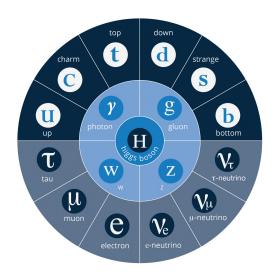
Simulating LHC events with generative networks DESY-HU Theorie-Seminar

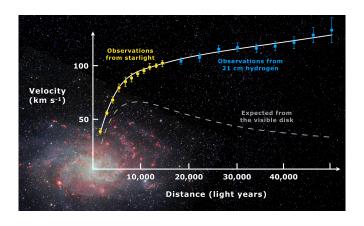
Anja Butter

ITP, Universität Heidelberg

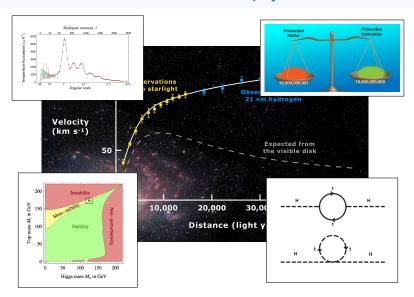
A structurally complete theory



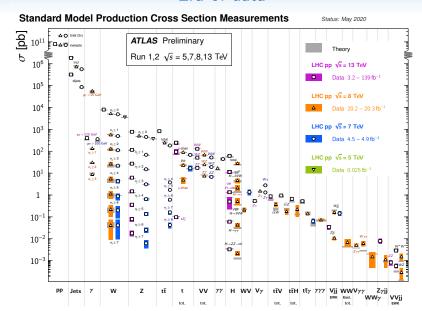
The need for new physics



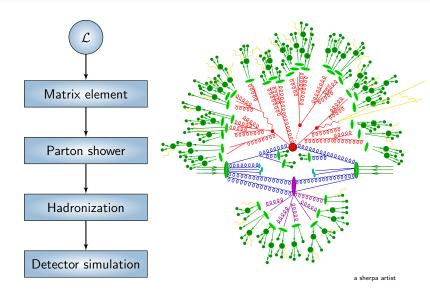
The need for new physics



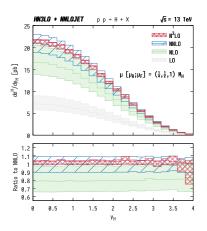
Era of data



First principle based event generation

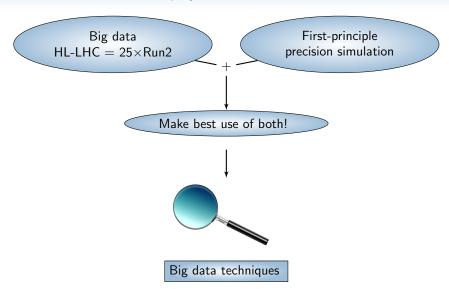


Precision simulations



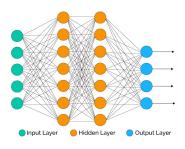
[1807.11501] Cieri, Chen, Gehrmann, Glover, Huss

New physics is hidden



How can ML help to find new physics

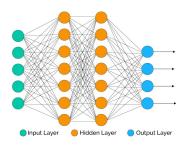
- 1.0 Classification/Regression
 - → Label data



minimize $L = (y_{true} - y_{output})^2$

How can ML help to find new physics

- 1.0 Classification/Regression
 - → Label data



minimize
$$L = (y_{true} - y_{output})^2$$

+ low level observables+ efficient training

Why now?
$$\to$$
 GPUs \to new algorithms [convolutional networks]

First application - jet tagging

- Convolutional network on W/QCD jet images
- + Physics: theoretical and experimental control
- + Straight forward from ML developments



[1511.05190] L. Oliveira, M. Kagan, L. Mackey, B. Nachman, A. Schwartzman

Top tagging with physics networks

- pixel → Lorentz vectors
- Lo(rentz) La(yer):
 Lorentz vectors → physics motivated objects

[1707.08966] AB, G. Kasieczka, T. Plehn, M. Russell

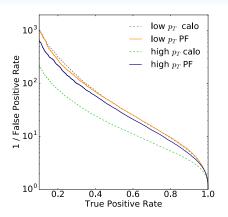
$$ilde{k}_j \stackrel{\mathsf{LoLa}}{\longrightarrow} \hat{k}_j = egin{pmatrix} m^2(ilde{k}_j) = ilde{k}_{j,\mu} \; \eta^{\mu
u} \; ilde{k}_{j,
u} \ p_T(ilde{k}_j) \ w^{(E)}_{jm} \; E(ilde{k}_m) \ w^{(d)}_{jm} \; d^2_{jm} \end{pmatrix}$$

with trainable diagonal metric $~d_{jm}^2=(\tilde{k}_j-\tilde{k}_m)_\mu~\eta^{\mu\nu}~(\tilde{k}_j-\tilde{k}_m)_
u$

Training yields:

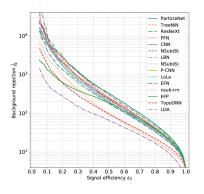
$$\eta = {\sf diag}(-0.99 \pm 0.02, -1.01 \pm 0.01, -1.01 \pm 0.02, -0.99 \pm 0.02)$$

LoLa vs Image



- Combine tracking & calorimeter information
- Improved performance for boosted jets
- Less trainable weights

Comparative top tagging study

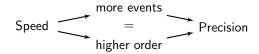


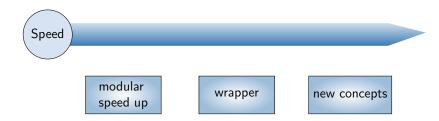
[1902.09914] G. Kasieczka, et al.

- \rightarrow Other applications: jet calibration, particle identification, ...
- ightarrow Open questions: precision, uncertainties, visualization

Precision in forward simulations

- ML 2.0 Generative models
 - → Can we simulate new data?

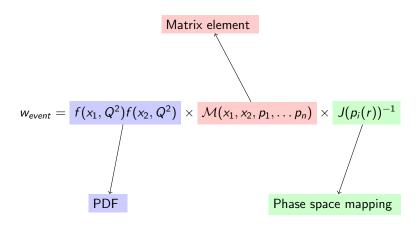


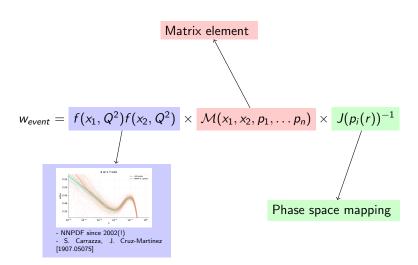


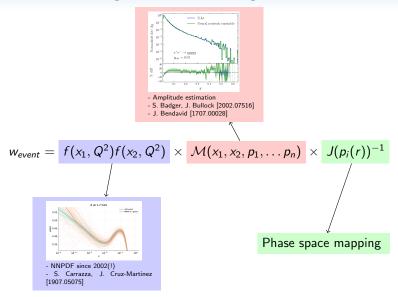
- 1. Generate phase space points
 - 2. Calculate event weight

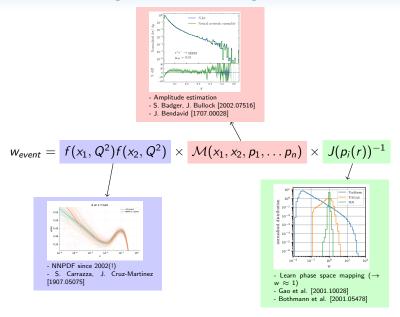
$$w_{event} = f(x_1, Q^2) f(x_2, Q^2) \times M(x_1, x_2, p_1, \dots p_n) \times J(p_i(r))^{-1}$$

3. Unweighting via importance sampling \rightarrow optimal for $w \approx 1$









... or training directly on event samples

Event generation

- Generating 4-momenta
- Z > II, pp > jj, $pp > t\bar{t} + decay$

[1901.00875] Otten et al. VAE & GAN [1901.05282] Hashemi et al. GAN [1903.02433] Di Sipio et al. GAN [1903.02556] Lin et al. GAN [1907.03764, 1912.08824] Butter et al. GAN [1912.02748] Martinez et al. GAN [2001.11103] Alanazi et al. GAN

Detector simulation

- Jet images
- Fast shower simulation in calorimeters

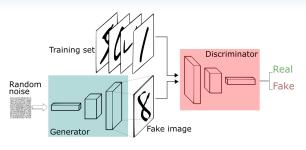
[1701.05927] de Oliveira et al. GAN

[2005.05334] Buhmann et al. VAE

[1705.02355, 1712.10321] Paganini et al. GAN [1802.03325, 1807.01954] Erdmann et al. GAN [1805.00850] Musella et al. GAN [ATL-SOFT-PUB-2018-001, ATLAS-SIM-2019-004, ATL-SOFT-PROC-2019-007] ATLAS VAE & GAN [1909.01359] Carazza and Dreyer GAN

NO claim to completeness!

Generative Adversarial Networks



Discriminator
$$[D(x_r) \rightarrow 1, D(x_c) \rightarrow 0]$$

$$L_D = \left\langle -\log D(x) \right\rangle_{x \sim P_{Truth}} + \left\langle -\log(1 - D(x)) \right\rangle_{x \sim P_{Gen}} \rightarrow -2\log 0.5$$

Generator
$$[D(x_c) \rightarrow 1]$$

$$L_G = \langle -\log D(x) \rangle_{x \sim P_{Gen}}$$

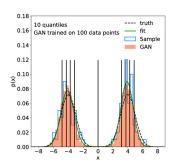
 \Rightarrow New statistically independent samples

What is the statistical value of GANned events?[2008.06545]

- Camel function
- Sample vs. GAN vs. 5 param.-fit

Evaluation on quantiles:

$$\mathsf{MSE}^* = \sum_{j=1}^{\mathit{N}_{\mathsf{quant}}} \left(\mathit{p}_j - \frac{1}{\mathit{N}_{\mathsf{quant}}} \right)^2$$

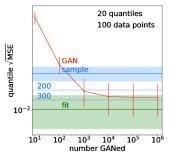


What is the statistical value of GANned events?[2008.06545]

- Camel function
- Sample vs. GAN vs. 5 param.-fit

Evaluation on quantiles:

$$\mathsf{MSE}^* = \sum_{j=1}^{\mathit{N}_{\mathsf{quant}}} \left(\mathit{p}_j - \frac{1}{\mathit{N}_{\mathsf{quant}}} \right)^2$$

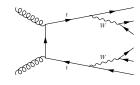


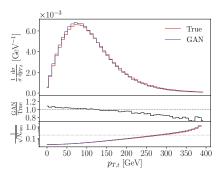
 $\rightarrow \text{Amplification factor } 2.5$

 $\mathsf{Sparser}\;\mathsf{data}\to\mathsf{bigger}\;\mathsf{amplification}$

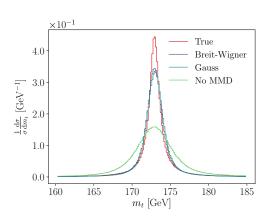
How to GAN LHC events [1907.03764]

- $t\bar{t} \rightarrow 6$ quarks
- 18 dim output
 - external masses fixed
 - no momentum conservation
- + Flat observables ✓
- Systematic undershoot in tails [10-20% deviation]





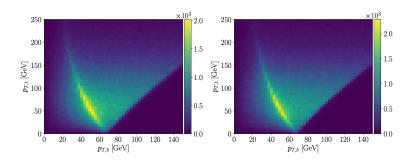
Special features



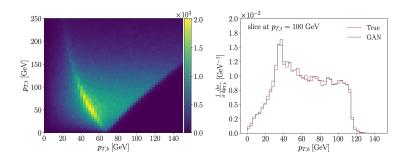
Solution: MMD kernel

$$\mathsf{MMD}^2(P_T,P_G) = \left\langle k(x,x') \right\rangle_{x,x'\sim P_T} + \left\langle k(y,y') \right\rangle_{y,y'\sim P_G} - 2\left\langle k(x,y) \right\rangle_{x\sim P_T,y\sim P_G}$$

Correlations



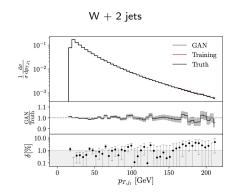
Correlations



Reaching precision (preliminary)

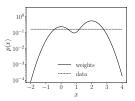
- 1. Representation p_T, η, ϕ
- 2. Momentum conservation
- 3. Resolve $\log p_T$
- 4. Regularization: spectral norm
- 5. Batch information
- \rightarrow 1% precision \checkmark

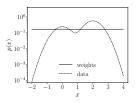
Automization?



Training on weighted events

Information contained in distribution or event weights

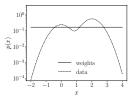




Training on weighted events

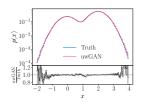
Information contained in distribution or event weights

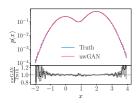




Train on weighted \rightarrow generate unweighted events

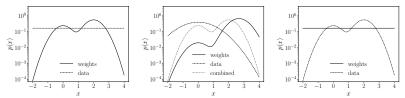
$$L_D = \left\langle -w \log D(x) \right\rangle_{x \sim P_{Truth}} + \left\langle -\log(1 - D(x)) \right\rangle_{x \sim P_{Gen}}$$





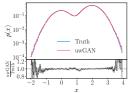
Training on weighted events

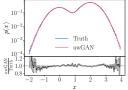
Information contained in distribution or event weights

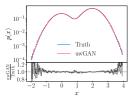


Train on weighted \rightarrow generate unweighted events

$$L_D = \left\langle -w \log D(x) \right\rangle_{x \sim P_{Truth}} + \left\langle -\log(1 - D(x)) \right\rangle_{x \sim P_{Gen}}$$

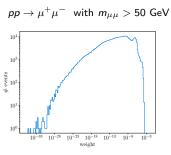






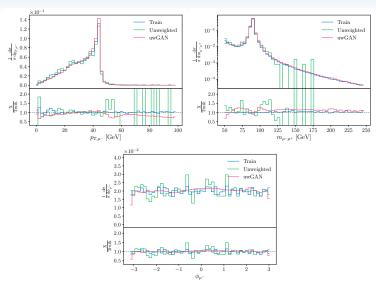
The unweighting bottleneck

- High-multiplicity processes & higher-order calculations
 → unweighting efficiency below 1%
- → Simulate conditions with naive Monte Carlo generator [ME by Sherpa, parton densities from LHAPDF, Rambo-on-diet]



unweighting efficieny $4 \cdot 10^{-3}$

Results



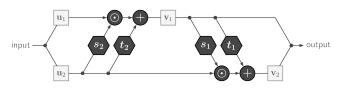
Large amplification factor

Can we invert a Markov process?

$$\left(x_{p}\right) \xleftarrow{\operatorname{PYTHIA}, \operatorname{DELPHES}: g \to} \left(x_{d}\right)$$

$$\leftarrow \operatorname{unfolding}: \bar{g}$$

Invertible networks



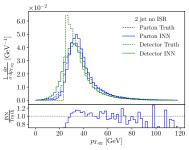
[1808.04730] L. Ardizzone, J. Kruse, S. Wirkert, D. Rahner,

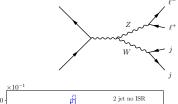
E. W. Pellegrini, R. S. Klessen, L. Maier-Hein, C. Rother, U. Köthe

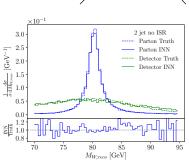
- Fast evaluation in both directions
- Tractable Jacobian
- Arbitrary networks s and t

Inverting detector effects

- $pp \rightarrow ZW \rightarrow (II)(jj)$
- ullet Train parton o detector
- Evaluate detector \rightarrow parton

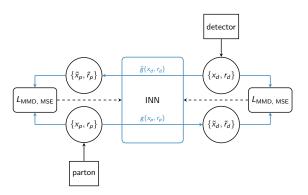






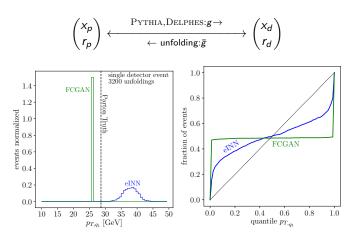
Including stochastical effects

- So far only mapping of mean values
- Extend with noise to include probabilistic nature



- Improved stability via training in both directions
- MSE fixes mean values
- MMD fixes distributions

Calibration curves



- Mean correct, distribution too narrow
- Problem: arbitrary balance of many loss functions

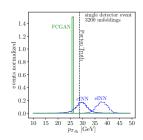
Condition INN on detector data [2006.06685]

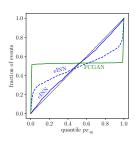
$$x_p \xleftarrow{g(x_p, f(x_d))} \rightarrow r$$

$$\leftarrow \text{unfolding: } \bar{g}(r, f(x_d))$$

Training: Maximize posterior over model parameters

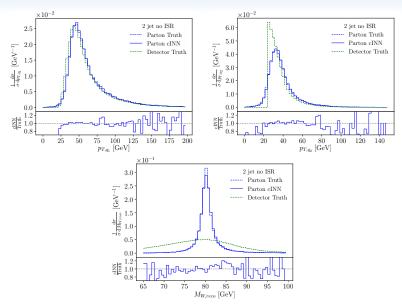
$$\begin{split} \text{Minimizing } L &= -\langle \log p(\theta|x_p, x_d) \rangle_{x_p \sim P_p, x_d \sim P_d} \\ &= \langle 0.5 || g(x_p, f(x_d))) ||_2^2 - \log |J| \rangle_{x_p \sim P_p, x_d \sim P_d} - \log p(\theta) \end{split}$$





\rightarrow calibrated parton level distributions

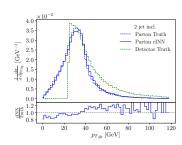
Cross check distributions

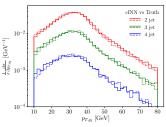


Inverting the full event

$$pp > WZ > q\bar{q}I^+I^- + ISR$$

Train on inclusive dataset





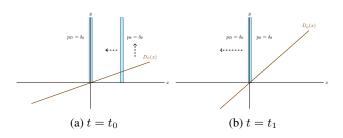
We can use ML to ...

... improve analyses with optimized S vs B classification
... enable precision simulations in forward direction
... unfold high dimensions

... learn more about particle physics!

BACK UP

The GAN challenge or Why do we need regularization?



Solutions: Additional loss or restricted network parameters

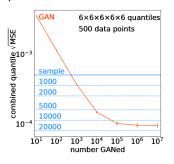
Improving GAN training

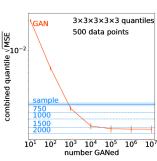
Solutions

- Regularization of the discriminator, eg. gradient penalty [Ghosh, Butter et al.,
 ...]
- Modified training objective:
 - Wasserstein GAN (incl. gradient penalty) [Lin et al., Erdmann et al., ...]
 - Least square GAN (LSGAN) [Martinez et al., ...]
 - MMD-GAN [Otten et al., ...]
 - MSGAN [Datta et al., ...]
 - Cycle GAN [Carazza et al., ...]
- Use of symmetries [Hashemi et al., ...]
- Whitening of data [Di Sipio et al., ...]
- Feature augmentation [Alanazi et al., ...]

Amplification

5-dim sphere





Model dependence

