Virtual Corrections to ZH Production via Gluon Fusion

Stephen Jones IPPP, Durham / Royal Society URF

In collaboration with: Chen, Heinrich, Kerner, Klappert, Schlenk + Jahn, Langer, Magerya, Põldaru, Villa

JHEP 03 (2021) 125 [2011.12325] (pySecDec Release) [2107.XXXX]

Outline

Motivation & Background

Higgs precision, why corrections to $gg \rightarrow ZH$ are interesting

Setup of Calculation

Tensor decomposition/ handling γ_5 / integral reduction

Numerical calculation of multi-loop Feynman integrals

Sector decomposition

Evaluating amplitudes with pySecDec (new release coming soon)

Results & Comparisons

Higgs Couplings

Incredible progress has been made in establishing properties of the Higgs Boson

Higgs Production & Decay

ATLAS-CONF-2020-027

ATLAS Preliminary	Stat. —	Syst. SM				
$m_H = 125.09 \text{ GeV}, y_H < 2.5$						
p _{SM} = 87%	Tota	I Stat. Syst.				
ggF γγ 🙀	1.03 ± 0.1	$(\pm 0.08, -0.07)$				
ggF ZZ	0.94 ^{+0.11} -0.10	$(\pm 0.10, \pm 0.04)$				
ggF WW 📥	1.08 + 0.19 - 0.18	$(\pm 0.11, \pm 0.15)$				
ggF ττ μ	$1.02 + 0.60 \\ - 0.55$	$\left(\begin{array}{c} +0.39 \\ -0.38 \end{array} , \begin{array}{c} +0.47 \\ -0.39 \end{array} \right)$				
ggF comb.	1.00 ± 0.07	7 (± 0.05 , ± 0.05)				
VBF γγ μ	1.31 ^{+0.26} -0.23	$\left(\begin{array}{cc} +0.19 \\ -0.18 \end{array}, \begin{array}{cc} +0.18 \\ -0.15 \end{array}\right)$				
	1.25 ^{+0.50} _{-0.41}	$\left(\begin{array}{cc} +0.48 & +0.12 \\ -0.40 & -0.08 \end{array}\right)$				
	0.60 + 0.36	$(\begin{array}{c} +0.29 \\ -0.27 \end{array}, \pm 0.21)$				
VBF ττ μ	1.15 ^{+ 0.57} - 0.53	$\left(\begin{array}{cc} +0.42 & +0.40 \\ -0.40 & -0.35 \end{array}\right)$				
VBF bb	3.03 ^{+ 1.67} - 1.62	$\left(\begin{array}{c} +1.63 & +0.38 \\ -1.60 & -0.24 \end{array}\right)$				
VBF comb.	1.15 + 0.18 - 0.17	$(\pm 0.13, +0.12, -0.10)$				
VH γγ 📕	1.32 + 0.33 - 0.30	$\left(\begin{array}{c} +0.31 \\ -0.29 \end{array}, \begin{array}{c} +0.11 \\ -0.09 \end{array}\right)$				
	1.53 ^{+ 1.13} _{- 0.92}	$\left(\begin{array}{c} +1.10 \\ -0.90 \end{array}, \begin{array}{c} +0.28 \\ -0.21 \end{array}\right)$				
VH bb	1.02 ^{+ 0.18} - 0.17	$(\pm 0.11, -0.12)$				
VH comb.	1.10 + 0.16 - 0.15	$(\pm 0.11, -0.12)$				
ttH+tH γγ 📫	0.90 + 0.27 - 0.24	$\left(\begin{array}{c} +0.25 \\ -0.23 \end{array}, \begin{array}{c} +0.09 \\ -0.06 \end{array}\right)$				
ttH+tH VV	1.72 ^{+ 0.56} - 0.53	$\left(\begin{array}{cc} +0.42 & +0.38 \\ -0.40 & -0.34 \end{array} \right)$				
<i>ttH+tH</i> ττ μ	1.20 ^{+1.07} -0.93	$\left(\begin{array}{cc} +0.81 & +0.70 \\ -0.74 & -0.57 \end{array}\right)$				
ttH+tH bb	0.79 ^{+ 0.60} - 0.59	$\left({\pm 0.29} \ , {0.52} \ -0.51 \ \right)$				
<i>ttH</i> + <i>tH</i> comb. ₩	1.10 ^{+0.21} -0.20	$\begin{pmatrix} +0.16 & +0.14 \\ -0.15 & -0.13 \end{pmatrix}$				
-2 0 2 4	6	8				
$\sigma imes B$ normalized to SM						

Crucial to have accurate theory predictions for comparison to data

QCD Factorisation Formula

$$d\sigma = \int dx_a dx_b f(x_a) f(x_b) d\hat{\sigma}_{ab}(x_a, x_b) F_J + \mathcal{O}\left((\Lambda/Q)^m\right)$$
PDFs/ Input parameters Hard Scattering Non-perturbative
Matrix Element effects ~ few %
With $\alpha_s \sim 0.1$
Typically: NLO ~ 10% correction, NNLO ~ 1% correction

However, there are important exceptions:

- Higgs Boson production (NLO ~100%, NNLO ~10%, N3LO ~ 2%)
- New partonic channels can open (e.g. $gg \rightarrow ZH$)

and

• Distributions can be modified substantially (even if σ_{tot} is stable)

Overview of $pp \rightarrow ZH$

b b

 $b\bar{b}$ piece (NNLO) Ahmed, Ajjath, Chen, Dhani, Mukherjee, Ravindran 19

Drell-Yan piece (NNLO) Gluo Brein, Djouadi, Harlander 03; Ferrera, Grazzini, Tramontano 14; See also: Kumara, Mandal, Ravindran 14 + $q\bar{q}$ piece with closed top loops (1-3%)

Available in various codes:

HAWK (NLO QCD + NLO EW) Denner, Dittmaier, Kallweit, Mück 14 vh@nnlo (NNLO QCD + NLO EW) Harlander, Klappert, Liebler, Simon 18; Brein, Harlander, Zirke 12

MCFM (NNLO QCD) Campbell, Ellis, Williams 16

GENEVA (NNLL'+NNLO with PS) Alioli, Broggio, Kallweit, Lim, Rottoli 19

Why Calculate $gg \rightarrow ZH$?

The practical reason ...

~10% of total cross section

~100% scale uncertainty (and underestimated?)

Signal				
Cross-section (scale)	0.7% (qq), 25% (gg)			
$H \rightarrow b\bar{b}$ branching fraction	1.7%			
Scale variations in STXS bins	$3.0\%-3.9\% (qq \rightarrow WH), 6.7\%-12\% (qq \rightarrow ZH), 37\%-100\% (gg \rightarrow ZH)$			
PS/UE variations in STXS bins	1%–5% for $qq \rightarrow VH$, 5%–20% for $gg \rightarrow ZH$			
PDF+ $\alpha_{\rm S}$ variations in STXS bins	$1.8\%-2.2\% (qq \rightarrow WH), 1.4\%-1.7\% (qq \rightarrow ZH), 2.9\%-3.3\% (gg \rightarrow ZH)$			
m_{bb} from scale variations	M+S $(qq \rightarrow VH, gg \rightarrow ZH)$			
m_{bb} from PS/UE variations	M+S			
m_{bb} from PDF+ $\alpha_{\rm S}$ variations	M+S			
$p_{\rm T}^V$ from NLO EW correction	M+S			

ATLAS 2007.02873

Philipp Windischhofer / ATLAS (LHCXSWG Meeting 9/11/2020)

Why Calculate $gg \rightarrow ZH$? (II)

And another reason...

Provides new and interesting challenges:

Amplitude depends on large number of scales $s, t, m_Z^2, m_H^2, m_T^2$ Feynman Integrals appearing are non-trivial (internal masses, elliptic...)

Can test our techniques to breaking point then develop new approaches! Can we find a basis of integrals with simple coefficients? How can we obtain a reduction to a finite basis (many dots/numerators)? Can we improve numerical performance near thresholds? ...

ZH in Gluon Fusion

Full leading order (loop induced) Dicus, Kao 88; Kniehl 90

NLO in the limit of $m_t \to \infty$ ($K \approx 2$) (asymptotic expansion)

Altenkamp, Dittmaier, Harlander, H. Rzehak, Zirke 12

Virtual Corrections:

Expansion around large top quark mass $(1/m_t^8)$ + Padé approx Hasselhuhn, Luthe, Steinhauser 17

Expansion around small top quark mass ($1/m_t^{10} \& m_t^{32}$) + Padé approx Davies, Mishima, Steinhauser 20

Expansion around small p_T up to p_T^4 Alasfar, Degrassi, Giardino, Gröber, Vitti 21

Full numerical result

Chen, Heinrich, SPJ, Kerner, Klappert, Schlenk 20

Setup & Amplitudes

Amplitudes

Schematically:

00000 $\mathcal{M}^{\mu\nu\rho}\sim$ 00000000 $\mathscr{M}^{\mu\nu\rho} = \sum A_i T_i^{\mu\nu\rho}, \qquad A_i = \sum C_{i,k} I_k$ **Rational functions Feynman integrals** Large num. terms/ high degree Analytically: Involved special functions Handled with specialist symbolic (Polylogs, Elliptic...) manipulation programs In this work, we will compute them numerically

Decomposition: $gg \rightarrow ZH$

Idea: construct projectors for linearly polarised amplitudes in c.o.m frame, directly compute polarised amplitudes Chen 19

Polarisation vectors can be expressed (up to normalisation factors \mathcal{N}_i) in terms of external momenta:

$$\begin{split} \varepsilon_x^{\mu} = &\mathcal{N}_x \, \left(-s_{23} p_1^{\mu} - s_{13} p_2^{\mu} + s_{12} p_3^{\mu} \right) \\ \varepsilon_y^{\mu} = &\mathcal{N}_y \, \left(\epsilon_{\mu_1 \, \mu_2 \, \mu_3}^{\mu} \, p_1^{\mu_1} \, p_2^{\mu_2} \, p_3^{\mu_3} \right) \\ \varepsilon_T^{\mu} = &\mathcal{N}_T \, \left(\left(-s_{23}(s_{13} + s_{23}) + 2m_z^2 s_{12} \right) p_1^{\mu} + \right. \\ & \left(s_{13}(s_{13} + s_{23}) - 2m_z^2 s_{12} \right) p_2^{\mu} + s_{12}(-s_{13} + s_{23}) \, p_3^{\mu} \right) \\ \varepsilon_l^{\mu} = &\mathcal{N}_l \, \left(-2m_z^2 \left(p_1^{\mu} + p_2^{\mu} \right) + \left(s_{13} + s_{23} \right) \, p_3^{\mu} \right) \end{split}$$

Projectors are just products of pol. vecs.

 $\mathcal{P}_{1}^{\mu_{1}\mu_{2}\mu_{3}} = \varepsilon_{x}^{\mu_{1}} \varepsilon_{x}^{\mu_{2}} \varepsilon_{y}^{\mu_{3}} \qquad \mathcal{P}_{2}^{\mu_{1}\mu_{2}\mu_{3}} = \varepsilon_{x}^{\mu_{1}} \varepsilon_{y}^{\mu_{2}} \varepsilon_{T}^{\mu_{3}}, \\ \mathcal{P}_{3}^{\mu_{1}\mu_{2}\mu_{3}} = \varepsilon_{x}^{\mu_{1}} \varepsilon_{y}^{\mu_{2}} \varepsilon_{l}^{\mu_{3}} \qquad \mathcal{P}_{4}^{\mu_{1}\mu_{2}\mu_{3}} = \varepsilon_{y}^{\mu_{1}} \varepsilon_{x}^{\mu_{2}} \varepsilon_{T}^{\mu_{3}}, \\ \mathcal{P}_{5}^{\mu_{1}\mu_{2}\mu_{3}} = \varepsilon_{y}^{\mu_{1}} \varepsilon_{x}^{\mu_{2}} \varepsilon_{l}^{\mu_{3}} \qquad \mathcal{P}_{6}^{\mu_{1}\mu_{2}\mu_{3}} = \varepsilon_{y}^{\mu_{1}} \varepsilon_{y}^{\mu_{2}} \varepsilon_{y}^{\mu_{3}}.$

Cross checked with conventional form factor decomposition at LO and at NLO with expansions Davies, Mishima, Steinhauser 20

Diagrams: $gg \rightarrow ZH$

Leading Order (1-loop) Diagrams

NLO (2-loop) Virtual Diagrams

Dimensional Regularisation & γ_5

Z-Fermion Vertex

Contains vector ~ $v_t \gamma_\mu$ and axial-vector ~ $a_t \gamma_\mu \gamma_5$:

$$\mathcal{V}_{\mu}^{Vf\bar{f}} = i \frac{e}{2\sin\theta_W \cos\theta_W} \gamma_{\mu} \left(v_t + a_t \gamma_5 \right)$$

We use dimensional regularisation ($d = 4 - 2\epsilon$) to regulate divergences appearing in loop integrals, however, one can't retain all properties of γ_5 in $d \neq 4$ dimensions

Larin Scheme (ZH, ZZ)

Sacrifice anti-commuting property of γ_5

$$J_{\mu}^{5} = Z_{5,ns} J_{\mu,B}^{5} = Z_{5,ns} \left[\frac{i}{3!} \epsilon_{\mu\nu\rho\sigma} \bar{\psi} \gamma^{\nu} \gamma^{\rho} \gamma^{\sigma} \bar{\psi} \right]$$
$$P^{5} = Z_{5,p} P_{B}^{5} = Z_{5,p} \left[\frac{i}{4!} \epsilon_{\mu\nu\rho\sigma} \bar{\psi} \gamma^{\mu} \gamma^{\nu} \gamma^{\rho} \gamma^{\sigma} \bar{\psi} \right]$$

Fix Ward identities/ABJ anomaly:

$$Z_{5,ns} = 1 + \alpha_s(-4C_F) + \dots$$

$$Z_{5,p} = 1 + \alpha_s(-8C_F) + \dots$$

Larin, Vermaseren 91; Larin 93

Alternative schemes exist e.g:

Kreimer Scheme (ZZ) Retain $\{\gamma_5, \gamma^{\mu}\} = 0$, but, sacrifice cyclicity of traces involving γ_5

Define `reading point' and carefully manipulate all traces

Kreimer 90; Korner, Kreimer, Schilcher 92

Dealing with the Integrals

Feynman Integrals

Feynman integrals have many faces, each make different properties manifest... Switching the representation of our integrals allows us to understand/simplify/ complete the calculation

Feynman Parametrisation

Reduction (IBPs)

Integration by parts Identities: $\int d^{d}k_{1} \cdots d^{d}k_{l} \frac{\partial}{\partial k_{i}^{\mu}} \left[v^{\mu} I(k_{1}, \dots, k_{l}; p_{1}, \dots, p_{m}) \right] = 0$ Produce linear relations between integrals. The bay \$1: Chatricia \$1

Produce linear relations between integrals Tkachov 81; Chetyrkin 81

Can perform e.g. Gaussian elimination on system of equations Relate integrals to a smaller set of **Master integrals**

Example:

$$I_{\alpha_1 \alpha_2 \alpha_3} = \int \frac{\mathrm{d}^d p}{i\pi^{d/2}} \frac{1}{D_1^{\alpha_1} D_2^{\alpha_2} D_3^{\alpha_3}}$$
$$k_1^2 = k_2^2 = 0, k_3^2 = s$$
$$D_1 = p^2$$
$$D_2 = (p + k_1)^2$$
$$D_3 = (p + k_1 + k_2)^2$$

IBP Identities:

$$(d-4)I_{111} - I_{102} - I_{201} = 0$$
$$sI_{102} + (d-3)I_{101} = 0$$
$$sI_{201} + (d-3)I_{101} = 0$$
$$\therefore I_{111} = \frac{-2(d-3)}{s(d-4)}I_{101}$$

Finite Integrals

We have freedom regarding which integrals we choose as a basis (Master Integrals)

The choice impacts:

- 1) Complexity of the coefficients in the amplitude
- 2) Difficulty of computing the integrals

Always possible to pick a basis of finite integrals using: Panzer 14; von Manteuffel, Panzer, Schabinger 15

- Dimension Shifts Tarasov 96; Lee 10
- Dots
- Numerator Insertions (optional, used for $gg \rightarrow ZZ$)

The finite basis greatly improves numerical performance

In fact, the integral basis choice can make the difference between the problem being possible/impossible (see reason 1 or reason 2 above)

Master Integral Basis ($gg \rightarrow ZH$)

To select our master integrals, we took the following pragmatic approach:

1) Consider quasi-finite integrals (prefer finite integrals)

$$I = \frac{I_{-2}}{\epsilon^2} + \frac{I_{-1}}{\epsilon} + I_0 + \dots \quad \rightarrow \quad I' = I'_0 + \dots$$

2) Choose a basis in which the *d*-dependence of denominators factorises from the kinematic dependence (in practice we achieve this by brute force neglecting subsectors, public tools are available Smirnov, Smirnov 20; Usovitsch 20)

$$\frac{N(s,t,d)}{D(s,t,d)}I + \dots \rightarrow \frac{N'(s,t,d)}{D'_1(d)D'_2(s,t)}I' + \dots$$

- 3) Prefer simple denominator factors
- 4) Prefer computing fewer orders in epsilon for each master (found a basis in which all 7-propagator integrals start contributing only at e^{-1})
- 5) Prefer simpler numerators (check number of terms/file size)

See also: Matthias Kerner, Loops and Legs Proceedings 2018

Steps 2-5 reduced the size of amplitude by factor of 5 Largest coefficient (double-tadpole) 150 MB \rightarrow 5 MB

Baikov Representation (used only for $gg \rightarrow ZZ$)

General scalar integral can also be written as Baikov 96

$$I = \mathcal{N} \int dz_1 \dots dz_N \, \frac{1}{\prod_{i=1}^N \, z_i^{\nu_i}} \, P^{\frac{d-L-E-1}{2}}$$

IBPs become

$$0 = \int dz_1 \dots dz_N \sum_{i=1}^N \frac{\partial}{\partial z_i} \left(f_i \frac{1}{\prod_{i=1}^N z_i^{\nu_i}} P^{\frac{d-L-E-1}{2}} \right)$$
$$0 = \int dz_1 \dots dz_N \sum_{i=1}^N \left(\frac{\partial f_i}{\partial z_i} + \frac{d-L-E-1}{2P} f_i \frac{\partial P}{\partial z_i} - \nu_i \frac{f_i}{z_i} \right) \frac{1}{\prod_{i=1}^N z_i^{\nu_i}} P^{\frac{d-L-E-1}{2}}$$

Dimension shift Dots (doubled propagators)

No dimension shifted integrals, few dots in amplitudes IBPs generate such integrals \rightarrow (unnecessarily) huge linear system to solve

Impose `Syzygy' Constraints

$$\begin{pmatrix} \sum_{i=1}^{N} f_i \frac{\partial P}{\partial z_i} \end{pmatrix} + f_{N+1} P = 0 \qquad \rightarrow \text{No dimension shift} \qquad \begin{array}{l} \text{Larsen, Zhang 15;} \\ \text{Abreu, Febres Cordero, Ita, Page,} \\ \text{Zeng 17;} \\ \text{Boehm, Georgoudis, Larsen,} \\ \text{Schoenemann, Zhang 17, 18;} \end{array}$$

Reduction

Need tools to actually solve these systems of equations...

ZZ Computation	ZH Computation	
FinRed von Mantueffel (Private) + Syzygy Solver Agarwal, von Mantueffel	Kira 2 + FireFly Maierhöfer, Usovitsch, Uwer 18; Klappert, Lange, P. Maierhöfer, Usovitsch 20; Klappert, Lange 20; Klappert, Klein, Lange 20	
Master Integrals: 264	Master Integrals: 452	

Both toolchains extensively rely on the use of finite fields See e.g: von Mantueffel, Schabinger 14; Peraro 16

Even with these tools, still too difficult to obtain fully symbolic amplitudes

Fix mass ratios ZZ:
$$\frac{m_z^2}{m_t^2} = \frac{5}{18}$$
 and ZH: $\frac{m_z^2}{m_t^2} = \frac{23}{83}, \frac{m_H^2}{m_t^2} = \frac{12}{23}$

Finite Integrals (example from $gg \rightarrow ZZ$)

	Finite	ϵ Order	Rel Err	Timing (s)
$4 - 2\epsilon$	No	0	$2 \cdot 10^{-3}$	45
$\frac{4-2\epsilon}{2}$	No	0	$4 \cdot 10^{-2}$	63
$6-2\epsilon$	Yes	1	8 · 10 ⁻⁶	60
$6-2\epsilon$	Yes	1	$8 \cdot 10^{-4}$	55
Linear combination (numerator insertion)	Yes	1	$1 \cdot 10^{-4}$	18 pySecDec + QMC
Figures & Timings: Bakul Agarwal				Nvidia Tesla V100

Computing Integrals Numerically

pySecDec - automated tool for numerically computing Feynman Integrals Borowka, Heinrich, Jahn, SPJ, Kerner, Langer, Magerya, Põldaru, Schlenk, Villa, Zirke

Input:
$$I = \int d^d k_1 \cdots d^d k_l \frac{1}{(k_1^2 - m^2)((k_1 - k_2)^2 - m^2)\cdots}$$
 or $G = -$
Feynman Parametrise
 $\mathcal{U} = x_1 x_3 + x_1 x_4 + x_1 x_5 + \cdots$
 $\mathcal{F} = -p^2 x_1 x_2 x_3 - p^2 x_1 x_2 x_4 - \cdots$
Resolve Singularities (Sector Decomposition)
C++ library ready for numerical integration
Output: $\frac{\text{time python integrate_elliptic2L_euclidean.py}}{(2.47074199140731560e-01 +/- 4.36075599805171355e-16) + 0(eps)}{real 0m2.576s}$

Code publicly available (GitHub), widely used and well tested

Amplitude Evaluation

Use Quasi-Monte Carlo (QMC) integration $\mathcal{O}(n^{-1})$ error scaling Li, Wang, Yan, Zhao 15; Review: Dick, Kuo, Sloan 13;

Implemented in CUDA, evaluated on GPUs

Entire 2-loop amplitude evaluated with a single code

$$A = \sum_{i} \left(\sum_{j} C_{i,j} \epsilon^{j} \right) \left(\sum_{k} I_{i,k} \epsilon^{k} \right) = \epsilon^{-2} \left[C_{1,-2} \cdot I_{1,0} + \ldots \right]$$

coeff. integral
$$+ \epsilon^{-1} \left[C_{1,-1} \cdot I_{1,0} + \ldots \right] + \ldots$$

Dynamically set target precision for each sector, minimising time to obtain amplitude to requested precision:

$$T = \sum_{i} t_{i} + \bar{\lambda} \left(\sigma^{2} - \sum_{i} \sigma_{i}^{2} \right), \quad \sigma_{i} \sim t_{i}^{-e}$$

- $\bar{\lambda}$ Lagrange multiplier
- σ precision goal
- σ_i error estimate

Amplitude Evaluation (II)

New release (soon): can evaluate entire amplitudes Let's see how this works in a simple example 1-loop 4-photon amp.:

Step 1: Define Integrals

```
import pySecDec as psd
### Integral definitions ###
I = [
    # one loop bubble (u)
    psd.loop_integral.LoopIntegralFromGraph(
    internal_lines = [[0,[1,2]],[0,[2,1]]],
    external_lines = [['p1',1],['p2',2]],
    replacement_rules = [('p1*p1', 'u'),('p2*p2', 'u'),('p1*p2', 'u')]),
    # one loop bubble (t)
    psd.loop_integral.LoopIntegralFromGraph(
    internal_lines = [[0,[1,2]],[0,[2,1]]],
    external_lines = [['p1',1],['p2',2]],
    replacement_rules = [('p1*p1', 't'),('p2*p2', 't'),('p1*p2', 't')]),
    # one loop box (in 6 dimensions)
    psd.loop_integral.LoopIntegralFromGraph(
    internal_lines = [['0', [1,2]], [0, [2,3]], [0, [3,4]], [0, [4,1]]],
    external_lines = [['p1',1],['p2',2],['p3',3],['p4',4]],
    replacement_rules = [
                            ('p1*p1', 0), ('p2*p2', 0),
                            ('p3*p3', 0), ('p4*p4', 0),
                            ('p3*p2', 'u/2'), ('p1*p2', 't/2'),
                            ('p1*p4', 'u/2'), ('p1*p3', '-u/2-t/2'),
                            ('p2*p4', '-u/2-t/2'), ('p3*p4', 't/2')
                       ],
    dimensionality= '6-2*eps'
    ),
    # one loop box (in 8 dimensions)
    # ...
                                 Usual pySecDec Syntax
```

Step 2: Define Coefficients

Supports:

Multiple regulators & variables Coeffs with poles in regulators Multiple amplitudes at once

Amplitude Evaluation (III)

Step 3: Generate

Step 4: Integrate

Step 5: Generate, Compile, Run, ..., Profit!

Amplitude Evaluation (IV)

A peak behind the curtain (enabled by setting verbose=True)

Compute a first estimate of each integral (n: 50789 x 32 samples of integral) # Note: each order of each sector is computed separately (and can be known to a different precision) computing integrals to satisfy mineval 50000 integral 1/16: bubble_u_sector_1_order_0, time: 0.0 s res: (0,0) +/- (0,0) -> (1,0) +/- (8.89904e-17,0), n: 0 -> 50789 integral 2/16: bubble_u_sector_1_order_1, time: 0.0 s res: (0,0) +/- (0,0) -> (2.22314,0) +/- (1.9927e-15,0), n: 0 -> 50789 integral 3/16: bubble_t_sector_1_order_0, time: 0.0 s res: (0,0) +/- (0,0) -> (1,0) +/- (9.00691e-17,0), n: 0 -> 50789 integral 4/16: bubble_t_sector_1_order_1, time: 0.0 s res: (0,0) +/- (0,0) -> (1.73764,0) +/- (2.19938e-15,0), n: 0 -> 50789 • • • # Estimate amplitude(s) using integral results amplitude0 = + ((0,0) + (2.41174e-16,0)) + ((-28.4316, -1.6741e-09) + (4.06609e-09, 2.39249e-09)) + 0(eps)# Examine contribution of each integral to err. of amp. and estimate how many samples we need (n: known -> required) # Note: not all sectors will be recomputed, different sectors will be computed to different precisions sum: sum_eps^0, term: WINTEGRAL, integral 5: box_6_sector_1_order_0, current integral result: (0.478203,4.5158e-11) +/-(2.31205e-10,4.72335e-11), contribution to sum error: 2.0946e-09, increase n: 50789 -> 968960972 sum: sum_eps^0, term: WINTEGRAL, integral 15: box_8_sector_5_order_0, current integral result: (0.0173611,-5.39441e-13) +/-(3.16251e-12,1.29608e-12), contribution to sum error: 1.64054e-10, increase n: 50789 -> 193374172 # Iterate until we obtain the desired precision # Note: reason for iteration is printed (long running/run away jobs can be debugged straightforwardly) run further refinements: true computing integrals to satisfy error goals on sums: epsrel 1e-14, epsabs 1e-14 • • •

Results $gg \rightarrow ZH$

Finite Virtual Correction

Schematically,

$$\begin{split} \hat{\sigma} &= \hat{\sigma}^{\text{LO}} + \hat{\sigma}^{\text{NLO}} \\ \hat{\sigma}^{\text{LO}} &= \int_{n} d\sigma^{\text{B}} \\ \hat{\sigma}^{\text{NLO}} &= \int_{n} d\sigma^{\text{V}} + \int_{n+1} d\sigma^{\text{R}} + \int_{n} d\sigma^{\text{C}} \end{split}$$

Virtual part ($\mathrm{d}\sigma^V$) and real part ($\mathrm{d}\sigma^R$) not separately finite for $\epsilon o 0$

However, we can define a finite virtual contribution as follows: 1) UV renormalize: α_s in \overline{MS} & top quark mass in OS scheme 2) IR structure well known at NLO, subtract divergences

$$\mathcal{A}_{i}^{(0),\text{fin}} = \mathcal{A}_{i}^{(0),\text{UV}}, \qquad I_{1} = I_{1}^{\text{soft}} + I_{1}^{\text{coll}},
\mathcal{A}_{i}^{(1),\text{fin}} = \mathcal{A}_{i}^{(1),\text{UV}} - I_{1}\mathcal{A}_{i}^{(0),\text{UV}}, \qquad I_{1}^{\text{soft}} = -\frac{e^{\epsilon\gamma_{E}}}{\Gamma(1-\epsilon)} \left(\frac{\mu_{R}^{2}}{s}\right)^{\epsilon} \left(\frac{1}{\epsilon^{2}} + \frac{i\pi}{\epsilon}\right) 2C_{A},
I_{1}^{\text{coll}} = -\frac{\beta_{0}}{\epsilon} \left(\frac{\mu_{R}^{2}}{s}\right)^{\epsilon}.$$

A Few Conventions

We present results for the Born and Born-Virtual interference helicity amplitudes

Expand the helicity amplitudes in α_S

$$\mathscr{A}_{\lambda_1\lambda_2\lambda_3}^{\text{fin}} = \left(\frac{\alpha_s}{4\pi}\right) \mathscr{A}_{\lambda_1\lambda_2\lambda_3}^{(0),\text{fin}} + \left(\frac{\alpha_s}{4\pi}\right)^2 \mathscr{A}_{\lambda_1\lambda_2\lambda_3}^{(1),\text{fin}} + \dots$$

Compute the square/interference

$$\mathscr{B} = \frac{1}{4} \sum_{\lambda_1 \lambda_2 \lambda_3} |\mathscr{A}^{(0), \text{fin}}_{\lambda_1 \lambda_2 \lambda_3}|^2,$$

$$\mathscr{V} = \frac{1}{4} \sum_{\lambda_1 \lambda_2 \lambda_3} 2 \operatorname{Re} \left(\mathscr{A}^{*(0), \text{fin}}_{\lambda_1 \lambda_2 \lambda_3} \mathscr{A}^{(1), \text{fin}}_{\lambda_1 \lambda_2 \lambda_3} \right)$$

Renormalization scale set to $\mu_R^2 = s$ Electroweak coupling $e^2 = 4\pi\alpha = 1$ (can easily vary couplings/scales) $2 \rightarrow 2$ amplitude depends on two kinematic variables (after fixing masses)

Choose:

$$s = (p_1 + p_2)^2$$

 θ_z - angle in c.o.m frame between p_2 -axis and p_3

Evaluation of the Amplitude

Again, $2 \rightarrow 2$ amplitude depends on two kinematic variables (after fixing masses) $\beta_t = \frac{s - 4m_t^2}{s + 4m_t^2 - (2m_z + m_h)^2}, \qquad \begin{array}{l} \theta_z \text{ - angle in c.o.m frame} \\ \text{between } p_2\text{-axis and Z-boson } (p_3) \end{array}$

Sample grid of 20×20 points +80 extra top threshold/high-energy points in range: $-0.99 < \beta_t < 0.99$ and $-0.99 < \cos(\theta_z) < 0.99$

Evaluation of the Amplitude (Timing)

Each phase-space point evaluated with 2 x Nvidia Tesla V100 GPUs Precision goal set to 0.3% for each (linearly polarised) amplitude

Timing/ point:

Min: 45 mins, Max: 24 hr (wall-clock), ~65 hr (high-energy), Median: 3.5 hr

Worst performance near to ZH, $t\bar{t}$ thresholds, high-energy and forward scattering

Aside: Expansion by Regions

One option for dealing with these numerically unstable high-energy/threshold regions is expansion by regions (not used in our ZH calculation)

Beneke, Smirnov 98; Rakhmetov, Pak, Jantzen, Semenova, Becher, Neubert, Broggio, Ferroglia,... (See e.g. Jantzen 11 for an introduction)

Idea: expand integrals around some small parameter, e.g. m^2/p^2

$$(hard): \qquad = \mu^{2e} \int dk \, \frac{1}{(k+p)^2(k^2 - m^2)^2}$$

$$(hard): \qquad |k^2| \gg m^2, \qquad \frac{1}{(k+p)^2(k^2 - m^2)^2} \to \frac{1}{(k+p)^2(k^2)^2} \left(1 + 2\frac{m^2}{k^2} + \dots\right)$$

$$(soft): \qquad |k^2|, |k \cdot p| \ll p^2, \qquad \frac{1}{(k+p)^2(k^2 - m^2)^2} \to \frac{1}{p^2(k^2 - m^2)^2} \left(1 - \frac{k^2 + 2p \cdot k}{p^2} + \dots\right)$$

Integrate expanded integrals over full integration range, sum over all regions

Concept can be systematically applied also in Feynman parameter space

Aside: Expansion by Regions (II)

Implemented in tools such as FIESTA/ ASY/ ASY2

Smirnov 15; Smirnov, Smirnov, Tentyukov 09;

Available in next release of pySecDec

Details in talk of: Gudrun Heinrich @ HU Berlin 28/06/21

Comparison to Expansion (Large m_t)

The amplitude has been expanded around large- m_t and computed analytically Hasselhuhn, Luthe, Steinhauser 17; Davies, Mishima, Steinhauser 20

reweighted $1/m_t^{2n}$ expansion: 1.00• 0.950.90 ${\cal V}_n/{\cal V}$ 0.850.80 • n=0 • n=2 • n=4• n=1 • n=30.75 --0.4-0.2-1.0-0.8-0.60.0 β_t

Let us compare our result to the Born

$$\mathcal{V}_n = rac{\mathcal{B}}{\mathcal{B}_n} \widetilde{\mathcal{V}}_n + \mathcal{V}^{1\mathrm{PR}}$$

Per mille level agreement far below top quark threshold: $\mathcal{V}_4/\mathcal{V}=0.9989$

Expansion breaks down at threshold, observe that it differs from our result

Observation: n = 1 apparently worse than n = 0

A Note on High-Energy Small Mass Expansions

Each form factor can be expanded in m_z^2, m_h^2, m_t^2 :

Davies, Mishima, Steinhauser 20; Mishima 18

- 1) Express amplitude in terms of Feynman integrals: $I(m_z^2, m_h^2, m_t^2)$
- 2) Taylor expand around $m_z^2 = 0$ and $m_h^2 = 0$: $I(0,0,m_t^2) + m_z^2 I'(0,0,m_t^2) + \dots$
- 3) IBP reduce Feynman integrals to master integrals: $J(0,0,m_t^2)$
- 4) Compute master integrals in expansion around $m_t^2 = 0$: $J(0,0,m_t^2) = \sum_{m,n} C_{m,n} (m_t^2)^m \log(m_t^2)^n$

Results expanded up to m_t^{32}

Expansion expected to be valid for: $m_z^2, m_h^2 \ll m_t^2 \ll s, |t|, |u|$

Comparison to Expansion (Small m_t)

Agreement: ~2% level for $p_T \gtrsim 225$

~10% level for $150 < p_T < 225$

Consistent with Padé/ full at LO level

Currently investigating behaviour at moderate/ larger $p_T (m_z^4, m_h^4 \text{ effects})$ error propagation?)

Not all points agreeing well even for large \sqrt{s}

Convergence of the Padé result depends on $m_T \ll s, |t|, |u|$ can have small |t| even for large s (if p_T is small)

Possible to produce precise results for all helicity amplitudes also in kinematic limits!

Comparison to Expansion

Observe that modes with longitudinally polarised Z boson dominate total

Ratio between Born squared amplitude and Born-Virtual interference not flat

Reminder: missing real contribution (so plot is not NLO/LO `K-factor')

 β_t

Conclusion

We have entered the precision Higgs era

- Over coming years, expect greater demand for precise theory predictions (required to exploit experimental measurements)
- Detailed searches for deviations, e.g: differential measurements, constraining EFT couplings, off-shell measurements, ...

I have presented a calculation which underscores the usefulness of

- Modern approaches to solving IBPs and integral basis choices
- Numerical methods for solving Feynman integrals (new pySecDec release soon!)

Next steps...

- Put the pieces together in order to obtain complete NLO results
- Incorporate into public tools for $pp \rightarrow ZH$ (?)

Thank you for listening!

Backup

Results $gg \rightarrow ZZ$

Firstly: A Few Conventions

We present results for the Born and Born-Virtual interference helicity amplitudes

Expand the helicity amplitudes in α_S

$$\mathscr{M}_{\lambda_1\lambda_2\lambda_3\lambda_4}^{fin} = \left(\frac{\alpha_s}{2\pi}\right)\mathscr{M}_{\lambda_1\lambda_2\lambda_3\lambda_4}^{(1)} + \left(\frac{\alpha_s}{2\pi}\right)^2 \mathscr{M}_{\lambda_1\lambda_2\lambda_3\lambda_4}^{(2)} + \dots$$

Compute the square/interference

$$\mathcal{V}_{\lambda_1\lambda_2\lambda_3\lambda_4}^{(1)} = |\mathcal{M}_{\lambda_1\lambda_2\lambda_3\lambda_4}^{(1)}|^2,$$

$$\mathcal{V}_{\lambda_1\lambda_2\lambda_3\lambda_4}^{(2)} = 2 \operatorname{Re} \left(\mathcal{M}_{\lambda_1\lambda_2\lambda_3\lambda_4}^{*(1)} \mathcal{M}_{\lambda_1\lambda_2\lambda_3\lambda_4}^{(2)} \right)$$

We also define

$$\mathscr{V}_{\lambda_{3}\lambda_{4}}^{(i)} = \frac{1}{4} \sum_{\lambda_{1},\lambda_{2}} \mathscr{V}_{\lambda_{1}\lambda_{2}\lambda_{3}\lambda_{4}}^{(i)} \text{ and } \mathscr{V}^{(i)} = \sum_{\lambda_{3},\lambda_{4}} \mathscr{V}_{\lambda_{3}\lambda_{4}}^{(i)}$$

 $2 \rightarrow 2$ amplitude depends on two kinematic variables (after fixing masses)

Choose:

$$s = (p_1 + p_2)^2$$

 θ_z - angle in c.o.m frame between p_1 -axis and p_3

Comparison to Expansion

Expanded results from: Davies, Mishima, Steinhauser, Wellmann 20

Expansion can be likely be improved by fitting Padé approximants & conformal mapping, have not compared to these approaches (yet) Campbell, Ellis, Czakon, Kirchner 16

Comparison to Expansion II

Large m_t expansion

Excellent agreement with expansion sufficiently below top quark threshold (also as a function of θ_z)

Small m_t , m_z expansion

Excellent agreement for small $\cos(\theta_z)$ The small m_t expansion assumes: $m_t^2 \ll s, |t|, |u|$ (all invariants in problem)

For small scattering angle we do not necessarily have $m_t^2 \ll |t|, |u|$ and we can expect the expansion to break down

Numerical Integration

Numerical Integration

$$I[f] \equiv \int_{[0,1]^d} d\mathbf{x} \ f(\mathbf{x}) \quad \approx \quad Q[f] = \frac{1}{N} \sum_{i=1}^N w_i \ f(\mathbf{x}_i)$$

Goal: select points to minimise integration error

$$\varepsilon \equiv |I[f] - Q[f]|$$

Monte Carlo:

Randomly select sampling points $\varepsilon \approx \operatorname{Var}[f]/\sqrt{N}, \quad \varepsilon \sim \mathcal{O}(N^{-1/2})$ Improves slowly with N

Quasi-Monte Carlo

Select points with low discrepancy D_N $\varepsilon \leq D_N \cdot \operatorname{Var}[f], \quad \varepsilon \sim \mathcal{O}(\log^d(N)/N)$ Poor performance for large d

Both methods implemented in Cuba Hahn 04; Hahn14

Quasi-Monte Carlo (Rank 1 Lattices)

Quasi-Monte Carlo (QMC) in a Weighted Function Space

First applications to loop integrals, see: $\varepsilon \leq e_{\gamma} \cdot ||f||_{\gamma}, \quad \varepsilon \sim \mathcal{O}(N^{-1})$ or better

Li, Wang, Yan, Zhao 15; de Doncker, Almulihi, Yuasa 17, 18; de Doncker, Almulihi 17; Kato, de Doncker, Ishikawa, Yuasa 18

$$I[f] \approx \bar{Q}_{n,m}[f] \equiv \frac{1}{m} \sum_{k=0}^{m-1} Q_n^{(k)}[f], \quad Q_n^{(k)}[f] \equiv \frac{1}{n} \sum_{i=0}^{n-1} f\left(\left\{\frac{i\mathbf{z}}{n} + \mathbf{\Delta}_k\right\}\right)$$

- z Generating vec.
- $oldsymbol{\Delta}_k$ Random shift vec.
- $\{\}$ Fractional part
- n # Lattice points
- $m\,$ # Random shifts

Unbiased error estimate computed using (10-50) random shifts

Weighted Function Spaces

Assign weights $\gamma_{\mathfrak{u}}$ to each subset of dimensions $\mathfrak{u} \subseteq \{1, \ldots, d\}$ Review: Dick, Kuo, Sloan 13

Sobolev Space

Functions with square integrable first derivatives

Korobov Space

Periodic functions which are α times differentiable in each variable

$$\begin{split} \text{Norm} \quad ||f||_{\gamma}^{2} &= \sum_{\mathfrak{u} \subseteq \{1, \dots, d\}} \frac{1}{\gamma_{\mathfrak{u}}} \int_{[0,1]^{|\mathfrak{u}|}} \left(\int_{[0,1]^{d-|\mathfrak{u}|}} \frac{\partial^{|\mathfrak{u}|} f(\mathfrak{x})}{\partial \mathfrak{x}_{\mathfrak{u}}} d\mathfrak{x}_{-\mathfrak{u}} \right)^{2} d\mathfrak{x}_{\mathfrak{u}} \\ \text{Worst-case} \\ \text{error} \quad e_{\gamma}^{2} &\leq \left(\frac{1}{\psi(n)} \sum_{\emptyset \neq \mathfrak{u} \subseteq \{1, \dots, d\}} \gamma_{\mathfrak{u}}^{\lambda} \left(\frac{2\zeta(2\lambda)}{(2\pi^{2})^{\lambda}} \right)^{|\mathfrak{u}|} \right)^{\frac{1}{\lambda}} \\ \forall \lambda \in (1/2, 1] \\ \hline \varepsilon \sim \mathcal{O}(n^{-1}) \end{split} \\ \mathbf{v}_{\lambda} \in \mathcal{O}(n^{-\alpha}) \end{split} \\ \mathbf{v}_{\lambda} = \left(\frac{1}{\psi(n)} \sum_{\emptyset \neq \mathfrak{u} \subseteq \{1, \dots, d\}} \gamma_{\mathfrak{u}}^{\lambda} \left(\frac{2\zeta(2\lambda)}{(2\pi^{2})^{\lambda}} \right)^{|\mathfrak{u}|} \right)^{\frac{1}{\lambda}} \\ \mathbf{v}_{\lambda} \in (1/2, 1] \\ \hline \varepsilon \sim \mathcal{O}(n^{-\alpha}) \end{split} \\ \mathbf{v}_{\lambda} = \left(\frac{1}{\psi(n)} \sum_{\emptyset \neq \mathfrak{u} \subseteq \{1, \dots, d\}} \gamma_{\mathfrak{u}}^{\lambda} (2\zeta(2\alpha\lambda))^{|\mathfrak{u}|} \right)^{\frac{1}{\lambda}} \\ \mathbf{v}_{\lambda} \in (1/2, 1] \\ \hline \varepsilon \sim \mathcal{O}(n^{-\alpha}) \\ \hline \varepsilon \sim \mathcal{O}(n^{-\alpha}) \end{split}$$

Generating vector z precomputed for a **fixed** number of lattice points, chosen to minimise the worst-case error, we use component-by-component (CBC) construction Nuyens 07

In our public code, we distribute lattice rules generated using product weights: $\gamma_{\mathfrak{u}} = \prod_{i \in \mathfrak{u}} \gamma_i, \ \gamma_i = 1/d$ produced for a Korobov space with $\alpha = 2$ 52

Periodising Transforms

Lattice rules work especially well for continuous, smooth and periodic functions Functions can be periodized by a suitable change of variables: $\mathbf{x} = \phi(\mathbf{u})$

$$I[f] \equiv \int_{[0,1]^d} d\mathbf{x} \ f(\mathbf{x}) = \int_{[0,1]^d} d\mathbf{u} \ \omega_d(\mathbf{u}) f(\phi(\mathbf{u}))$$

$$\phi(\mathbf{u}) = (\phi(u_1), \dots, \phi(u_d)), \quad \omega_d(\mathbf{u}) = \prod_{j=1}^d \omega(u_j) \quad \text{and} \quad \omega(u) = \phi'(u)$$

Korobov transform: $\omega(u) = 6u(1-u), \quad \phi(u) = 3u^2 - 2u^3$ Sidi transform: $\omega(u) = \pi/2 \sin(\pi u), \quad \phi(u) = 1/2(1 - \cos \pi t)$ Baker transform: $\phi(u) = 1 - |2u - 1|$

Scaling

qmc: Performance

Accuracy limited by number of function evaluations Can accelerate this using Graphics Processing Units (GPUs)

Note: Performance gain highly dependent on integrand & hardware! Still room for further optimisations (both for CPU and GPU)