2

)
, (q01, q

0
2 > 0) ,

(43)
and it follows that, in the kinematical region with q01 > 0 and q02 > 0, the transverse-
momentum singularity has a purely non-abelian character (see the factor fabc in the right-
hand side of the relation (43)).

As we have just discussed, the singularity of the soft-qq̄ current in the limit q12⊥ij →
0 originates from one-loop interactions of the two soft partons. Therefore, we expect
the presence of the transverse-momentum singularity also in the case of double soft-gluon
emission at one-loop level. The one-loop double-gluon current computed in Ref. [40] indeed
shows singular terms at q12⊥ij → 0.

We have also computed the soft-qq̄ one-loop current J (1) by explicitly evaluating its
dependence on the RS parameter δR to all orders in ε. Using the notation of Eq. (30) and
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We present the explicit result of the ε expansion of the functions w[S], w[A], F [S] and F [A]

up to O(ε0). More precisely, we limit ourselves to presenting the expressions of these func-
tions in the kinematical region where q01 > 0 and q02 > 0 (i.e., the soft quark and antiquark
are produced in the physical final state), which is the most relevant physical region‡. In
this region, the squared current depends (see Eqs. (36) and (37)) on the logarithms "i1±"j2
(which are purely real, independently of whether the momenta pi and pj are physically

incoming or outgoing) and on the real part LijR and discontinuity Θ(in)
ij of the logarithm

Lij. We have (see Eqs. (27) and (28))

"i1+"j2 = ln
(pi · q1)(pj · q2)
(pi · q12)(pj · q12)

, "i1−"j2 = ln
(pi · q1)(pj · q12)
(pi · q12)(pj · q2)

, Lij = LijR+2iπ Θ(in)
ij , (64)

where

LijR = ln
(pi · q12)(pj · q12)
(pi · pj)(q1 · q2)

= ln

(
1 +

q212⊥ij

q212

)
, Θ(in)

ij ≡ Θ(−p0i )Θ(−p0j) . (65)

The function w[S]
ij has the following expression in the region where q01 > 0 and q02 > 0:

w[S]
ij (q1, q2) =

{
wij(q1, q2)

[
−CF
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ε2
+
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ε
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)
−
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3
TR Nf

(1
ε
+
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)

+
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3
CA

(11
ε

+
76

3
− π2 + (δR − 1)

)
+

1

2
CA

( 2

ε
(LijR + "i1 + "j2)− L2

ijR − ("i1 − "j2)
2
)]

−CA

[
Iii(q1, q2)− Ijj(q1, q2)

] q212
q212⊥ij

LijR

(
"i1 − "j2

)
+O(ε)

}
+ (q1 ↔ q2) . (66)

This function (which is symmetric under the exchange i ↔ j) controls the size of the
one-loop radiative corrections to the tree-level colour dipole correlations T i · T j.

We note that w[S]
ij also depends on colour coefficients, while F [S]

ijk , w
[A]
ij and F [A]

ijk only
depends on parton momenta.

The function F [S]
ijk is associated with non-abelian three-particle correlations with colour

charge factor fabcT a
i T b

j T
c
k . In the region where q01 > 0 and q02 > 0, we have the explicit

result

F [S]
ijk(q2, q1) = 2π Iki(q1, q2)

{
LijR + "i1 + "j2

+ Θ(in)
ij

[
2
(1
ε
− LijR

)
− 2

q212
q212⊥ij

("i1 − "j2)
]
+O(ε)

}
+ (q1 ↔ q2) . (67)

The charge-asymmetry contributions to Eq. (61) can be expressed through the function

F [A]
ijk . In the region where q01 > 0 and q02 > 0 we have

F [A]
ijk (q2, q1) =

{
Iki(q1, q2)

[
−
2

ε
("i1 + "j2) + ("i1 − "j2)

2 + 2
q212

q212⊥ij

LijR

(
"i1 − "j2

)]

+ O(ε)
}
− (q1 ↔ q2) . (68)

‡Expressions in other kinematical regions can be obtained by using the fully general one-loop current
in Eqs. (36) and (37).
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of Eq. (37) we see that the one-loop interaction at O(ε0) also produces a different type of
kinematical dependence as given by the factor j(1, 2) · pi q212/(pi · q12 q212⊥ij). This rational
factor has no collinear singularity at q212 → 0, but it potentially leads to a singularity in
the limit q212⊥ij → 0. This is a ‘transverse-momentum singularity’, since the kinematical

variable
√

q212⊥ij in Eq. (38) is the transverse component of the momentum q12 of the soft

qq̄ pair with respect to the momenta pi and pj of the colour-correlated hard partons in a
reference frame in which pi and pj are back-to-back.

The transverse-momentum singularity in the current is partly screened by the logarith-
mic function Lij, and we have

1

q212⊥ij

Lij "
q12⊥ij→0

1

q212⊥ij

[
2πi sign(q212) Θ

(
−pi · q12
pi · pj

)
Θ

(
−pj · q12
pi · pj

)
+O

(
q212⊥ij

q212

)]
,

(41)
which shows that the current has a one-loop singularity of absorptive origin. Considering
the physically most relevant kinematical region in which the soft quark and antiquark are
produced in the final state (q01 > 0, q02 > 0), Eq. (41) becomes

1

q212⊥ij

Lij "
q12⊥ij→0

1

q212⊥ij

2πi Θ(−p0i ) Θ(−p0j) , (q01 > 0, q02 > 0) , (42)

which shows that the transverse-momentum singularity is present in the scattering ampli-
tude of a physical process in which the final-state soft qq̄ pair is produced by the collision
of the hard partons i and j in the initial state. We remark that this singularity has a pure
quantum mechanics (loop) origin, and it occurs in the limit q212⊥ij → 0 even if the trans-
verse momenta q1⊥ij and q2⊥ij (q2k⊥ij = 2pi · qk pj · qk/pi · pj, k = 1, 2) of the soft quark and
antiquark are separately large (i.e., they are separately non-vanishing) and q212 is large. We
also note that, setting q12⊥ij = 0 at fixed non-vanishing values of q212 and q1⊥ij (or q2⊥ij),
we have

(
#i1 − #j2

)
= −

(
#j1 − #i2

)
. Therefore, in the limit q212⊥ij → 0 the factor #i1 − #j2 is

(approximately) antisymmetric with respect to the exchange pi ↔ pj and this implies that
we can perform the following replacement in Eq. (37):

tatb T a
i T b

j

Lij

q212⊥ij

(
#i1−#j2

)
−→

q12⊥ij→0
−fabctc T a

i T b
j

π Θ(−p0i )Θ(−p0j)

q212⊥ij

(
#i1−#j2

)
, (q01, q

0
2 > 0) ,

(43)
and it follows that, in the kinematical region with q01 > 0 and q02 > 0, the transverse-
momentum singularity has a purely non-abelian character (see the factor fabc in the right-
hand side of the relation (43)).

As we have just discussed, the singularity of the soft-qq̄ current in the limit q12⊥ij →
0 originates from one-loop interactions of the two soft partons. Therefore, we expect
the presence of the transverse-momentum singularity also in the case of double soft-gluon
emission at one-loop level. The one-loop double-gluon current computed in Ref. [40] indeed
shows singular terms at q12⊥ij → 0.

We have also computed the soft-qq̄ one-loop current J (1) by explicitly evaluating its
dependence on the RS parameter δR to all orders in ε. Using the notation of Eq. (30) and
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We present the explicit result of the ε expansion of the functions w[S], w[A], F [S] and F [A]

up to O(ε0). More precisely, we limit ourselves to presenting the expressions of these func-
tions in the kinematical region where q01 > 0 and q02 > 0 (i.e., the soft quark and antiquark
are produced in the physical final state), which is the most relevant physical region‡. In
this region, the squared current depends (see Eqs. (36) and (37)) on the logarithms "i1±"j2
(which are purely real, independently of whether the momenta pi and pj are physically

incoming or outgoing) and on the real part LijR and discontinuity Θ(in)
ij of the logarithm

Lij. We have (see Eqs. (27) and (28))

"i1+"j2 = ln
(pi · q1)(pj · q2)
(pi · q12)(pj · q12)

, "i1−"j2 = ln
(pi · q1)(pj · q12)
(pi · q12)(pj · q2)

, Lij = LijR+2iπ Θ(in)
ij , (64)

where

LijR = ln
(pi · q12)(pj · q12)
(pi · pj)(q1 · q2)

= ln

(
1 +

q212⊥ij

q212

)
, Θ(in)

ij ≡ Θ(−p0i )Θ(−p0j) . (65)

The function w[S]
ij has the following expression in the region where q01 > 0 and q02 > 0:

w[S]
ij (q1, q2) =

{
wij(q1, q2)

[
−CF

( 2

ε2
+

3

ε
− π2 + 8 + (δR − 1)

)
−

4

3
TR Nf

(1
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+
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)

+
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(11
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+
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3
− π2 + (δR − 1)

)
+

1

2
CA

( 2

ε
(LijR + "i1 + "j2)− L2

ijR − ("i1 − "j2)
2
)]

−CA

[
Iii(q1, q2)− Ijj(q1, q2)

] q212
q212⊥ij

LijR

(
"i1 − "j2

)
+O(ε)

}
+ (q1 ↔ q2) . (66)

This function (which is symmetric under the exchange i ↔ j) controls the size of the
one-loop radiative corrections to the tree-level colour dipole correlations T i · T j.

We note that w[S]
ij also depends on colour coefficients, while F [S]

ijk , w
[A]
ij and F [A]

ijk only
depends on parton momenta.

The function F [S]
ijk is associated with non-abelian three-particle correlations with colour

charge factor fabcT a
i T b

j T
c
k . In the region where q01 > 0 and q02 > 0, we have the explicit

result

F [S]
ijk(q2, q1) = 2π Iki(q1, q2)

{
LijR + "i1 + "j2

+ Θ(in)
ij

[
2
(1
ε
− LijR

)
− 2

q212
q212⊥ij

("i1 − "j2)
]
+O(ε)

}
+ (q1 ↔ q2) . (67)

The charge-asymmetry contributions to Eq. (61) can be expressed through the function

F [A]
ijk . In the region where q01 > 0 and q02 > 0 we have

F [A]
ijk (q2, q1) =

{
Iki(q1, q2)

[
−
2

ε
("i1 + "j2) + ("i1 − "j2)

2 + 2
q212

q212⊥ij

LijR

(
"i1 − "j2

)]

+ O(ε)
}
− (q1 ↔ q2) . (68)

‡Expressions in other kinematical regions can be obtained by using the fully general one-loop current
in Eqs. (36) and (37).
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of Eq. (37) we see that the one-loop interaction at O(ε0) also produces a different type of
kinematical dependence as given by the factor j(1, 2) · pi q212/(pi · q12 q212⊥ij). This rational
factor has no collinear singularity at q212 → 0, but it potentially leads to a singularity in
the limit q212⊥ij → 0. This is a ‘transverse-momentum singularity’, since the kinematical

variable
√

q212⊥ij in Eq. (38) is the transverse component of the momentum q12 of the soft

qq̄ pair with respect to the momenta pi and pj of the colour-correlated hard partons in a
reference frame in which pi and pj are back-to-back.

The transverse-momentum singularity in the current is partly screened by the logarith-
mic function Lij, and we have

1

q212⊥ij

Lij "
q12⊥ij→0

1

q212⊥ij

[
2πi sign(q212) Θ

(
−pi · q12
pi · pj

)
Θ

(
−pj · q12
pi · pj

)
+O

(
q212⊥ij

q212

)]
,

(41)
which shows that the current has a one-loop singularity of absorptive origin. Considering
the physically most relevant kinematical region in which the soft quark and antiquark are
produced in the final state (q01 > 0, q02 > 0), Eq. (41) becomes

1

q212⊥ij

Lij "
q12⊥ij→0

1

q212⊥ij

2πi Θ(−p0i ) Θ(−p0j) , (q01 > 0, q02 > 0) , (42)

which shows that the transverse-momentum singularity is present in the scattering ampli-
tude of a physical process in which the final-state soft qq̄ pair is produced by the collision
of the hard partons i and j in the initial state. We remark that this singularity has a pure
quantum mechanics (loop) origin, and it occurs in the limit q212⊥ij → 0 even if the trans-
verse momenta q1⊥ij and q2⊥ij (q2k⊥ij = 2pi · qk pj · qk/pi · pj, k = 1, 2) of the soft quark and
antiquark are separately large (i.e., they are separately non-vanishing) and q212 is large. We
also note that, setting q12⊥ij = 0 at fixed non-vanishing values of q212 and q1⊥ij (or q2⊥ij),
we have

(
#i1 − #j2

)
= −

(
#j1 − #i2

)
. Therefore, in the limit q212⊥ij → 0 the factor #i1 − #j2 is

(approximately) antisymmetric with respect to the exchange pi ↔ pj and this implies that
we can perform the following replacement in Eq. (37):

tatb T a
i T b

j

Lij

q212⊥ij

(
#i1−#j2

)
−→

q12⊥ij→0
−fabctc T a

i T b
j

π Θ(−p0i )Θ(−p0j)

q212⊥ij

(
#i1−#j2

)
, (q01, q

0
2 > 0) ,

(43)
and it follows that, in the kinematical region with q01 > 0 and q02 > 0, the transverse-
momentum singularity has a purely non-abelian character (see the factor fabc in the right-
hand side of the relation (43)).

As we have just discussed, the singularity of the soft-qq̄ current in the limit q12⊥ij →
0 originates from one-loop interactions of the two soft partons. Therefore, we expect
the presence of the transverse-momentum singularity also in the case of double soft-gluon
emission at one-loop level. The one-loop double-gluon current computed in Ref. [40] indeed
shows singular terms at q12⊥ij → 0.

We have also computed the soft-qq̄ one-loop current J (1) by explicitly evaluating its
dependence on the RS parameter δR to all orders in ε. Using the notation of Eq. (30) and
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At arbitrary orders in the ε expansion, the two-particle correlation function w[A]
ij is directly

related to F [A]
ijk as follows

w[A]
ij (q1, q2) =

[
F [A]
iji (q1, q2) + F [A]

jii (q1, q2)
]
−
(
i ↔ j

)
. (69)

In contrast to w[S]
ij , we note that w[A]

ij is antisymmetric under the exchange i ↔ j of the

hard-parton momenta. In particular, this antisymmetry of w[A]
ij implies that in the sum

over i and j of Eq. (61) we can replace D̃i · T j by its antisymmetric component, namely,

D̃i · T j →
(
D̃i · T j − D̃j · T i

)
/2. Inserting Eq. (68) in Eq. (69), w[A]

ij has the following
expression:

w[A]
ij (q1, q2) =

{
wij(q1, q2)

[
−
2

ε
("i1 + "j2) + ("i1 − "j2)

2
]

(70)

+
[
Iii(q1, q2)− Ijj(q1, q2)

] 2 q212
q212⊥ij

LijR

(
"i1 − "j2

)
+O(ε)

}
− (q1 ↔ q2) .

By inspection of Eqs. (66)–(70) we note that only the function F [S]
ijk exhibits a discon-

tinuity with respect to the momenta of the hard partons (see Θ(in)
ij in Eqs. (65) and (67)).

The discontinuity contributes in the kinematical region where two hard-parton momenta i
and j have negative time component (p0i < 0 and p0j < 0), namely, the partons i and j col-
lide in the physical initial state. This discontinuity term of the squared current in Eq. (61)
originates as interference between a one-loop absorptive (imaginary) contribution and the
antihermitian colour factor ifabc T a

i T b
j T

c
k (we recall that i, j and k refer to three distinct

partons). Actually, the entire term proportional to fabc T a
i T b

j T
c
k in Eq. (61) has this ori-

gin§ as absorptive/colour interference (the absorptive term being related to the kinematical
region where q01 > 0 and q02 > 0).

As discussed in Sect. 4 (see Eqs. (41)–(43) and accompanying comments) the one-
loop current of soft-qq̄ emission has a transverse-momentum singularity at q12⊥ij → 0.
This singularity has a non-abelian character and an absorptive origin. At the level of the
one-loop squared current, this singularity does appear in the function F [S]

ijk (see the term

(q212⊥ij)
−1 Θ(in)

ij in Eq. (67)), while it is absent in all the other contributions (in Eqs. (66),
(68) and (70) we see the term (q212⊥ij)

−1 LijR → (q212)
−1, which is not singular at q12⊥ij → 0).

Therefore, the transverse-momentum singularity at q12⊥ij → 0 contributes through colour
correlation fabc T a

i T b
j T

c
k to one-loop squared amplitudes for the class of processes with

initial-state colliding partons i and j and two or more final-state hard partons (as recalled
below in Eq. (71), the colour correlation vanishes if there is only one final-state hard parton).
This class of processes includes, for instance, dijet (or heavy-quark pair) production in
hadron–hadron collisions and the transverse-momentum singularity is directly related to
the transverse momentum of the dijet system (heavy-quark pair). Interestingly, we note
that this is the same class of processes that is sensistive to effects due to the violation
of strict collinear factorization [26]. However, we remark on the fact that the transverse-
momentum singularity at q12⊥ij → 0 and violation of strict collinear factorization are

§The one-loop squared current for single soft-gluon radiation [23] has three-particle correlations of the
type fabc T a

i T b
j T

c
k , which have an analogous origin as absorptive/colour interference.
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of Eq. (37) we see that the one-loop interaction at O(ε0) also produces a different type of
kinematical dependence as given by the factor j(1, 2) · pi q212/(pi · q12 q212⊥ij). This rational
factor has no collinear singularity at q212 → 0, but it potentially leads to a singularity in
the limit q212⊥ij → 0. This is a ‘transverse-momentum singularity’, since the kinematical

variable
√

q212⊥ij in Eq. (38) is the transverse component of the momentum q12 of the soft

qq̄ pair with respect to the momenta pi and pj of the colour-correlated hard partons in a
reference frame in which pi and pj are back-to-back.

The transverse-momentum singularity in the current is partly screened by the logarith-
mic function Lij, and we have

1
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[
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Θ
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+O
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)]
,

(41)
which shows that the current has a one-loop singularity of absorptive origin. Considering
the physically most relevant kinematical region in which the soft quark and antiquark are
produced in the final state (q01 > 0, q02 > 0), Eq. (41) becomes

1
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Lij "
q12⊥ij→0

1

q212⊥ij

2πi Θ(−p0i ) Θ(−p0j) , (q01 > 0, q02 > 0) , (42)

which shows that the transverse-momentum singularity is present in the scattering ampli-
tude of a physical process in which the final-state soft qq̄ pair is produced by the collision
of the hard partons i and j in the initial state. We remark that this singularity has a pure
quantum mechanics (loop) origin, and it occurs in the limit q212⊥ij → 0 even if the trans-
verse momenta q1⊥ij and q2⊥ij (q2k⊥ij = 2pi · qk pj · qk/pi · pj, k = 1, 2) of the soft quark and
antiquark are separately large (i.e., they are separately non-vanishing) and q212 is large. We
also note that, setting q12⊥ij = 0 at fixed non-vanishing values of q212 and q1⊥ij (or q2⊥ij),
we have

(
#i1 − #j2

)
= −

(
#j1 − #i2

)
. Therefore, in the limit q212⊥ij → 0 the factor #i1 − #j2 is

(approximately) antisymmetric with respect to the exchange pi ↔ pj and this implies that
we can perform the following replacement in Eq. (37):
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2 > 0) ,

(43)
and it follows that, in the kinematical region with q01 > 0 and q02 > 0, the transverse-
momentum singularity has a purely non-abelian character (see the factor fabc in the right-
hand side of the relation (43)).

As we have just discussed, the singularity of the soft-qq̄ current in the limit q12⊥ij →
0 originates from one-loop interactions of the two soft partons. Therefore, we expect
the presence of the transverse-momentum singularity also in the case of double soft-gluon
emission at one-loop level. The one-loop double-gluon current computed in Ref. [40] indeed
shows singular terms at q12⊥ij → 0.

We have also computed the soft-qq̄ one-loop current J (1) by explicitly evaluating its
dependence on the RS parameter δR to all orders in ε. Using the notation of Eq. (30) and
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contributions give non-vanishing 
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• The one-loop squared current

where we have used

dabcddbc = dA δad , dA =
N2

c − 4

Nc

. (60)

Note that the tensor dabc is odd under charge conjugation. This fact is responsible for
the opposite overall sign between the d-charge D̃i and the colour charge T i of quarks
and antiquarks (see Eqs. (57) and (58)). Analogously, in the gluon case the d-charge
〈b|Da

i |c〉 in Eq. (59) is symmetric with respect to b ↔ c, while the colour charge 〈b|T a
i |c〉 is

antisymmetric with respect to b ↔ c.

The explicit expression of the one-loop squared current |Ĵ(q1, q2)|2(1!) is obtained by

inserting Ĵ
(0)

(see Eqs. (14) and (33)) and Ĵ
(1)

(see Eqs. (35)–(37)) in the right-hand side
of Eq. (54), and by performing the sum over the colours and spins of the soft quark and
antiquark. We find the following result:

|Ĵ(q1, q2)|2(1!) = −
1

2
TR

∑

i,j ∈H
i "= j

[
T i · T j w[S]

ij (q1, q2) + D̃i · T j w[A]
ij (q1, q2)

]

−TR

∑

i,j,k∈H
dist.{i,j,k}

T a
i T b

j T
c
k

[
fabc F [S]

ijk(q1, q2) + dabc
(
F [A]
ijk (q1, q2)−

1

2
F [A]
iji (q1, q2)−

1

2
F [A]
ijj (q1, q2)

)]
,

(61)

which is valid to arbitrary orders in the ε expansion. The ε dependence is embodied in
the c-number functions w[S], w[A], F [S] and F [A]. The dependence on the colours of the
hard partons is due to the colour charges T a

i and D̃a
i . The structure of Eq. (61) involves

contributions with both two hard-parton correlations and three hard-parton correlations. In
the case of three hard-parton correlations, the subscript ‘dist.{i, j, k}’ in

∑
i,j,k∈H

dist.{i,j,k}
denotes

the sum over distinct hard-parton indices i, j and k (i.e., i %= j, j %= k, k %= i).

The functions w[S]
ij , w

[A]
ij , F [S]

ijk and F [A]
ijk in Eq. (61) depend on the momenta of the hard

partons and on the momenta q1 and q2 of the soft quark and antiquark. The superscript
[S] in w[S]

ij and F [S]
ijk denotes the fact that these functions are symmetric under the exchange

q1 ↔ q2 of the momenta of the soft quark and antiquark:

w[S]
ij (q1, q2) = w[S]

ij (q2, q1) , F [S]
ijk(q1, q2) = F [S]

ijk(q2, q1) . (62)

Analogously, the superscript [A] in w[A]
ij and F [A]

ijk highlights the fact that these functions
are antisymmetric under the exchange q1 ↔ q2:

w[A]
ij (q1, q2) = −w[A]

ij (q2, q1) , F [A]
ijk (q1, q2) = −F [A]

ijk (q2, q1) . (63)

Therefore, w[A] and F [A] produce a quark–antiquark charge asymmetry in the one-loop
squared current. We note that the charge-asymmetry contributions appear in Eq. (61)
with the associated colour factors D̃i ·T j = dabcT a

i T b
i T

c
j and dabcT a

i T b
j T

c
k that have a linear

dependence on the colour tensor dabc (which is odd under charge conjugation). The charge-
asymmetry contributions to |J(q1, q2)|2 have a quantum origin and are characteristic of the
radiation of soft quark–antiquark pairs (the squared current |J(q1, . . . , qm)|2 for radiation of
m soft gluons is instead fully symmetric with respect to the soft-gluon momenta q1, . . . , qm).
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A few comments about the singularity

We present the explicit result of the ε expansion of the functions w[S], w[A], F [S] and F [A]

up to O(ε0). More precisely, we limit ourselves to presenting the expressions of these func-
tions in the kinematical region where q01 > 0 and q02 > 0 (i.e., the soft quark and antiquark
are produced in the physical final state), which is the most relevant physical region‡. In
this region, the squared current depends (see Eqs. (36) and (37)) on the logarithms "i1±"j2
(which are purely real, independently of whether the momenta pi and pj are physically

incoming or outgoing) and on the real part LijR and discontinuity Θ(in)
ij of the logarithm

Lij. We have (see Eqs. (27) and (28))

"i1+"j2 = ln
(pi · q1)(pj · q2)
(pi · q12)(pj · q12)

, "i1−"j2 = ln
(pi · q1)(pj · q12)
(pi · q12)(pj · q2)

, Lij = LijR+2iπ Θ(in)
ij , (64)

where

LijR = ln
(pi · q12)(pj · q12)
(pi · pj)(q1 · q2)

= ln

(
1 +

q212⊥ij

q212

)
, Θ(in)

ij ≡ Θ(−p0i )Θ(−p0j) . (65)

The function w[S]
ij has the following expression in the region where q01 > 0 and q02 > 0:

w[S]
ij (q1, q2) =

{
wij(q1, q2)

[
−CF
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ε2
+
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ε
− π2 + 8 + (δR − 1)

)
−
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3
TR Nf

(1
ε
+
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)

+
1

3
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(11
ε

+
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3
− π2 + (δR − 1)

)
+

1

2
CA

( 2

ε
(LijR + "i1 + "j2)− L2

ijR − ("i1 − "j2)
2
)]

−CA

[
Iii(q1, q2)− Ijj(q1, q2)

] q212
q212⊥ij

LijR

(
"i1 − "j2

)
+O(ε)

}
+ (q1 ↔ q2) . (66)

This function (which is symmetric under the exchange i ↔ j) controls the size of the
one-loop radiative corrections to the tree-level colour dipole correlations T i · T j.

We note that w[S]
ij also depends on colour coefficients, while F [S]

ijk , w
[A]
ij and F [A]

ijk only
depends on parton momenta.

The function F [S]
ijk is associated with non-abelian three-particle correlations with colour

charge factor fabcT a
i T b

j T
c
k . In the region where q01 > 0 and q02 > 0, we have the explicit

result

F [S]
ijk(q2, q1) = 2π Iki(q1, q2)

{
LijR + "i1 + "j2

+ Θ(in)
ij

[
2
(1
ε
− LijR

)
− 2

q212
q212⊥ij

("i1 − "j2)
]
+O(ε)

}
+ (q1 ↔ q2) . (67)

The charge-asymmetry contributions to Eq. (61) can be expressed through the function

F [A]
ijk . In the region where q01 > 0 and q02 > 0 we have

F [A]
ijk (q2, q1) =

{
Iki(q1, q2)

[
−
2

ε
("i1 + "j2) + ("i1 − "j2)

2 + 2
q212

q212⊥ij

LijR

(
"i1 − "j2

)]

+ O(ε)
}
− (q1 ↔ q2) . (68)

‡Expressions in other kinematical regions can be obtained by using the fully general one-loop current
in Eqs. (36) and (37).
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of Eq. (37) we see that the one-loop interaction at O(ε0) also produces a different type of
kinematical dependence as given by the factor j(1, 2) · pi q212/(pi · q12 q212⊥ij). This rational
factor has no collinear singularity at q212 → 0, but it potentially leads to a singularity in
the limit q212⊥ij → 0. This is a ‘transverse-momentum singularity’, since the kinematical

variable
√

q212⊥ij in Eq. (38) is the transverse component of the momentum q12 of the soft

qq̄ pair with respect to the momenta pi and pj of the colour-correlated hard partons in a
reference frame in which pi and pj are back-to-back.

The transverse-momentum singularity in the current is partly screened by the logarith-
mic function Lij, and we have

1

q212⊥ij

Lij "
q12⊥ij→0

1

q212⊥ij

[
2πi sign(q212) Θ

(
−pi · q12
pi · pj

)
Θ

(
−pj · q12
pi · pj

)
+O

(
q212⊥ij

q212

)]
,

(41)
which shows that the current has a one-loop singularity of absorptive origin. Considering
the physically most relevant kinematical region in which the soft quark and antiquark are
produced in the final state (q01 > 0, q02 > 0), Eq. (41) becomes

1

q212⊥ij

Lij "
q12⊥ij→0

1

q212⊥ij

2πi Θ(−p0i ) Θ(−p0j) , (q01 > 0, q02 > 0) , (42)

which shows that the transverse-momentum singularity is present in the scattering ampli-
tude of a physical process in which the final-state soft qq̄ pair is produced by the collision
of the hard partons i and j in the initial state. We remark that this singularity has a pure
quantum mechanics (loop) origin, and it occurs in the limit q212⊥ij → 0 even if the trans-
verse momenta q1⊥ij and q2⊥ij (q2k⊥ij = 2pi · qk pj · qk/pi · pj, k = 1, 2) of the soft quark and
antiquark are separately large (i.e., they are separately non-vanishing) and q212 is large. We
also note that, setting q12⊥ij = 0 at fixed non-vanishing values of q212 and q1⊥ij (or q2⊥ij),
we have

(
#i1 − #j2

)
= −

(
#j1 − #i2

)
. Therefore, in the limit q212⊥ij → 0 the factor #i1 − #j2 is

(approximately) antisymmetric with respect to the exchange pi ↔ pj and this implies that
we can perform the following replacement in Eq. (37):

tatb T a
i T b

j

Lij

q212⊥ij

(
#i1−#j2

)
−→

q12⊥ij→0
−fabctc T a

i T b
j

π Θ(−p0i )Θ(−p0j)

q212⊥ij

(
#i1−#j2

)
, (q01, q

0
2 > 0) ,

(43)
and it follows that, in the kinematical region with q01 > 0 and q02 > 0, the transverse-
momentum singularity has a purely non-abelian character (see the factor fabc in the right-
hand side of the relation (43)).

As we have just discussed, the singularity of the soft-qq̄ current in the limit q12⊥ij →
0 originates from one-loop interactions of the two soft partons. Therefore, we expect
the presence of the transverse-momentum singularity also in the case of double soft-gluon
emission at one-loop level. The one-loop double-gluon current computed in Ref. [40] indeed
shows singular terms at q12⊥ij → 0.

We have also computed the soft-qq̄ one-loop current J (1) by explicitly evaluating its
dependence on the RS parameter δR to all orders in ε. Using the notation of Eq. (30) and
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We present the explicit result of the ε expansion of the functions w[S], w[A], F [S] and F [A]

up to O(ε0). More precisely, we limit ourselves to presenting the expressions of these func-
tions in the kinematical region where q01 > 0 and q02 > 0 (i.e., the soft quark and antiquark
are produced in the physical final state), which is the most relevant physical region‡. In
this region, the squared current depends (see Eqs. (36) and (37)) on the logarithms "i1±"j2
(which are purely real, independently of whether the momenta pi and pj are physically

incoming or outgoing) and on the real part LijR and discontinuity Θ(in)
ij of the logarithm

Lij. We have (see Eqs. (27) and (28))

"i1+"j2 = ln
(pi · q1)(pj · q2)
(pi · q12)(pj · q12)

, "i1−"j2 = ln
(pi · q1)(pj · q12)
(pi · q12)(pj · q2)

, Lij = LijR+2iπ Θ(in)
ij , (64)

where

LijR = ln
(pi · q12)(pj · q12)
(pi · pj)(q1 · q2)

= ln

(
1 +

q212⊥ij

q212

)
, Θ(in)

ij ≡ Θ(−p0i )Θ(−p0j) . (65)

The function w[S]
ij has the following expression in the region where q01 > 0 and q02 > 0:

w[S]
ij (q1, q2) =

{
wij(q1, q2)

[
−CF
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+

3

ε
− π2 + 8 + (δR − 1)

)
−
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3
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)

+
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3
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+
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)
+

1

2
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( 2

ε
(LijR + "i1 + "j2)− L2

ijR − ("i1 − "j2)
2
)]

−CA

[
Iii(q1, q2)− Ijj(q1, q2)

] q212
q212⊥ij

LijR

(
"i1 − "j2

)
+O(ε)

}
+ (q1 ↔ q2) . (66)

This function (which is symmetric under the exchange i ↔ j) controls the size of the
one-loop radiative corrections to the tree-level colour dipole correlations T i · T j.

We note that w[S]
ij also depends on colour coefficients, while F [S]

ijk , w
[A]
ij and F [A]

ijk only
depends on parton momenta.

The function F [S]
ijk is associated with non-abelian three-particle correlations with colour

charge factor fabcT a
i T b

j T
c
k . In the region where q01 > 0 and q02 > 0, we have the explicit

result

F [S]
ijk(q2, q1) = 2π Iki(q1, q2)

{
LijR + "i1 + "j2

+ Θ(in)
ij

[
2
(1
ε
− LijR

)
− 2

q212
q212⊥ij

("i1 − "j2)
]
+O(ε)

}
+ (q1 ↔ q2) . (67)

The charge-asymmetry contributions to Eq. (61) can be expressed through the function

F [A]
ijk . In the region where q01 > 0 and q02 > 0 we have

F [A]
ijk (q2, q1) =

{
Iki(q1, q2)

[
−
2

ε
("i1 + "j2) + ("i1 − "j2)

2 + 2
q212

q212⊥ij
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(
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)]

+ O(ε)
}
− (q1 ↔ q2) . (68)

‡Expressions in other kinematical regions can be obtained by using the fully general one-loop current
in Eqs. (36) and (37).
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of Eq. (37) we see that the one-loop interaction at O(ε0) also produces a different type of
kinematical dependence as given by the factor j(1, 2) · pi q212/(pi · q12 q212⊥ij). This rational
factor has no collinear singularity at q212 → 0, but it potentially leads to a singularity in
the limit q212⊥ij → 0. This is a ‘transverse-momentum singularity’, since the kinematical

variable
√

q212⊥ij in Eq. (38) is the transverse component of the momentum q12 of the soft

qq̄ pair with respect to the momenta pi and pj of the colour-correlated hard partons in a
reference frame in which pi and pj are back-to-back.

The transverse-momentum singularity in the current is partly screened by the logarith-
mic function Lij, and we have

1

q212⊥ij

Lij "
q12⊥ij→0

1

q212⊥ij

[
2πi sign(q212) Θ

(
−pi · q12
pi · pj

)
Θ

(
−pj · q12
pi · pj

)
+O

(
q212⊥ij

q212

)]
,

(41)
which shows that the current has a one-loop singularity of absorptive origin. Considering
the physically most relevant kinematical region in which the soft quark and antiquark are
produced in the final state (q01 > 0, q02 > 0), Eq. (41) becomes

1

q212⊥ij

Lij "
q12⊥ij→0

1

q212⊥ij

2πi Θ(−p0i ) Θ(−p0j) , (q01 > 0, q02 > 0) , (42)

which shows that the transverse-momentum singularity is present in the scattering ampli-
tude of a physical process in which the final-state soft qq̄ pair is produced by the collision
of the hard partons i and j in the initial state. We remark that this singularity has a pure
quantum mechanics (loop) origin, and it occurs in the limit q212⊥ij → 0 even if the trans-
verse momenta q1⊥ij and q2⊥ij (q2k⊥ij = 2pi · qk pj · qk/pi · pj, k = 1, 2) of the soft quark and
antiquark are separately large (i.e., they are separately non-vanishing) and q212 is large. We
also note that, setting q12⊥ij = 0 at fixed non-vanishing values of q212 and q1⊥ij (or q2⊥ij),
we have

(
#i1 − #j2

)
= −

(
#j1 − #i2

)
. Therefore, in the limit q212⊥ij → 0 the factor #i1 − #j2 is

(approximately) antisymmetric with respect to the exchange pi ↔ pj and this implies that
we can perform the following replacement in Eq. (37):
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0
2 > 0) ,

(43)
and it follows that, in the kinematical region with q01 > 0 and q02 > 0, the transverse-
momentum singularity has a purely non-abelian character (see the factor fabc in the right-
hand side of the relation (43)).

As we have just discussed, the singularity of the soft-qq̄ current in the limit q12⊥ij →
0 originates from one-loop interactions of the two soft partons. Therefore, we expect
the presence of the transverse-momentum singularity also in the case of double soft-gluon
emission at one-loop level. The one-loop double-gluon current computed in Ref. [40] indeed
shows singular terms at q12⊥ij → 0.

We have also computed the soft-qq̄ one-loop current J (1) by explicitly evaluating its
dependence on the RS parameter δR to all orders in ε. Using the notation of Eq. (30) and
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We present the explicit result of the ε expansion of the functions w[S], w[A], F [S] and F [A]

up to O(ε0). More precisely, we limit ourselves to presenting the expressions of these func-
tions in the kinematical region where q01 > 0 and q02 > 0 (i.e., the soft quark and antiquark
are produced in the physical final state), which is the most relevant physical region‡. In
this region, the squared current depends (see Eqs. (36) and (37)) on the logarithms "i1±"j2
(which are purely real, independently of whether the momenta pi and pj are physically

incoming or outgoing) and on the real part LijR and discontinuity Θ(in)
ij of the logarithm

Lij. We have (see Eqs. (27) and (28))

"i1+"j2 = ln
(pi · q1)(pj · q2)
(pi · q12)(pj · q12)

, "i1−"j2 = ln
(pi · q1)(pj · q12)
(pi · q12)(pj · q2)

, Lij = LijR+2iπ Θ(in)
ij , (64)

where
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ij ≡ Θ(−p0i )Θ(−p0j) . (65)

The function w[S]
ij has the following expression in the region where q01 > 0 and q02 > 0:

w[S]
ij (q1, q2) =
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+ (q1 ↔ q2) . (66)

This function (which is symmetric under the exchange i ↔ j) controls the size of the
one-loop radiative corrections to the tree-level colour dipole correlations T i · T j.

We note that w[S]
ij also depends on colour coefficients, while F [S]

ijk , w
[A]
ij and F [A]

ijk only
depends on parton momenta.

The function F [S]
ijk is associated with non-abelian three-particle correlations with colour

charge factor fabcT a
i T b

j T
c
k . In the region where q01 > 0 and q02 > 0, we have the explicit

result

F [S]
ijk(q2, q1) = 2π Iki(q1, q2)

{
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+ Θ(in)
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[
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− 2

q212
q212⊥ij

("i1 − "j2)
]
+O(ε)

}
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The charge-asymmetry contributions to Eq. (61) can be expressed through the function

F [A]
ijk . In the region where q01 > 0 and q02 > 0 we have
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‡Expressions in other kinematical regions can be obtained by using the fully general one-loop current
in Eqs. (36) and (37).
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of Eq. (37) we see that the one-loop interaction at O(ε0) also produces a different type of
kinematical dependence as given by the factor j(1, 2) · pi q212/(pi · q12 q212⊥ij). This rational
factor has no collinear singularity at q212 → 0, but it potentially leads to a singularity in
the limit q212⊥ij → 0. This is a ‘transverse-momentum singularity’, since the kinematical

variable
√

q212⊥ij in Eq. (38) is the transverse component of the momentum q12 of the soft

qq̄ pair with respect to the momenta pi and pj of the colour-correlated hard partons in a
reference frame in which pi and pj are back-to-back.

The transverse-momentum singularity in the current is partly screened by the logarith-
mic function Lij, and we have
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(41)
which shows that the current has a one-loop singularity of absorptive origin. Considering
the physically most relevant kinematical region in which the soft quark and antiquark are
produced in the final state (q01 > 0, q02 > 0), Eq. (41) becomes
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q12⊥ij→0
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q212⊥ij

2πi Θ(−p0i ) Θ(−p0j) , (q01 > 0, q02 > 0) , (42)

which shows that the transverse-momentum singularity is present in the scattering ampli-
tude of a physical process in which the final-state soft qq̄ pair is produced by the collision
of the hard partons i and j in the initial state. We remark that this singularity has a pure
quantum mechanics (loop) origin, and it occurs in the limit q212⊥ij → 0 even if the trans-
verse momenta q1⊥ij and q2⊥ij (q2k⊥ij = 2pi · qk pj · qk/pi · pj, k = 1, 2) of the soft quark and
antiquark are separately large (i.e., they are separately non-vanishing) and q212 is large. We
also note that, setting q12⊥ij = 0 at fixed non-vanishing values of q212 and q1⊥ij (or q2⊥ij),
we have

(
#i1 − #j2

)
= −

(
#j1 − #i2

)
. Therefore, in the limit q212⊥ij → 0 the factor #i1 − #j2 is

(approximately) antisymmetric with respect to the exchange pi ↔ pj and this implies that
we can perform the following replacement in Eq. (37):

tatb T a
i T b

j

Lij

q212⊥ij

(
#i1−#j2

)
−→

q12⊥ij→0
−fabctc T a

i T b
j

π Θ(−p0i )Θ(−p0j)

q212⊥ij

(
#i1−#j2

)
, (q01, q

0
2 > 0) ,

(43)
and it follows that, in the kinematical region with q01 > 0 and q02 > 0, the transverse-
momentum singularity has a purely non-abelian character (see the factor fabc in the right-
hand side of the relation (43)).

As we have just discussed, the singularity of the soft-qq̄ current in the limit q12⊥ij →
0 originates from one-loop interactions of the two soft partons. Therefore, we expect
the presence of the transverse-momentum singularity also in the case of double soft-gluon
emission at one-loop level. The one-loop double-gluon current computed in Ref. [40] indeed
shows singular terms at q12⊥ij → 0.

We have also computed the soft-qq̄ one-loop current J (1) by explicitly evaluating its
dependence on the RS parameter δR to all orders in ε. Using the notation of Eq. (30) and
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At arbitrary orders in the ε expansion, the two-particle correlation function w[A]
ij is directly

related to F [A]
ijk as follows

w[A]
ij (q1, q2) =

[
F [A]
iji (q1, q2) + F [A]

jii (q1, q2)
]
−
(
i ↔ j

)
. (69)

In contrast to w[S]
ij , we note that w[A]

ij is antisymmetric under the exchange i ↔ j of the

hard-parton momenta. In particular, this antisymmetry of w[A]
ij implies that in the sum

over i and j of Eq. (61) we can replace D̃i · T j by its antisymmetric component, namely,

D̃i · T j →
(
D̃i · T j − D̃j · T i

)
/2. Inserting Eq. (68) in Eq. (69), w[A]

ij has the following
expression:

w[A]
ij (q1, q2) =

{
wij(q1, q2)

[
−
2

ε
("i1 + "j2) + ("i1 − "j2)

2
]

(70)

+
[
Iii(q1, q2)− Ijj(q1, q2)

] 2 q212
q212⊥ij

LijR

(
"i1 − "j2

)
+O(ε)

}
− (q1 ↔ q2) .

By inspection of Eqs. (66)–(70) we note that only the function F [S]
ijk exhibits a discon-

tinuity with respect to the momenta of the hard partons (see Θ(in)
ij in Eqs. (65) and (67)).

The discontinuity contributes in the kinematical region where two hard-parton momenta i
and j have negative time component (p0i < 0 and p0j < 0), namely, the partons i and j col-
lide in the physical initial state. This discontinuity term of the squared current in Eq. (61)
originates as interference between a one-loop absorptive (imaginary) contribution and the
antihermitian colour factor ifabc T a

i T b
j T

c
k (we recall that i, j and k refer to three distinct

partons). Actually, the entire term proportional to fabc T a
i T b

j T
c
k in Eq. (61) has this ori-

gin§ as absorptive/colour interference (the absorptive term being related to the kinematical
region where q01 > 0 and q02 > 0).

As discussed in Sect. 4 (see Eqs. (41)–(43) and accompanying comments) the one-
loop current of soft-qq̄ emission has a transverse-momentum singularity at q12⊥ij → 0.
This singularity has a non-abelian character and an absorptive origin. At the level of the
one-loop squared current, this singularity does appear in the function F [S]

ijk (see the term

(q212⊥ij)
−1 Θ(in)

ij in Eq. (67)), while it is absent in all the other contributions (in Eqs. (66),
(68) and (70) we see the term (q212⊥ij)

−1 LijR → (q212)
−1, which is not singular at q12⊥ij → 0).

Therefore, the transverse-momentum singularity at q12⊥ij → 0 contributes through colour
correlation fabc T a

i T b
j T

c
k to one-loop squared amplitudes for the class of processes with

initial-state colliding partons i and j and two or more final-state hard partons (as recalled
below in Eq. (71), the colour correlation vanishes if there is only one final-state hard parton).
This class of processes includes, for instance, dijet (or heavy-quark pair) production in
hadron–hadron collisions and the transverse-momentum singularity is directly related to
the transverse momentum of the dijet system (heavy-quark pair). Interestingly, we note
that this is the same class of processes that is sensistive to effects due to the violation
of strict collinear factorization [26]. However, we remark on the fact that the transverse-
momentum singularity at q12⊥ij → 0 and violation of strict collinear factorization are

§The one-loop squared current for single soft-gluon radiation [23] has three-particle correlations of the
type fabc T a

i T b
j T

c
k , which have an analogous origin as absorptive/colour interference.
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of Eq. (37) we see that the one-loop interaction at O(ε0) also produces a different type of
kinematical dependence as given by the factor j(1, 2) · pi q212/(pi · q12 q212⊥ij). This rational
factor has no collinear singularity at q212 → 0, but it potentially leads to a singularity in
the limit q212⊥ij → 0. This is a ‘transverse-momentum singularity’, since the kinematical

variable
√

q212⊥ij in Eq. (38) is the transverse component of the momentum q12 of the soft

qq̄ pair with respect to the momenta pi and pj of the colour-correlated hard partons in a
reference frame in which pi and pj are back-to-back.

The transverse-momentum singularity in the current is partly screened by the logarith-
mic function Lij, and we have

1

q212⊥ij

Lij "
q12⊥ij→0

1

q212⊥ij

[
2πi sign(q212) Θ

(
−pi · q12
pi · pj

)
Θ

(
−pj · q12
pi · pj

)
+O

(
q212⊥ij

q212

)]
,

(41)
which shows that the current has a one-loop singularity of absorptive origin. Considering
the physically most relevant kinematical region in which the soft quark and antiquark are
produced in the final state (q01 > 0, q02 > 0), Eq. (41) becomes

1

q212⊥ij

Lij "
q12⊥ij→0

1

q212⊥ij

2πi Θ(−p0i ) Θ(−p0j) , (q01 > 0, q02 > 0) , (42)

which shows that the transverse-momentum singularity is present in the scattering ampli-
tude of a physical process in which the final-state soft qq̄ pair is produced by the collision
of the hard partons i and j in the initial state. We remark that this singularity has a pure
quantum mechanics (loop) origin, and it occurs in the limit q212⊥ij → 0 even if the trans-
verse momenta q1⊥ij and q2⊥ij (q2k⊥ij = 2pi · qk pj · qk/pi · pj, k = 1, 2) of the soft quark and
antiquark are separately large (i.e., they are separately non-vanishing) and q212 is large. We
also note that, setting q12⊥ij = 0 at fixed non-vanishing values of q212 and q1⊥ij (or q2⊥ij),
we have

(
#i1 − #j2

)
= −

(
#j1 − #i2

)
. Therefore, in the limit q212⊥ij → 0 the factor #i1 − #j2 is

(approximately) antisymmetric with respect to the exchange pi ↔ pj and this implies that
we can perform the following replacement in Eq. (37):
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j

Lij

q212⊥ij

(
#i1−#j2

)
−→

q12⊥ij→0
−fabctc T a

i T b
j

π Θ(−p0i )Θ(−p0j)

q212⊥ij

(
#i1−#j2

)
, (q01, q

0
2 > 0) ,

(43)
and it follows that, in the kinematical region with q01 > 0 and q02 > 0, the transverse-
momentum singularity has a purely non-abelian character (see the factor fabc in the right-
hand side of the relation (43)).

As we have just discussed, the singularity of the soft-qq̄ current in the limit q12⊥ij →
0 originates from one-loop interactions of the two soft partons. Therefore, we expect
the presence of the transverse-momentum singularity also in the case of double soft-gluon
emission at one-loop level. The one-loop double-gluon current computed in Ref. [40] indeed
shows singular terms at q12⊥ij → 0.

We have also computed the soft-qq̄ one-loop current J (1) by explicitly evaluating its
dependence on the RS parameter δR to all orders in ε. Using the notation of Eq. (30) and
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We present the explicit result of the ε expansion of the functions w[S], w[A], F [S] and F [A]

up to O(ε0). More precisely, we limit ourselves to presenting the expressions of these func-
tions in the kinematical region where q01 > 0 and q02 > 0 (i.e., the soft quark and antiquark
are produced in the physical final state), which is the most relevant physical region‡. In
this region, the squared current depends (see Eqs. (36) and (37)) on the logarithms "i1±"j2
(which are purely real, independently of whether the momenta pi and pj are physically

incoming or outgoing) and on the real part LijR and discontinuity Θ(in)
ij of the logarithm

Lij. We have (see Eqs. (27) and (28))

"i1+"j2 = ln
(pi · q1)(pj · q2)
(pi · q12)(pj · q12)

, "i1−"j2 = ln
(pi · q1)(pj · q12)
(pi · q12)(pj · q2)

, Lij = LijR+2iπ Θ(in)
ij , (64)

where

LijR = ln
(pi · q12)(pj · q12)
(pi · pj)(q1 · q2)

= ln

(
1 +

q212⊥ij

q212

)
, Θ(in)

ij ≡ Θ(−p0i )Θ(−p0j) . (65)

The function w[S]
ij has the following expression in the region where q01 > 0 and q02 > 0:

w[S]
ij (q1, q2) =

{
wij(q1, q2)

[
−CF

( 2

ε2
+

3

ε
− π2 + 8 + (δR − 1)

)
−

4

3
TR Nf

(1
ε
+

5

3

)

+
1

3
CA

(11
ε

+
76

3
− π2 + (δR − 1)

)
+

1

2
CA

( 2

ε
(LijR + "i1 + "j2)− L2

ijR − ("i1 − "j2)
2
)]

−CA

[
Iii(q1, q2)− Ijj(q1, q2)

] q212
q212⊥ij

LijR

(
"i1 − "j2

)
+O(ε)

}
+ (q1 ↔ q2) . (66)

This function (which is symmetric under the exchange i ↔ j) controls the size of the
one-loop radiative corrections to the tree-level colour dipole correlations T i · T j.

We note that w[S]
ij also depends on colour coefficients, while F [S]

ijk , w
[A]
ij and F [A]

ijk only
depends on parton momenta.

The function F [S]
ijk is associated with non-abelian three-particle correlations with colour

charge factor fabcT a
i T b

j T
c
k . In the region where q01 > 0 and q02 > 0, we have the explicit

result

F [S]
ijk(q2, q1) = 2π Iki(q1, q2)

{
LijR + "i1 + "j2

+ Θ(in)
ij

[
2
(1
ε
− LijR

)
− 2

q212
q212⊥ij

("i1 − "j2)
]
+O(ε)

}
+ (q1 ↔ q2) . (67)

The charge-asymmetry contributions to Eq. (61) can be expressed through the function

F [A]
ijk . In the region where q01 > 0 and q02 > 0 we have

F [A]
ijk (q2, q1) =

{
Iki(q1, q2)

[
−
2

ε
("i1 + "j2) + ("i1 − "j2)

2 + 2
q212

q212⊥ij

LijR

(
"i1 − "j2

)]

+ O(ε)
}
− (q1 ↔ q2) . (68)

‡Expressions in other kinematical regions can be obtained by using the fully general one-loop current
in Eqs. (36) and (37).

24

We present the explicit result of the ε expansion of the functions w[S], w[A], F [S] and F [A]

up to O(ε0). More precisely, we limit ourselves to presenting the expressions of these func-
tions in the kinematical region where q01 > 0 and q02 > 0 (i.e., the soft quark and antiquark
are produced in the physical final state), which is the most relevant physical region‡. In
this region, the squared current depends (see Eqs. (36) and (37)) on the logarithms "i1±"j2
(which are purely real, independently of whether the momenta pi and pj are physically

incoming or outgoing) and on the real part LijR and discontinuity Θ(in)
ij of the logarithm

Lij. We have (see Eqs. (27) and (28))

"i1+"j2 = ln
(pi · q1)(pj · q2)
(pi · q12)(pj · q12)

, "i1−"j2 = ln
(pi · q1)(pj · q12)
(pi · q12)(pj · q2)

, Lij = LijR+2iπ Θ(in)
ij , (64)

where

LijR = ln
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(pi · pj)(q1 · q2)

= ln
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1 +
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q212

)
, Θ(in)

ij ≡ Θ(−p0i )Θ(−p0j) . (65)

The function w[S]
ij has the following expression in the region where q01 > 0 and q02 > 0:

w[S]
ij (q1, q2) =

{
wij(q1, q2)
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−
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+O(ε)

}
+ (q1 ↔ q2) . (66)

This function (which is symmetric under the exchange i ↔ j) controls the size of the
one-loop radiative corrections to the tree-level colour dipole correlations T i · T j.

We note that w[S]
ij also depends on colour coefficients, while F [S]

ijk , w
[A]
ij and F [A]

ijk only
depends on parton momenta.

The function F [S]
ijk is associated with non-abelian three-particle correlations with colour

charge factor fabcT a
i T b

j T
c
k . In the region where q01 > 0 and q02 > 0, we have the explicit

result

F [S]
ijk(q2, q1) = 2π Iki(q1, q2)

{
LijR + "i1 + "j2

+ Θ(in)
ij

[
2
(1
ε
− LijR

)
− 2

q212
q212⊥ij

("i1 − "j2)
]
+O(ε)

}
+ (q1 ↔ q2) . (67)

The charge-asymmetry contributions to Eq. (61) can be expressed through the function

F [A]
ijk . In the region where q01 > 0 and q02 > 0 we have

F [A]
ijk (q2, q1) =

{
Iki(q1, q2)

[
−
2

ε
("i1 + "j2) + ("i1 − "j2)

2 + 2
q212

q212⊥ij

LijR

(
"i1 − "j2

)]

+ O(ε)
}
− (q1 ↔ q2) . (68)

‡Expressions in other kinematical regions can be obtained by using the fully general one-loop current
in Eqs. (36) and (37).
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• The one-loop squared current

where we have used

dabcddbc = dA δad , dA =
N2

c − 4

Nc

. (60)

Note that the tensor dabc is odd under charge conjugation. This fact is responsible for
the opposite overall sign between the d-charge D̃i and the colour charge T i of quarks
and antiquarks (see Eqs. (57) and (58)). Analogously, in the gluon case the d-charge
〈b|Da

i |c〉 in Eq. (59) is symmetric with respect to b ↔ c, while the colour charge 〈b|T a
i |c〉 is

antisymmetric with respect to b ↔ c.

The explicit expression of the one-loop squared current |Ĵ(q1, q2)|2(1!) is obtained by

inserting Ĵ
(0)

(see Eqs. (14) and (33)) and Ĵ
(1)

(see Eqs. (35)–(37)) in the right-hand side
of Eq. (54), and by performing the sum over the colours and spins of the soft quark and
antiquark. We find the following result:

|Ĵ(q1, q2)|2(1!) = −
1

2
TR

∑

i,j ∈H
i "= j

[
T i · T j w[S]

ij (q1, q2) + D̃i · T j w[A]
ij (q1, q2)

]

−TR

∑

i,j,k∈H
dist.{i,j,k}

T a
i T b

j T
c
k

[
fabc F [S]

ijk(q1, q2) + dabc
(
F [A]
ijk (q1, q2)−

1

2
F [A]
iji (q1, q2)−

1

2
F [A]
ijj (q1, q2)

)]
,

(61)

which is valid to arbitrary orders in the ε expansion. The ε dependence is embodied in
the c-number functions w[S], w[A], F [S] and F [A]. The dependence on the colours of the
hard partons is due to the colour charges T a

i and D̃a
i . The structure of Eq. (61) involves

contributions with both two hard-parton correlations and three hard-parton correlations. In
the case of three hard-parton correlations, the subscript ‘dist.{i, j, k}’ in

∑
i,j,k∈H

dist.{i,j,k}
denotes

the sum over distinct hard-parton indices i, j and k (i.e., i %= j, j %= k, k %= i).

The functions w[S]
ij , w

[A]
ij , F [S]

ijk and F [A]
ijk in Eq. (61) depend on the momenta of the hard

partons and on the momenta q1 and q2 of the soft quark and antiquark. The superscript
[S] in w[S]

ij and F [S]
ijk denotes the fact that these functions are symmetric under the exchange

q1 ↔ q2 of the momenta of the soft quark and antiquark:

w[S]
ij (q1, q2) = w[S]

ij (q2, q1) , F [S]
ijk(q1, q2) = F [S]

ijk(q2, q1) . (62)

Analogously, the superscript [A] in w[A]
ij and F [A]

ijk highlights the fact that these functions
are antisymmetric under the exchange q1 ↔ q2:

w[A]
ij (q1, q2) = −w[A]

ij (q2, q1) , F [A]
ijk (q1, q2) = −F [A]

ijk (q2, q1) . (63)

Therefore, w[A] and F [A] produce a quark–antiquark charge asymmetry in the one-loop
squared current. We note that the charge-asymmetry contributions appear in Eq. (61)
with the associated colour factors D̃i ·T j = dabcT a

i T b
i T

c
j and dabcT a

i T b
j T

c
k that have a linear

dependence on the colour tensor dabc (which is odd under charge conjugation). The charge-
asymmetry contributions to |J(q1, q2)|2 have a quantum origin and are characteristic of the
radiation of soft quark–antiquark pairs (the squared current |J(q1, . . . , qm)|2 for radiation of
m soft gluons is instead fully symmetric with respect to the soft-gluon momenta q1, . . . , qm).
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A few comments about the singularity

We present the explicit result of the ε expansion of the functions w[S], w[A], F [S] and F [A]

up to O(ε0). More precisely, we limit ourselves to presenting the expressions of these func-
tions in the kinematical region where q01 > 0 and q02 > 0 (i.e., the soft quark and antiquark
are produced in the physical final state), which is the most relevant physical region‡. In
this region, the squared current depends (see Eqs. (36) and (37)) on the logarithms "i1±"j2
(which are purely real, independently of whether the momenta pi and pj are physically

incoming or outgoing) and on the real part LijR and discontinuity Θ(in)
ij of the logarithm

Lij. We have (see Eqs. (27) and (28))

"i1+"j2 = ln
(pi · q1)(pj · q2)
(pi · q12)(pj · q12)

, "i1−"j2 = ln
(pi · q1)(pj · q12)
(pi · q12)(pj · q2)

, Lij = LijR+2iπ Θ(in)
ij , (64)

where

LijR = ln
(pi · q12)(pj · q12)
(pi · pj)(q1 · q2)

= ln

(
1 +

q212⊥ij

q212

)
, Θ(in)

ij ≡ Θ(−p0i )Θ(−p0j) . (65)

The function w[S]
ij has the following expression in the region where q01 > 0 and q02 > 0:

w[S]
ij (q1, q2) =

{
wij(q1, q2)

[
−CF
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+
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ε
− π2 + 8 + (δR − 1)

)
−
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3
TR Nf
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)

+
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3
CA

(11
ε

+
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3
− π2 + (δR − 1)

)
+

1

2
CA

( 2

ε
(LijR + "i1 + "j2)− L2

ijR − ("i1 − "j2)
2
)]

−CA

[
Iii(q1, q2)− Ijj(q1, q2)

] q212
q212⊥ij

LijR

(
"i1 − "j2

)
+O(ε)

}
+ (q1 ↔ q2) . (66)

This function (which is symmetric under the exchange i ↔ j) controls the size of the
one-loop radiative corrections to the tree-level colour dipole correlations T i · T j.

We note that w[S]
ij also depends on colour coefficients, while F [S]

ijk , w
[A]
ij and F [A]

ijk only
depends on parton momenta.

The function F [S]
ijk is associated with non-abelian three-particle correlations with colour

charge factor fabcT a
i T b

j T
c
k . In the region where q01 > 0 and q02 > 0, we have the explicit

result

F [S]
ijk(q2, q1) = 2π Iki(q1, q2)

{
LijR + "i1 + "j2

+ Θ(in)
ij

[
2
(1
ε
− LijR

)
− 2

q212
q212⊥ij

("i1 − "j2)
]
+O(ε)

}
+ (q1 ↔ q2) . (67)

The charge-asymmetry contributions to Eq. (61) can be expressed through the function

F [A]
ijk . In the region where q01 > 0 and q02 > 0 we have

F [A]
ijk (q2, q1) =

{
Iki(q1, q2)

[
−
2

ε
("i1 + "j2) + ("i1 − "j2)

2 + 2
q212

q212⊥ij

LijR

(
"i1 − "j2

)]

+ O(ε)
}
− (q1 ↔ q2) . (68)

‡Expressions in other kinematical regions can be obtained by using the fully general one-loop current
in Eqs. (36) and (37).
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of Eq. (37) we see that the one-loop interaction at O(ε0) also produces a different type of
kinematical dependence as given by the factor j(1, 2) · pi q212/(pi · q12 q212⊥ij). This rational
factor has no collinear singularity at q212 → 0, but it potentially leads to a singularity in
the limit q212⊥ij → 0. This is a ‘transverse-momentum singularity’, since the kinematical

variable
√

q212⊥ij in Eq. (38) is the transverse component of the momentum q12 of the soft

qq̄ pair with respect to the momenta pi and pj of the colour-correlated hard partons in a
reference frame in which pi and pj are back-to-back.

The transverse-momentum singularity in the current is partly screened by the logarith-
mic function Lij, and we have

1

q212⊥ij

Lij "
q12⊥ij→0

1

q212⊥ij

[
2πi sign(q212) Θ

(
−pi · q12
pi · pj

)
Θ

(
−pj · q12
pi · pj

)
+O

(
q212⊥ij

q212

)]
,

(41)
which shows that the current has a one-loop singularity of absorptive origin. Considering
the physically most relevant kinematical region in which the soft quark and antiquark are
produced in the final state (q01 > 0, q02 > 0), Eq. (41) becomes

1

q212⊥ij

Lij "
q12⊥ij→0

1

q212⊥ij

2πi Θ(−p0i ) Θ(−p0j) , (q01 > 0, q02 > 0) , (42)

which shows that the transverse-momentum singularity is present in the scattering ampli-
tude of a physical process in which the final-state soft qq̄ pair is produced by the collision
of the hard partons i and j in the initial state. We remark that this singularity has a pure
quantum mechanics (loop) origin, and it occurs in the limit q212⊥ij → 0 even if the trans-
verse momenta q1⊥ij and q2⊥ij (q2k⊥ij = 2pi · qk pj · qk/pi · pj, k = 1, 2) of the soft quark and
antiquark are separately large (i.e., they are separately non-vanishing) and q212 is large. We
also note that, setting q12⊥ij = 0 at fixed non-vanishing values of q212 and q1⊥ij (or q2⊥ij),
we have

(
#i1 − #j2

)
= −

(
#j1 − #i2

)
. Therefore, in the limit q212⊥ij → 0 the factor #i1 − #j2 is

(approximately) antisymmetric with respect to the exchange pi ↔ pj and this implies that
we can perform the following replacement in Eq. (37):
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(43)
and it follows that, in the kinematical region with q01 > 0 and q02 > 0, the transverse-
momentum singularity has a purely non-abelian character (see the factor fabc in the right-
hand side of the relation (43)).

As we have just discussed, the singularity of the soft-qq̄ current in the limit q12⊥ij →
0 originates from one-loop interactions of the two soft partons. Therefore, we expect
the presence of the transverse-momentum singularity also in the case of double soft-gluon
emission at one-loop level. The one-loop double-gluon current computed in Ref. [40] indeed
shows singular terms at q12⊥ij → 0.

We have also computed the soft-qq̄ one-loop current J (1) by explicitly evaluating its
dependence on the RS parameter δR to all orders in ε. Using the notation of Eq. (30) and
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We present the explicit result of the ε expansion of the functions w[S], w[A], F [S] and F [A]

up to O(ε0). More precisely, we limit ourselves to presenting the expressions of these func-
tions in the kinematical region where q01 > 0 and q02 > 0 (i.e., the soft quark and antiquark
are produced in the physical final state), which is the most relevant physical region‡. In
this region, the squared current depends (see Eqs. (36) and (37)) on the logarithms "i1±"j2
(which are purely real, independently of whether the momenta pi and pj are physically

incoming or outgoing) and on the real part LijR and discontinuity Θ(in)
ij of the logarithm

Lij. We have (see Eqs. (27) and (28))
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(pi · q1)(pj · q2)
(pi · q12)(pj · q12)

, "i1−"j2 = ln
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ij , (64)
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)
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The function w[S]
ij has the following expression in the region where q01 > 0 and q02 > 0:
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This function (which is symmetric under the exchange i ↔ j) controls the size of the
one-loop radiative corrections to the tree-level colour dipole correlations T i · T j.

We note that w[S]
ij also depends on colour coefficients, while F [S]

ijk , w
[A]
ij and F [A]

ijk only
depends on parton momenta.

The function F [S]
ijk is associated with non-abelian three-particle correlations with colour

charge factor fabcT a
i T b

j T
c
k . In the region where q01 > 0 and q02 > 0, we have the explicit

result
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The charge-asymmetry contributions to Eq. (61) can be expressed through the function
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‡Expressions in other kinematical regions can be obtained by using the fully general one-loop current
in Eqs. (36) and (37).
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of Eq. (37) we see that the one-loop interaction at O(ε0) also produces a different type of
kinematical dependence as given by the factor j(1, 2) · pi q212/(pi · q12 q212⊥ij). This rational
factor has no collinear singularity at q212 → 0, but it potentially leads to a singularity in
the limit q212⊥ij → 0. This is a ‘transverse-momentum singularity’, since the kinematical

variable
√

q212⊥ij in Eq. (38) is the transverse component of the momentum q12 of the soft

qq̄ pair with respect to the momenta pi and pj of the colour-correlated hard partons in a
reference frame in which pi and pj are back-to-back.

The transverse-momentum singularity in the current is partly screened by the logarith-
mic function Lij, and we have
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(41)
which shows that the current has a one-loop singularity of absorptive origin. Considering
the physically most relevant kinematical region in which the soft quark and antiquark are
produced in the final state (q01 > 0, q02 > 0), Eq. (41) becomes
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which shows that the transverse-momentum singularity is present in the scattering ampli-
tude of a physical process in which the final-state soft qq̄ pair is produced by the collision
of the hard partons i and j in the initial state. We remark that this singularity has a pure
quantum mechanics (loop) origin, and it occurs in the limit q212⊥ij → 0 even if the trans-
verse momenta q1⊥ij and q2⊥ij (q2k⊥ij = 2pi · qk pj · qk/pi · pj, k = 1, 2) of the soft quark and
antiquark are separately large (i.e., they are separately non-vanishing) and q212 is large. We
also note that, setting q12⊥ij = 0 at fixed non-vanishing values of q212 and q1⊥ij (or q2⊥ij),
we have

(
#i1 − #j2

)
= −

(
#j1 − #i2

)
. Therefore, in the limit q212⊥ij → 0 the factor #i1 − #j2 is

(approximately) antisymmetric with respect to the exchange pi ↔ pj and this implies that
we can perform the following replacement in Eq. (37):

tatb T a
i T b

j

Lij

q212⊥ij

(
#i1−#j2

)
−→

q12⊥ij→0
−fabctc T a

i T b
j

π Θ(−p0i )Θ(−p0j)

q212⊥ij

(
#i1−#j2

)
, (q01, q

0
2 > 0) ,

(43)
and it follows that, in the kinematical region with q01 > 0 and q02 > 0, the transverse-
momentum singularity has a purely non-abelian character (see the factor fabc in the right-
hand side of the relation (43)).

As we have just discussed, the singularity of the soft-qq̄ current in the limit q12⊥ij →
0 originates from one-loop interactions of the two soft partons. Therefore, we expect
the presence of the transverse-momentum singularity also in the case of double soft-gluon
emission at one-loop level. The one-loop double-gluon current computed in Ref. [40] indeed
shows singular terms at q12⊥ij → 0.

We have also computed the soft-qq̄ one-loop current J (1) by explicitly evaluating its
dependence on the RS parameter δR to all orders in ε. Using the notation of Eq. (30) and

19

We present the explicit result of the ε expansion of the functions w[S], w[A], F [S] and F [A]

up to O(ε0). More precisely, we limit ourselves to presenting the expressions of these func-
tions in the kinematical region where q01 > 0 and q02 > 0 (i.e., the soft quark and antiquark
are produced in the physical final state), which is the most relevant physical region‡. In
this region, the squared current depends (see Eqs. (36) and (37)) on the logarithms "i1±"j2
(which are purely real, independently of whether the momenta pi and pj are physically

incoming or outgoing) and on the real part LijR and discontinuity Θ(in)
ij of the logarithm

Lij. We have (see Eqs. (27) and (28))

"i1+"j2 = ln
(pi · q1)(pj · q2)
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, "i1−"j2 = ln
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The function w[S]
ij has the following expression in the region where q01 > 0 and q02 > 0:
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This function (which is symmetric under the exchange i ↔ j) controls the size of the
one-loop radiative corrections to the tree-level colour dipole correlations T i · T j.

We note that w[S]
ij also depends on colour coefficients, while F [S]

ijk , w
[A]
ij and F [A]

ijk only
depends on parton momenta.

The function F [S]
ijk is associated with non-abelian three-particle correlations with colour

charge factor fabcT a
i T b

j T
c
k . In the region where q01 > 0 and q02 > 0, we have the explicit

result
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ijk(q2, q1) = 2π Iki(q1, q2)
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The charge-asymmetry contributions to Eq. (61) can be expressed through the function

F [A]
ijk . In the region where q01 > 0 and q02 > 0 we have
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‡Expressions in other kinematical regions can be obtained by using the fully general one-loop current
in Eqs. (36) and (37).
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of Eq. (37) we see that the one-loop interaction at O(ε0) also produces a different type of
kinematical dependence as given by the factor j(1, 2) · pi q212/(pi · q12 q212⊥ij). This rational
factor has no collinear singularity at q212 → 0, but it potentially leads to a singularity in
the limit q212⊥ij → 0. This is a ‘transverse-momentum singularity’, since the kinematical

variable
√

q212⊥ij in Eq. (38) is the transverse component of the momentum q12 of the soft

qq̄ pair with respect to the momenta pi and pj of the colour-correlated hard partons in a
reference frame in which pi and pj are back-to-back.

The transverse-momentum singularity in the current is partly screened by the logarith-
mic function Lij, and we have
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(41)
which shows that the current has a one-loop singularity of absorptive origin. Considering
the physically most relevant kinematical region in which the soft quark and antiquark are
produced in the final state (q01 > 0, q02 > 0), Eq. (41) becomes
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2πi Θ(−p0i ) Θ(−p0j) , (q01 > 0, q02 > 0) , (42)

which shows that the transverse-momentum singularity is present in the scattering ampli-
tude of a physical process in which the final-state soft qq̄ pair is produced by the collision
of the hard partons i and j in the initial state. We remark that this singularity has a pure
quantum mechanics (loop) origin, and it occurs in the limit q212⊥ij → 0 even if the trans-
verse momenta q1⊥ij and q2⊥ij (q2k⊥ij = 2pi · qk pj · qk/pi · pj, k = 1, 2) of the soft quark and
antiquark are separately large (i.e., they are separately non-vanishing) and q212 is large. We
also note that, setting q12⊥ij = 0 at fixed non-vanishing values of q212 and q1⊥ij (or q2⊥ij),
we have

(
#i1 − #j2

)
= −

(
#j1 − #i2

)
. Therefore, in the limit q212⊥ij → 0 the factor #i1 − #j2 is

(approximately) antisymmetric with respect to the exchange pi ↔ pj and this implies that
we can perform the following replacement in Eq. (37):
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(43)
and it follows that, in the kinematical region with q01 > 0 and q02 > 0, the transverse-
momentum singularity has a purely non-abelian character (see the factor fabc in the right-
hand side of the relation (43)).

As we have just discussed, the singularity of the soft-qq̄ current in the limit q12⊥ij →
0 originates from one-loop interactions of the two soft partons. Therefore, we expect
the presence of the transverse-momentum singularity also in the case of double soft-gluon
emission at one-loop level. The one-loop double-gluon current computed in Ref. [40] indeed
shows singular terms at q12⊥ij → 0.

We have also computed the soft-qq̄ one-loop current J (1) by explicitly evaluating its
dependence on the RS parameter δR to all orders in ε. Using the notation of Eq. (30) and
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At arbitrary orders in the ε expansion, the two-particle correlation function w[A]
ij is directly

related to F [A]
ijk as follows

w[A]
ij (q1, q2) =

[
F [A]
iji (q1, q2) + F [A]

jii (q1, q2)
]
−
(
i ↔ j

)
. (69)

In contrast to w[S]
ij , we note that w[A]

ij is antisymmetric under the exchange i ↔ j of the

hard-parton momenta. In particular, this antisymmetry of w[A]
ij implies that in the sum

over i and j of Eq. (61) we can replace D̃i · T j by its antisymmetric component, namely,

D̃i · T j →
(
D̃i · T j − D̃j · T i

)
/2. Inserting Eq. (68) in Eq. (69), w[A]

ij has the following
expression:

w[A]
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)
+O(ε)

}
− (q1 ↔ q2) .

By inspection of Eqs. (66)–(70) we note that only the function F [S]
ijk exhibits a discon-

tinuity with respect to the momenta of the hard partons (see Θ(in)
ij in Eqs. (65) and (67)).

The discontinuity contributes in the kinematical region where two hard-parton momenta i
and j have negative time component (p0i < 0 and p0j < 0), namely, the partons i and j col-
lide in the physical initial state. This discontinuity term of the squared current in Eq. (61)
originates as interference between a one-loop absorptive (imaginary) contribution and the
antihermitian colour factor ifabc T a

i T b
j T

c
k (we recall that i, j and k refer to three distinct

partons). Actually, the entire term proportional to fabc T a
i T b

j T
c
k in Eq. (61) has this ori-

gin§ as absorptive/colour interference (the absorptive term being related to the kinematical
region where q01 > 0 and q02 > 0).

As discussed in Sect. 4 (see Eqs. (41)–(43) and accompanying comments) the one-
loop current of soft-qq̄ emission has a transverse-momentum singularity at q12⊥ij → 0.
This singularity has a non-abelian character and an absorptive origin. At the level of the
one-loop squared current, this singularity does appear in the function F [S]

ijk (see the term

(q212⊥ij)
−1 Θ(in)

ij in Eq. (67)), while it is absent in all the other contributions (in Eqs. (66),
(68) and (70) we see the term (q212⊥ij)

−1 LijR → (q212)
−1, which is not singular at q12⊥ij → 0).

Therefore, the transverse-momentum singularity at q12⊥ij → 0 contributes through colour
correlation fabc T a

i T b
j T

c
k to one-loop squared amplitudes for the class of processes with

initial-state colliding partons i and j and two or more final-state hard partons (as recalled
below in Eq. (71), the colour correlation vanishes if there is only one final-state hard parton).
This class of processes includes, for instance, dijet (or heavy-quark pair) production in
hadron–hadron collisions and the transverse-momentum singularity is directly related to
the transverse momentum of the dijet system (heavy-quark pair). Interestingly, we note
that this is the same class of processes that is sensistive to effects due to the violation
of strict collinear factorization [26]. However, we remark on the fact that the transverse-
momentum singularity at q12⊥ij → 0 and violation of strict collinear factorization are

§The one-loop squared current for single soft-gluon radiation [23] has three-particle correlations of the
type fabc T a

i T b
j T

c
k , which have an analogous origin as absorptive/colour interference.
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of Eq. (37) we see that the one-loop interaction at O(ε0) also produces a different type of
kinematical dependence as given by the factor j(1, 2) · pi q212/(pi · q12 q212⊥ij). This rational
factor has no collinear singularity at q212 → 0, but it potentially leads to a singularity in
the limit q212⊥ij → 0. This is a ‘transverse-momentum singularity’, since the kinematical

variable
√

q212⊥ij in Eq. (38) is the transverse component of the momentum q12 of the soft

qq̄ pair with respect to the momenta pi and pj of the colour-correlated hard partons in a
reference frame in which pi and pj are back-to-back.

The transverse-momentum singularity in the current is partly screened by the logarith-
mic function Lij, and we have
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which shows that the current has a one-loop singularity of absorptive origin. Considering
the physically most relevant kinematical region in which the soft quark and antiquark are
produced in the final state (q01 > 0, q02 > 0), Eq. (41) becomes
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which shows that the transverse-momentum singularity is present in the scattering ampli-
tude of a physical process in which the final-state soft qq̄ pair is produced by the collision
of the hard partons i and j in the initial state. We remark that this singularity has a pure
quantum mechanics (loop) origin, and it occurs in the limit q212⊥ij → 0 even if the trans-
verse momenta q1⊥ij and q2⊥ij (q2k⊥ij = 2pi · qk pj · qk/pi · pj, k = 1, 2) of the soft quark and
antiquark are separately large (i.e., they are separately non-vanishing) and q212 is large. We
also note that, setting q12⊥ij = 0 at fixed non-vanishing values of q212 and q1⊥ij (or q2⊥ij),
we have

(
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)
= −
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. Therefore, in the limit q212⊥ij → 0 the factor #i1 − #j2 is

(approximately) antisymmetric with respect to the exchange pi ↔ pj and this implies that
we can perform the following replacement in Eq. (37):
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and it follows that, in the kinematical region with q01 > 0 and q02 > 0, the transverse-
momentum singularity has a purely non-abelian character (see the factor fabc in the right-
hand side of the relation (43)).

As we have just discussed, the singularity of the soft-qq̄ current in the limit q12⊥ij →
0 originates from one-loop interactions of the two soft partons. Therefore, we expect
the presence of the transverse-momentum singularity also in the case of double soft-gluon
emission at one-loop level. The one-loop double-gluon current computed in Ref. [40] indeed
shows singular terms at q12⊥ij → 0.

We have also computed the soft-qq̄ one-loop current J (1) by explicitly evaluating its
dependence on the RS parameter δR to all orders in ε. Using the notation of Eq. (30) and
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In contrast to w[S]
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ij implies that in the sum

over i and j of Eq. (61) we can replace D̃i · T j by its antisymmetric component, namely,
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By inspection of Eqs. (66)–(70) we note that only the function F [S]
ijk exhibits a discon-

tinuity with respect to the momenta of the hard partons (see Θ(in)
ij in Eqs. (65) and (67)).

The discontinuity contributes in the kinematical region where two hard-parton momenta i
and j have negative time component (p0i < 0 and p0j < 0), namely, the partons i and j col-
lide in the physical initial state. This discontinuity term of the squared current in Eq. (61)
originates as interference between a one-loop absorptive (imaginary) contribution and the
antihermitian colour factor ifabc T a
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k (we recall that i, j and k refer to three distinct

partons). Actually, the entire term proportional to fabc T a
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j T
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k in Eq. (61) has this ori-

gin§ as absorptive/colour interference (the absorptive term being related to the kinematical
region where q01 > 0 and q02 > 0).

As discussed in Sect. 4 (see Eqs. (41)–(43) and accompanying comments) the one-
loop current of soft-qq̄ emission has a transverse-momentum singularity at q12⊥ij → 0.
This singularity has a non-abelian character and an absorptive origin. At the level of the
one-loop squared current, this singularity does appear in the function F [S]

ijk (see the term
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−1 Θ(in)

ij in Eq. (67)), while it is absent in all the other contributions (in Eqs. (66),
(68) and (70) we see the term (q212⊥ij)

−1 LijR → (q212)
−1, which is not singular at q12⊥ij → 0).

Therefore, the transverse-momentum singularity at q12⊥ij → 0 contributes through colour
correlation fabc T a

i T b
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c
k to one-loop squared amplitudes for the class of processes with

initial-state colliding partons i and j and two or more final-state hard partons (as recalled
below in Eq. (71), the colour correlation vanishes if there is only one final-state hard parton).
This class of processes includes, for instance, dijet (or heavy-quark pair) production in
hadron–hadron collisions and the transverse-momentum singularity is directly related to
the transverse momentum of the dijet system (heavy-quark pair). Interestingly, we note
that this is the same class of processes that is sensistive to effects due to the violation
of strict collinear factorization [26]. However, we remark on the fact that the transverse-
momentum singularity at q12⊥ij → 0 and violation of strict collinear factorization are

§The one-loop squared current for single soft-gluon radiation [23] has three-particle correlations of the
type fabc T a
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k , which have an analogous origin as absorptive/colour interference.
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At arbitrary orders in the ε expansion, the two-particle correlation function w[A]
ij is directly
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ijk as follows
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i ↔ j
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It is the only contribution to present 
transverse-momentum singularity

We present the explicit result of the ε expansion of the functions w[S], w[A], F [S] and F [A]

up to O(ε0). More precisely, we limit ourselves to presenting the expressions of these func-
tions in the kinematical region where q01 > 0 and q02 > 0 (i.e., the soft quark and antiquark
are produced in the physical final state), which is the most relevant physical region‡. In
this region, the squared current depends (see Eqs. (36) and (37)) on the logarithms "i1±"j2
(which are purely real, independently of whether the momenta pi and pj are physically

incoming or outgoing) and on the real part LijR and discontinuity Θ(in)
ij of the logarithm

Lij. We have (see Eqs. (27) and (28))

"i1+"j2 = ln
(pi · q1)(pj · q2)
(pi · q12)(pj · q12)

, "i1−"j2 = ln
(pi · q1)(pj · q12)
(pi · q12)(pj · q2)

, Lij = LijR+2iπ Θ(in)
ij , (64)

where

LijR = ln
(pi · q12)(pj · q12)
(pi · pj)(q1 · q2)

= ln

(
1 +

q212⊥ij

q212

)
, Θ(in)

ij ≡ Θ(−p0i )Θ(−p0j) . (65)

The function w[S]
ij has the following expression in the region where q01 > 0 and q02 > 0:

w[S]
ij (q1, q2) =

{
wij(q1, q2)

[
−CF
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ε2
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ε
− π2 + 8 + (δR − 1)

)
−

4

3
TR Nf

(1
ε
+

5

3

)

+
1

3
CA

(11
ε

+
76

3
− π2 + (δR − 1)

)
+

1

2
CA

( 2

ε
(LijR + "i1 + "j2)− L2

ijR − ("i1 − "j2)
2
)]

−CA

[
Iii(q1, q2)− Ijj(q1, q2)

] q212
q212⊥ij

LijR

(
"i1 − "j2

)
+O(ε)

}
+ (q1 ↔ q2) . (66)

This function (which is symmetric under the exchange i ↔ j) controls the size of the
one-loop radiative corrections to the tree-level colour dipole correlations T i · T j.

We note that w[S]
ij also depends on colour coefficients, while F [S]

ijk , w
[A]
ij and F [A]

ijk only
depends on parton momenta.

The function F [S]
ijk is associated with non-abelian three-particle correlations with colour

charge factor fabcT a
i T b

j T
c
k . In the region where q01 > 0 and q02 > 0, we have the explicit

result

F [S]
ijk(q2, q1) = 2π Iki(q1, q2)

{
LijR + "i1 + "j2

+ Θ(in)
ij

[
2
(1
ε
− LijR

)
− 2

q212
q212⊥ij

("i1 − "j2)
]
+O(ε)

}
+ (q1 ↔ q2) . (67)

The charge-asymmetry contributions to Eq. (61) can be expressed through the function

F [A]
ijk . In the region where q01 > 0 and q02 > 0 we have

F [A]
ijk (q2, q1) =

{
Iki(q1, q2)

[
−
2

ε
("i1 + "j2) + ("i1 − "j2)

2 + 2
q212

q212⊥ij

LijR

(
"i1 − "j2

)]

+ O(ε)
}
− (q1 ↔ q2) . (68)

‡Expressions in other kinematical regions can be obtained by using the fully general one-loop current
in Eqs. (36) and (37).
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We present the explicit result of the ε expansion of the functions w[S], w[A], F [S] and F [A]
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This function (which is symmetric under the exchange i ↔ j) controls the size of the
one-loop radiative corrections to the tree-level colour dipole correlations T i · T j.

We note that w[S]
ij also depends on colour coefficients, while F [S]

ijk , w
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ijk only
depends on parton momenta.

The function F [S]
ijk is associated with non-abelian three-particle correlations with colour

charge factor fabcT a
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j T
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k . In the region where q01 > 0 and q02 > 0, we have the explicit

result
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ijk(q2, q1) = 2π Iki(q1, q2)
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− 2

q212
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+O(ε)

}
+ (q1 ↔ q2) . (67)

The charge-asymmetry contributions to Eq. (61) can be expressed through the function

F [A]
ijk . In the region where q01 > 0 and q02 > 0 we have

F [A]
ijk (q2, q1) =

{
Iki(q1, q2)

[
−
2

ε
("i1 + "j2) + ("i1 − "j2)

2 + 2
q212

q212⊥ij

LijR

(
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− (q1 ↔ q2) . (68)

‡Expressions in other kinematical regions can be obtained by using the fully general one-loop current
in Eqs. (36) and (37).
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• The one-loop squared current

where we have used

dabcddbc = dA δad , dA =
N2

c − 4

Nc

. (60)

Note that the tensor dabc is odd under charge conjugation. This fact is responsible for
the opposite overall sign between the d-charge D̃i and the colour charge T i of quarks
and antiquarks (see Eqs. (57) and (58)). Analogously, in the gluon case the d-charge
〈b|Da

i |c〉 in Eq. (59) is symmetric with respect to b ↔ c, while the colour charge 〈b|T a
i |c〉 is

antisymmetric with respect to b ↔ c.

The explicit expression of the one-loop squared current |Ĵ(q1, q2)|2(1!) is obtained by

inserting Ĵ
(0)

(see Eqs. (14) and (33)) and Ĵ
(1)

(see Eqs. (35)–(37)) in the right-hand side
of Eq. (54), and by performing the sum over the colours and spins of the soft quark and
antiquark. We find the following result:

|Ĵ(q1, q2)|2(1!) = −
1

2
TR

∑

i,j ∈H
i "= j

[
T i · T j w[S]

ij (q1, q2) + D̃i · T j w[A]
ij (q1, q2)

]

−TR

∑

i,j,k∈H
dist.{i,j,k}

T a
i T b

j T
c
k

[
fabc F [S]

ijk(q1, q2) + dabc
(
F [A]
ijk (q1, q2)−

1

2
F [A]
iji (q1, q2)−

1

2
F [A]
ijj (q1, q2)

)]
,

(61)

which is valid to arbitrary orders in the ε expansion. The ε dependence is embodied in
the c-number functions w[S], w[A], F [S] and F [A]. The dependence on the colours of the
hard partons is due to the colour charges T a

i and D̃a
i . The structure of Eq. (61) involves

contributions with both two hard-parton correlations and three hard-parton correlations. In
the case of three hard-parton correlations, the subscript ‘dist.{i, j, k}’ in

∑
i,j,k∈H

dist.{i,j,k}
denotes

the sum over distinct hard-parton indices i, j and k (i.e., i %= j, j %= k, k %= i).

The functions w[S]
ij , w

[A]
ij , F [S]

ijk and F [A]
ijk in Eq. (61) depend on the momenta of the hard

partons and on the momenta q1 and q2 of the soft quark and antiquark. The superscript
[S] in w[S]

ij and F [S]
ijk denotes the fact that these functions are symmetric under the exchange

q1 ↔ q2 of the momenta of the soft quark and antiquark:

w[S]
ij (q1, q2) = w[S]

ij (q2, q1) , F [S]
ijk(q1, q2) = F [S]

ijk(q2, q1) . (62)

Analogously, the superscript [A] in w[A]
ij and F [A]

ijk highlights the fact that these functions
are antisymmetric under the exchange q1 ↔ q2:

w[A]
ij (q1, q2) = −w[A]

ij (q2, q1) , F [A]
ijk (q1, q2) = −F [A]

ijk (q2, q1) . (63)

Therefore, w[A] and F [A] produce a quark–antiquark charge asymmetry in the one-loop
squared current. We note that the charge-asymmetry contributions appear in Eq. (61)
with the associated colour factors D̃i ·T j = dabcT a

i T b
i T

c
j and dabcT a

i T b
j T

c
k that have a linear

dependence on the colour tensor dabc (which is odd under charge conjugation). The charge-
asymmetry contributions to |J(q1, q2)|2 have a quantum origin and are characteristic of the
radiation of soft quark–antiquark pairs (the squared current |J(q1, . . . , qm)|2 for radiation of
m soft gluons is instead fully symmetric with respect to the soft-gluon momenta q1, . . . , qm).
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A few comments about the singularity

We present the explicit result of the ε expansion of the functions w[S], w[A], F [S] and F [A]

up to O(ε0). More precisely, we limit ourselves to presenting the expressions of these func-
tions in the kinematical region where q01 > 0 and q02 > 0 (i.e., the soft quark and antiquark
are produced in the physical final state), which is the most relevant physical region‡. In
this region, the squared current depends (see Eqs. (36) and (37)) on the logarithms "i1±"j2
(which are purely real, independently of whether the momenta pi and pj are physically

incoming or outgoing) and on the real part LijR and discontinuity Θ(in)
ij of the logarithm

Lij. We have (see Eqs. (27) and (28))

"i1+"j2 = ln
(pi · q1)(pj · q2)
(pi · q12)(pj · q12)

, "i1−"j2 = ln
(pi · q1)(pj · q12)
(pi · q12)(pj · q2)

, Lij = LijR+2iπ Θ(in)
ij , (64)

where

LijR = ln
(pi · q12)(pj · q12)
(pi · pj)(q1 · q2)

= ln

(
1 +

q212⊥ij

q212

)
, Θ(in)

ij ≡ Θ(−p0i )Θ(−p0j) . (65)

The function w[S]
ij has the following expression in the region where q01 > 0 and q02 > 0:

w[S]
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{
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[
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)
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ε
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2
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−CA

[
Iii(q1, q2)− Ijj(q1, q2)

] q212
q212⊥ij

LijR

(
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)
+O(ε)

}
+ (q1 ↔ q2) . (66)

This function (which is symmetric under the exchange i ↔ j) controls the size of the
one-loop radiative corrections to the tree-level colour dipole correlations T i · T j.

We note that w[S]
ij also depends on colour coefficients, while F [S]

ijk , w
[A]
ij and F [A]

ijk only
depends on parton momenta.

The function F [S]
ijk is associated with non-abelian three-particle correlations with colour

charge factor fabcT a
i T b

j T
c
k . In the region where q01 > 0 and q02 > 0, we have the explicit

result

F [S]
ijk(q2, q1) = 2π Iki(q1, q2)

{
LijR + "i1 + "j2

+ Θ(in)
ij

[
2
(1
ε
− LijR

)
− 2

q212
q212⊥ij

("i1 − "j2)
]
+O(ε)

}
+ (q1 ↔ q2) . (67)

The charge-asymmetry contributions to Eq. (61) can be expressed through the function

F [A]
ijk . In the region where q01 > 0 and q02 > 0 we have

F [A]
ijk (q2, q1) =

{
Iki(q1, q2)

[
−
2

ε
("i1 + "j2) + ("i1 − "j2)

2 + 2
q212

q212⊥ij

LijR

(
"i1 − "j2

)]

+ O(ε)
}
− (q1 ↔ q2) . (68)

‡Expressions in other kinematical regions can be obtained by using the fully general one-loop current
in Eqs. (36) and (37).
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of Eq. (37) we see that the one-loop interaction at O(ε0) also produces a different type of
kinematical dependence as given by the factor j(1, 2) · pi q212/(pi · q12 q212⊥ij). This rational
factor has no collinear singularity at q212 → 0, but it potentially leads to a singularity in
the limit q212⊥ij → 0. This is a ‘transverse-momentum singularity’, since the kinematical

variable
√

q212⊥ij in Eq. (38) is the transverse component of the momentum q12 of the soft

qq̄ pair with respect to the momenta pi and pj of the colour-correlated hard partons in a
reference frame in which pi and pj are back-to-back.

The transverse-momentum singularity in the current is partly screened by the logarith-
mic function Lij, and we have

1

q212⊥ij

Lij "
q12⊥ij→0

1

q212⊥ij

[
2πi sign(q212) Θ

(
−pi · q12
pi · pj

)
Θ

(
−pj · q12
pi · pj

)
+O

(
q212⊥ij

q212

)]
,

(41)
which shows that the current has a one-loop singularity of absorptive origin. Considering
the physically most relevant kinematical region in which the soft quark and antiquark are
produced in the final state (q01 > 0, q02 > 0), Eq. (41) becomes

1

q212⊥ij

Lij "
q12⊥ij→0

1

q212⊥ij

2πi Θ(−p0i ) Θ(−p0j) , (q01 > 0, q02 > 0) , (42)

which shows that the transverse-momentum singularity is present in the scattering ampli-
tude of a physical process in which the final-state soft qq̄ pair is produced by the collision
of the hard partons i and j in the initial state. We remark that this singularity has a pure
quantum mechanics (loop) origin, and it occurs in the limit q212⊥ij → 0 even if the trans-
verse momenta q1⊥ij and q2⊥ij (q2k⊥ij = 2pi · qk pj · qk/pi · pj, k = 1, 2) of the soft quark and
antiquark are separately large (i.e., they are separately non-vanishing) and q212 is large. We
also note that, setting q12⊥ij = 0 at fixed non-vanishing values of q212 and q1⊥ij (or q2⊥ij),
we have

(
#i1 − #j2

)
= −

(
#j1 − #i2

)
. Therefore, in the limit q212⊥ij → 0 the factor #i1 − #j2 is

(approximately) antisymmetric with respect to the exchange pi ↔ pj and this implies that
we can perform the following replacement in Eq. (37):
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(
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)
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i T b
j

π Θ(−p0i )Θ(−p0j)

q212⊥ij

(
#i1−#j2

)
, (q01, q

0
2 > 0) ,

(43)
and it follows that, in the kinematical region with q01 > 0 and q02 > 0, the transverse-
momentum singularity has a purely non-abelian character (see the factor fabc in the right-
hand side of the relation (43)).

As we have just discussed, the singularity of the soft-qq̄ current in the limit q12⊥ij →
0 originates from one-loop interactions of the two soft partons. Therefore, we expect
the presence of the transverse-momentum singularity also in the case of double soft-gluon
emission at one-loop level. The one-loop double-gluon current computed in Ref. [40] indeed
shows singular terms at q12⊥ij → 0.

We have also computed the soft-qq̄ one-loop current J (1) by explicitly evaluating its
dependence on the RS parameter δR to all orders in ε. Using the notation of Eq. (30) and
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We present the explicit result of the ε expansion of the functions w[S], w[A], F [S] and F [A]

up to O(ε0). More precisely, we limit ourselves to presenting the expressions of these func-
tions in the kinematical region where q01 > 0 and q02 > 0 (i.e., the soft quark and antiquark
are produced in the physical final state), which is the most relevant physical region‡. In
this region, the squared current depends (see Eqs. (36) and (37)) on the logarithms "i1±"j2
(which are purely real, independently of whether the momenta pi and pj are physically

incoming or outgoing) and on the real part LijR and discontinuity Θ(in)
ij of the logarithm

Lij. We have (see Eqs. (27) and (28))

"i1+"j2 = ln
(pi · q1)(pj · q2)
(pi · q12)(pj · q12)

, "i1−"j2 = ln
(pi · q1)(pj · q12)
(pi · q12)(pj · q2)

, Lij = LijR+2iπ Θ(in)
ij , (64)

where

LijR = ln
(pi · q12)(pj · q12)
(pi · pj)(q1 · q2)

= ln

(
1 +

q212⊥ij

q212

)
, Θ(in)

ij ≡ Θ(−p0i )Θ(−p0j) . (65)

The function w[S]
ij has the following expression in the region where q01 > 0 and q02 > 0:

w[S]
ij (q1, q2) =

{
wij(q1, q2)
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LijR

(
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)
+O(ε)

}
+ (q1 ↔ q2) . (66)

This function (which is symmetric under the exchange i ↔ j) controls the size of the
one-loop radiative corrections to the tree-level colour dipole correlations T i · T j.

We note that w[S]
ij also depends on colour coefficients, while F [S]

ijk , w
[A]
ij and F [A]

ijk only
depends on parton momenta.

The function F [S]
ijk is associated with non-abelian three-particle correlations with colour

charge factor fabcT a
i T b

j T
c
k . In the region where q01 > 0 and q02 > 0, we have the explicit

result

F [S]
ijk(q2, q1) = 2π Iki(q1, q2)

{
LijR + "i1 + "j2

+ Θ(in)
ij

[
2
(1
ε
− LijR

)
− 2

q212
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]
+O(ε)

}
+ (q1 ↔ q2) . (67)

The charge-asymmetry contributions to Eq. (61) can be expressed through the function

F [A]
ijk . In the region where q01 > 0 and q02 > 0 we have

F [A]
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}
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‡Expressions in other kinematical regions can be obtained by using the fully general one-loop current
in Eqs. (36) and (37).
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of Eq. (37) we see that the one-loop interaction at O(ε0) also produces a different type of
kinematical dependence as given by the factor j(1, 2) · pi q212/(pi · q12 q212⊥ij). This rational
factor has no collinear singularity at q212 → 0, but it potentially leads to a singularity in
the limit q212⊥ij → 0. This is a ‘transverse-momentum singularity’, since the kinematical

variable
√

q212⊥ij in Eq. (38) is the transverse component of the momentum q12 of the soft

qq̄ pair with respect to the momenta pi and pj of the colour-correlated hard partons in a
reference frame in which pi and pj are back-to-back.

The transverse-momentum singularity in the current is partly screened by the logarith-
mic function Lij, and we have

1

q212⊥ij

Lij "
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1
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[
2πi sign(q212) Θ
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−pi · q12
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+O

(
q212⊥ij

q212

)]
,

(41)
which shows that the current has a one-loop singularity of absorptive origin. Considering
the physically most relevant kinematical region in which the soft quark and antiquark are
produced in the final state (q01 > 0, q02 > 0), Eq. (41) becomes

1

q212⊥ij

Lij "
q12⊥ij→0

1

q212⊥ij

2πi Θ(−p0i ) Θ(−p0j) , (q01 > 0, q02 > 0) , (42)

which shows that the transverse-momentum singularity is present in the scattering ampli-
tude of a physical process in which the final-state soft qq̄ pair is produced by the collision
of the hard partons i and j in the initial state. We remark that this singularity has a pure
quantum mechanics (loop) origin, and it occurs in the limit q212⊥ij → 0 even if the trans-
verse momenta q1⊥ij and q2⊥ij (q2k⊥ij = 2pi · qk pj · qk/pi · pj, k = 1, 2) of the soft quark and
antiquark are separately large (i.e., they are separately non-vanishing) and q212 is large. We
also note that, setting q12⊥ij = 0 at fixed non-vanishing values of q212 and q1⊥ij (or q2⊥ij),
we have

(
#i1 − #j2

)
= −

(
#j1 − #i2

)
. Therefore, in the limit q212⊥ij → 0 the factor #i1 − #j2 is

(approximately) antisymmetric with respect to the exchange pi ↔ pj and this implies that
we can perform the following replacement in Eq. (37):

tatb T a
i T b

j

Lij

q212⊥ij

(
#i1−#j2

)
−→

q12⊥ij→0
−fabctc T a

i T b
j

π Θ(−p0i )Θ(−p0j)

q212⊥ij

(
#i1−#j2

)
, (q01, q

0
2 > 0) ,

(43)
and it follows that, in the kinematical region with q01 > 0 and q02 > 0, the transverse-
momentum singularity has a purely non-abelian character (see the factor fabc in the right-
hand side of the relation (43)).

As we have just discussed, the singularity of the soft-qq̄ current in the limit q12⊥ij →
0 originates from one-loop interactions of the two soft partons. Therefore, we expect
the presence of the transverse-momentum singularity also in the case of double soft-gluon
emission at one-loop level. The one-loop double-gluon current computed in Ref. [40] indeed
shows singular terms at q12⊥ij → 0.

We have also computed the soft-qq̄ one-loop current J (1) by explicitly evaluating its
dependence on the RS parameter δR to all orders in ε. Using the notation of Eq. (30) and
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We present the explicit result of the ε expansion of the functions w[S], w[A], F [S] and F [A]

up to O(ε0). More precisely, we limit ourselves to presenting the expressions of these func-
tions in the kinematical region where q01 > 0 and q02 > 0 (i.e., the soft quark and antiquark
are produced in the physical final state), which is the most relevant physical region‡. In
this region, the squared current depends (see Eqs. (36) and (37)) on the logarithms "i1±"j2
(which are purely real, independently of whether the momenta pi and pj are physically

incoming or outgoing) and on the real part LijR and discontinuity Θ(in)
ij of the logarithm

Lij. We have (see Eqs. (27) and (28))

"i1+"j2 = ln
(pi · q1)(pj · q2)
(pi · q12)(pj · q12)

, "i1−"j2 = ln
(pi · q1)(pj · q12)
(pi · q12)(pj · q2)

, Lij = LijR+2iπ Θ(in)
ij , (64)

where

LijR = ln
(pi · q12)(pj · q12)
(pi · pj)(q1 · q2)

= ln

(
1 +

q212⊥ij

q212

)
, Θ(in)

ij ≡ Θ(−p0i )Θ(−p0j) . (65)

The function w[S]
ij has the following expression in the region where q01 > 0 and q02 > 0:

w[S]
ij (q1, q2) =

{
wij(q1, q2)

[
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}
+ (q1 ↔ q2) . (66)

This function (which is symmetric under the exchange i ↔ j) controls the size of the
one-loop radiative corrections to the tree-level colour dipole correlations T i · T j.

We note that w[S]
ij also depends on colour coefficients, while F [S]

ijk , w
[A]
ij and F [A]

ijk only
depends on parton momenta.

The function F [S]
ijk is associated with non-abelian three-particle correlations with colour

charge factor fabcT a
i T b

j T
c
k . In the region where q01 > 0 and q02 > 0, we have the explicit

result

F [S]
ijk(q2, q1) = 2π Iki(q1, q2)

{
LijR + "i1 + "j2

+ Θ(in)
ij

[
2
(1
ε
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)
− 2
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q212⊥ij
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]
+O(ε)

}
+ (q1 ↔ q2) . (67)

The charge-asymmetry contributions to Eq. (61) can be expressed through the function

F [A]
ijk . In the region where q01 > 0 and q02 > 0 we have

F [A]
ijk (q2, q1) =

{
Iki(q1, q2)

[
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2 + 2
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}
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‡Expressions in other kinematical regions can be obtained by using the fully general one-loop current
in Eqs. (36) and (37).
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of Eq. (37) we see that the one-loop interaction at O(ε0) also produces a different type of
kinematical dependence as given by the factor j(1, 2) · pi q212/(pi · q12 q212⊥ij). This rational
factor has no collinear singularity at q212 → 0, but it potentially leads to a singularity in
the limit q212⊥ij → 0. This is a ‘transverse-momentum singularity’, since the kinematical

variable
√

q212⊥ij in Eq. (38) is the transverse component of the momentum q12 of the soft

qq̄ pair with respect to the momenta pi and pj of the colour-correlated hard partons in a
reference frame in which pi and pj are back-to-back.

The transverse-momentum singularity in the current is partly screened by the logarith-
mic function Lij, and we have

1

q212⊥ij

Lij "
q12⊥ij→0

1

q212⊥ij

[
2πi sign(q212) Θ

(
−pi · q12
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)
Θ
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−pj · q12
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)
+O

(
q212⊥ij
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)]
,

(41)
which shows that the current has a one-loop singularity of absorptive origin. Considering
the physically most relevant kinematical region in which the soft quark and antiquark are
produced in the final state (q01 > 0, q02 > 0), Eq. (41) becomes

1
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Lij "
q12⊥ij→0

1

q212⊥ij

2πi Θ(−p0i ) Θ(−p0j) , (q01 > 0, q02 > 0) , (42)

which shows that the transverse-momentum singularity is present in the scattering ampli-
tude of a physical process in which the final-state soft qq̄ pair is produced by the collision
of the hard partons i and j in the initial state. We remark that this singularity has a pure
quantum mechanics (loop) origin, and it occurs in the limit q212⊥ij → 0 even if the trans-
verse momenta q1⊥ij and q2⊥ij (q2k⊥ij = 2pi · qk pj · qk/pi · pj, k = 1, 2) of the soft quark and
antiquark are separately large (i.e., they are separately non-vanishing) and q212 is large. We
also note that, setting q12⊥ij = 0 at fixed non-vanishing values of q212 and q1⊥ij (or q2⊥ij),
we have

(
#i1 − #j2

)
= −

(
#j1 − #i2

)
. Therefore, in the limit q212⊥ij → 0 the factor #i1 − #j2 is

(approximately) antisymmetric with respect to the exchange pi ↔ pj and this implies that
we can perform the following replacement in Eq. (37):

tatb T a
i T b

j

Lij

q212⊥ij

(
#i1−#j2

)
−→

q12⊥ij→0
−fabctc T a

i T b
j

π Θ(−p0i )Θ(−p0j)

q212⊥ij

(
#i1−#j2

)
, (q01, q

0
2 > 0) ,

(43)
and it follows that, in the kinematical region with q01 > 0 and q02 > 0, the transverse-
momentum singularity has a purely non-abelian character (see the factor fabc in the right-
hand side of the relation (43)).

As we have just discussed, the singularity of the soft-qq̄ current in the limit q12⊥ij →
0 originates from one-loop interactions of the two soft partons. Therefore, we expect
the presence of the transverse-momentum singularity also in the case of double soft-gluon
emission at one-loop level. The one-loop double-gluon current computed in Ref. [40] indeed
shows singular terms at q12⊥ij → 0.

We have also computed the soft-qq̄ one-loop current J (1) by explicitly evaluating its
dependence on the RS parameter δR to all orders in ε. Using the notation of Eq. (30) and
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At arbitrary orders in the ε expansion, the two-particle correlation function w[A]
ij is directly

related to F [A]
ijk as follows

w[A]
ij (q1, q2) =

[
F [A]
iji (q1, q2) + F [A]

jii (q1, q2)
]
−
(
i ↔ j

)
. (69)

In contrast to w[S]
ij , we note that w[A]

ij is antisymmetric under the exchange i ↔ j of the

hard-parton momenta. In particular, this antisymmetry of w[A]
ij implies that in the sum

over i and j of Eq. (61) we can replace D̃i · T j by its antisymmetric component, namely,

D̃i · T j →
(
D̃i · T j − D̃j · T i

)
/2. Inserting Eq. (68) in Eq. (69), w[A]

ij has the following
expression:
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+
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Iii(q1, q2)− Ijj(q1, q2)

] 2 q212
q212⊥ij

LijR

(
"i1 − "j2

)
+O(ε)

}
− (q1 ↔ q2) .

By inspection of Eqs. (66)–(70) we note that only the function F [S]
ijk exhibits a discon-

tinuity with respect to the momenta of the hard partons (see Θ(in)
ij in Eqs. (65) and (67)).

The discontinuity contributes in the kinematical region where two hard-parton momenta i
and j have negative time component (p0i < 0 and p0j < 0), namely, the partons i and j col-
lide in the physical initial state. This discontinuity term of the squared current in Eq. (61)
originates as interference between a one-loop absorptive (imaginary) contribution and the
antihermitian colour factor ifabc T a

i T b
j T

c
k (we recall that i, j and k refer to three distinct

partons). Actually, the entire term proportional to fabc T a
i T b

j T
c
k in Eq. (61) has this ori-

gin§ as absorptive/colour interference (the absorptive term being related to the kinematical
region where q01 > 0 and q02 > 0).

As discussed in Sect. 4 (see Eqs. (41)–(43) and accompanying comments) the one-
loop current of soft-qq̄ emission has a transverse-momentum singularity at q12⊥ij → 0.
This singularity has a non-abelian character and an absorptive origin. At the level of the
one-loop squared current, this singularity does appear in the function F [S]

ijk (see the term

(q212⊥ij)
−1 Θ(in)

ij in Eq. (67)), while it is absent in all the other contributions (in Eqs. (66),
(68) and (70) we see the term (q212⊥ij)

−1 LijR → (q212)
−1, which is not singular at q12⊥ij → 0).

Therefore, the transverse-momentum singularity at q12⊥ij → 0 contributes through colour
correlation fabc T a

i T b
j T

c
k to one-loop squared amplitudes for the class of processes with

initial-state colliding partons i and j and two or more final-state hard partons (as recalled
below in Eq. (71), the colour correlation vanishes if there is only one final-state hard parton).
This class of processes includes, for instance, dijet (or heavy-quark pair) production in
hadron–hadron collisions and the transverse-momentum singularity is directly related to
the transverse momentum of the dijet system (heavy-quark pair). Interestingly, we note
that this is the same class of processes that is sensistive to effects due to the violation
of strict collinear factorization [26]. However, we remark on the fact that the transverse-
momentum singularity at q12⊥ij → 0 and violation of strict collinear factorization are

§The one-loop squared current for single soft-gluon radiation [23] has three-particle correlations of the
type fabc T a

i T b
j T

c
k , which have an analogous origin as absorptive/colour interference.
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of Eq. (37) we see that the one-loop interaction at O(ε0) also produces a different type of
kinematical dependence as given by the factor j(1, 2) · pi q212/(pi · q12 q212⊥ij). This rational
factor has no collinear singularity at q212 → 0, but it potentially leads to a singularity in
the limit q212⊥ij → 0. This is a ‘transverse-momentum singularity’, since the kinematical

variable
√

q212⊥ij in Eq. (38) is the transverse component of the momentum q12 of the soft

qq̄ pair with respect to the momenta pi and pj of the colour-correlated hard partons in a
reference frame in which pi and pj are back-to-back.

The transverse-momentum singularity in the current is partly screened by the logarith-
mic function Lij, and we have
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,

(41)
which shows that the current has a one-loop singularity of absorptive origin. Considering
the physically most relevant kinematical region in which the soft quark and antiquark are
produced in the final state (q01 > 0, q02 > 0), Eq. (41) becomes
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Lij "
q12⊥ij→0
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2πi Θ(−p0i ) Θ(−p0j) , (q01 > 0, q02 > 0) , (42)

which shows that the transverse-momentum singularity is present in the scattering ampli-
tude of a physical process in which the final-state soft qq̄ pair is produced by the collision
of the hard partons i and j in the initial state. We remark that this singularity has a pure
quantum mechanics (loop) origin, and it occurs in the limit q212⊥ij → 0 even if the trans-
verse momenta q1⊥ij and q2⊥ij (q2k⊥ij = 2pi · qk pj · qk/pi · pj, k = 1, 2) of the soft quark and
antiquark are separately large (i.e., they are separately non-vanishing) and q212 is large. We
also note that, setting q12⊥ij = 0 at fixed non-vanishing values of q212 and q1⊥ij (or q2⊥ij),
we have

(
#i1 − #j2

)
= −

(
#j1 − #i2

)
. Therefore, in the limit q212⊥ij → 0 the factor #i1 − #j2 is

(approximately) antisymmetric with respect to the exchange pi ↔ pj and this implies that
we can perform the following replacement in Eq. (37):
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(43)
and it follows that, in the kinematical region with q01 > 0 and q02 > 0, the transverse-
momentum singularity has a purely non-abelian character (see the factor fabc in the right-
hand side of the relation (43)).

As we have just discussed, the singularity of the soft-qq̄ current in the limit q12⊥ij →
0 originates from one-loop interactions of the two soft partons. Therefore, we expect
the presence of the transverse-momentum singularity also in the case of double soft-gluon
emission at one-loop level. The one-loop double-gluon current computed in Ref. [40] indeed
shows singular terms at q12⊥ij → 0.

We have also computed the soft-qq̄ one-loop current J (1) by explicitly evaluating its
dependence on the RS parameter δR to all orders in ε. Using the notation of Eq. (30) and
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This singularity contributes for the 
class of processes with initial-state 
colliding partons i and j and two or 
more final-state hard partons (e.g. 
dijet or heavy-quark production)

It is the only contribution to present 
transverse-momentum singularity

It contributes in the same class of 
processes that is sensitive to 

effects due to the violation of strict 
collinear factorization

Catani, de Florian, Rodrigo  (2011)



Outlook 
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• We have derived the explicit form of the !-pole (divergent) contributions of the 
multi parton soft current. 

• We have presented the one-loop soft current for the emission of a soft qqbar 
pair, considering arbitrary kinematical regions of the soft-parton and the hard-
parton momenta. We have included all the finite terms at O(!0). 

• The one-loop qqbar soft current includes powers of logarithmic functions but no 
dilog functions. 

• The one-loop soft current produces a new type of singularity if the soft-qqbar 
pair is radiated with a vanishing transverse momentum with respect to the 
directions of two colliding hard partons in the initial state <- pure non-abelian 
character. It can appear also in the double soft-gluon emission. 

• At the squared amplitude level, the transverse momentum singularity 
contributes to the cross section of processes with two initial-state colliding 
partons and two (or more) hard partons in the final state. 

• At variance with the case of multi-gluon radiation, the emission of soft fermions 
and anti fermions lead to charge asymmetry effects.



Thank you!!!
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- ( + ) x J(0)
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The sketchy form of the factorization formula 
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