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A structurally complete theory
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The need for new physics
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The need for new physics
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Era of data
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Status: May 2020

ATLAS Preliminary

Run 1,2
√
s = 5,7,8,13 TeV

Theory

LHC pp
√

s = 13 TeV

Data 3.2 − 139 fb−1

LHC pp
√

s = 8 TeV

Data 20.2 − 20.3 fb−1

LHC pp
√

s = 7 TeV

Data 4.5 − 4.9 fb−1

LHC pp
√

s = 5 TeV

Data 0.025 fb−1

Standard Model Production Cross Section Measurements
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First principle based event generation

L

Matrix element

Parton shower

Hadronization

Detector simulation
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Precision simulations
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Figure 2: Higgs boson rapidity distribution. Figures from Refs. [19, 20].

�(scale) �(PDF-TH) �(EW) �(t, b, c) �(1/mt) �(PDF) �(↵s)

+0.10 pb
�1.15 pb ±0.56 pb ±0.49 pb ±0.40 pb ±0.49 pb ± 0.89 pb +1.25 pb

�1.26 pb

+0.21%
�2.37% ±1.16% ±1% ±0.83% ±1% ±1.85% +2.59%

�2.62%

Table 1: Status of the theory uncertainties on Higgs boson production in gluon fusion at
p

s = 13 TeV. The table is taken from Ref. [83] and the LHC Higgs WG1 TWiki, with �(trunc)

removed after the work of Ref. [18]. The value for �(EW) was a rough estimate when Ref. [83]

was published. Meanwhile the order of magnitude has been confirmed by the calculations of

Refs. [84–88].

Two-loop electroweak corrections to Higgs production in gluon fusion were

calculated in Refs. [89, 90, 78]. The mixed QCD-EW corrections which ap-

pear at two loops for the first time were calculated directly in Ref. [91], where

however the unphysical limit mZ , mW � mH was employed. In Refs. [84–86],

this restriction was lifted and the mixed QCD-EW corrections at order ↵2↵2
s

were calculated, where the real radiation contributions were included in the soft

gluon approximation. It was found that the increase in the total cross section

between pure NLO QCD and NLO QCD+EW is about 5.3%. The calculation

of Ref. [86] has been confirmed by Ref. [87], where also the hard real radiation

was calculated, in the limit of small vector boson masses, corroborating the va-

10

[1807.11501] Cieri, Chen, Gehrmann, Glover, Huss
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New physics is hidden

Big data
HL-LHC = 25×Run2

First-principle
precision simulation

+

Make best use of both!

Big data techniques
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How can ML help to find new physics

• 1.0 Classification/Regression
→ Label data

minimize L = (ytrue − youtput)
2

+ low level observables
+ efficient training

Why now?→ GPUs

→ new algorithms [convolutional networks]

Anja Butter Simulating LHC events with generative networks 8 / 34



How can ML help to find new physics

• 1.0 Classification/Regression
→ Label data

minimize L = (ytrue − youtput)
2

+ low level observables
+ efficient training

Why now?→ GPUs

→ new algorithms [convolutional networks]

Anja Butter Simulating LHC events with generative networks 8 / 34



First application - jet tagging

Convolutional network on W/QCD jet images

+ Physics: theoretical and experimental control

+ Straight forward from ML developments 32- -
Generic overview slide

Boosted Boson Type Tagging
Jet ETmiss

SLAC, Stanford University

March 26, 2014

Benjamin Nachman and Ariel Schartzman
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Even more non-linearity: Going Deep

Deep Convolutional Architectures for  
Jet-Images at the Large Hadron Collider

Introduction 
The Large Hadron Collider (LHC) at CERN is the largest and most powerful particle accelerator in 
the world, collecting 3,200 TB of proton-proton collision data every year. A true instance of Big 
Data, scientists use machine learning for rare-event detection, and hope to catch glimpses of new 
and uncharted physics at unprecedented collision energies.  

Our work focuses on the idea of the ATLAS detector as a camera, with events captured as 
images in 3D space. Drawing on the success of Convolutional Neural Networks in Computer 
Vision, we study the potential of deep leaning for interpreting LHC events in new ways.

The ATLAS detector 
The ATLAS detector is one of the two general-purpose experiments at the LHC. The 100 million 
channel detector captures snapshots of particle collisions occurring 40 million times per second. 
We focus our attention to the Calorimeter, which we treat as a digital camera in cylindrical space. 
Below, we see a snapshot of a 13 TeV proton-proton collision.

LHC Events as Images 
We transform the ATLAS coordinate system (η, φ) to a rectangular grid that allows for an image-
based grid arrangement. During a collision, energy from particles are deposited in pixels in (η, φ) 
space. We take these energy levels, and use them as the pixel intensities in a greyscale analogue. 
These images — called Jet Images — were first introduced by our group [JHEP 02 (2015) 118], 
enabling the connection between LHC physics event reconstruction and computer vision.. We 
transform each image in (η, φ), rotate around the jet-axis, and normalize each image, as is often 
done in Computer Vision, to account for non-discriminative difference in pixel intensities.  

In our experiments, we build discriminants on top of Jet Images to distinguish between a 
hypothetical new physics event, W’→ WZ, and a standard model background, QCD.  

Jet Image

Convolution Max-Pool Convolution Max-Pool Flatten

Fully  
Connected 
ReLU Unit

ReLU Dropout ReLU Dropout
Local 

Response 
Normalization

W’→ WZ event

Convolutions
Convolved  

Feature Layers

Max-Pooling

Repeat

Physics Performance Improvements 
Our analysis shows that Deep Convolutional Networks significantly improve the classification of 
new physics processes compared to state-of-the-art methods based on physics features, 
enhancing the discovery potential of the LHC.  More importantly, the improved performance 
suggests that the deep convolutional network is capturing features and representations beyond 
physics-motivated variables.  

Concluding Remarks 
We show that modern Deep Convolutional Architectures can significantly enhance the discovery 
potential of the LHC for new particles and phenomena. We hope to both inspire future research 
into Computer Vision-inspired techniques for particle discovery, and continue down this path 
towards increased discovery potential for new physics.

Difference in average 
image between signal 

and background

Deep Convolutional Networks 
Deep Learning — convolutional networks in particular — currently represent the state of the art in 
most image recognition tasks. We apply a deep convolutional architecture to Jet Images, and 
perform model selection. Below, we visualize a simple architecture used to great success.  

We found that architectures with large filters captured the physics response with a higher level of 
accuracy. The learned filters from the convolutional layers exhibit a two prong and location based 
structure that sheds light on phenomenological structures within jets. 

Visualizing Learning 
Below, we have the learned convolutional filters (left) and the difference in between the average 
signal and background image after applying the learned convolutional filters (right). This novel 
difference-visualization technique helps understand what the network learns.

2D  
Convolutions 
to Jet Images

Understanding Improvements 
Since the selection of physics-driven variables is driven by physical understanding, we want to be 
sure that the representations we learn are more than simple recombinations of basic physical 
variables. We introduce a new method to test this — we derive sample weights to apply such that 

meaning that physical variables have no discrimination power. Then, we apply our learned 
discriminant, and check for improvement in our figure of merit — the ROC curve.

Standard physically motivated 
discriminants — mass (top)  
and n-subjettiness (bottom)

Receiver Operating Characteristic

Notice that removing out the individual effects of 
the physics-related variables leads to a likelihood 
performance equivalent to a random guess, but 
the Deep Convolutional Network retains some 
discriminative power. This indicates that the deep 
network learns beyond theory-driven variables — 
we hypothesize these may have to do with 
density, shape, spread, and other spatially driven 
features.

Luke de Oliveiraa, Michael Aaron Kaganb, Lester Mackeyc, Benjamin Nachmanb, Ariel Schwartzmanb 

 
aStanford University, Institute for Computational and Mathematical Engineering (ICME), bSLAC National Accelerator Laboratory,  cStanford University, Department of Statistics 

Repeat

Apply deep learning techniques on jet images! [3]

convolutional nets are a standard image 
processing technique; also consider maxout

Figure 5: The convolution neural network concept as applied to jet-images.

4.1 Architectural Selection

For the MaxOut architecture, we utilize two FC layers with MaxOut activation (the first with 256

units, the second with 128 units, both of which have 5 piecewise components in the MaxOut-operation),

followed by two FC layers with ReLU activations (the first with 64 units, the second with 25 units),

followed by a FC sigmoid layer for classification. We found that the He-uniform initialization [35]

for the initial MaxOut layer weights was needed in order to train the network, which we suspect is

due to the sparsity of the jet-image input. In cases where other initialization schemes were used, the

networks often converged to very sub optimal solutions. This network is trained (and evaluated) on

un-normalized jet-images using the transverse energy for the pixel intensities

For the deep convolution networks, we use a convolutional architecture consisting of three sequen-

tial [Conv + Max-Pool + Dropout] units, followed by a local response normalization (LRN) layer [8],

followed by two fully connected, dense layers. We note that the convolutional layers used are so called

“full” convolutions – i.e., zero padding is added the the input pre-convolution. Our architecture can

be succinctly written as:

[Dropout! Conv! ReLU! MaxPool] ⇤ 3! LRN! [Dropout! FC! ReLU]! Dropout! Sigmoid.

(4.1)

The convolution layers each utilize 32 feature maps, or filters, with filter sizes of 11 ⇥ 11, 3 ⇥ 3,

and 3 ⇥ 3 respectively. All convolution layers are regularized with the L2 weight matrix norm. A

down-sampling of (2, 2), (3, 3), and (3, 3) is performed by the three max pooling layers, respectively.

A dropout [8] of 20% is used before the first FC layer, and a dropout 10% is used before the output

layer. The FC hidden layer consists of 64 units.

After early experiments with the standard 3 ⇥ 3 filter size, we discovered significantly worse

performance over a more basic MaxOut [7] feedforward network. After further investigation into larger

convolutional filter size, we discovered that larger-than-normal filters work well on our application.

Though not common in the Deep Learning community, we hypothesize that this larger filter size is

helpful when dealing with sparse structures in the input images. In Table 1, we compare di↵erent

filter sizes, finding the optimal filter size of 11⇥ 11, when considering the Area Under the ROC Curve

(AUC) metric, based on the ROC curve outlined in Sections 3 and 5.

– 8 –

[1511.05190] L. Oliveira, M. Kagan, L. Mackey, B. Nachman, A. Schwartzman
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Top tagging with physics networks

• pixel → Lorentz vectors

• Lo(rentz) La(yer):
Lorentz vectors → physics motivated objects

[1707.08966] AB, G. Kasieczka, T. Plehn, M. Russell

k̃j
LoLa−→ k̂j =




m2(k̃j) = k̃j,µ η
µν k̃j,ν
pT (k̃j)

w
(E)
jm E (k̃m)

w
(d)
jm d2

jm




with trainable diagonal metric d2
jm = (k̃j − k̃m)µ η

µν (k̃j − k̃m)ν

Training yields:

η = diag( 0.99± 0.02,−1.01± 0.01,−1.01± 0.02,−0.99± 0.02)
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LoLa vs Image

• Combine tracking & calorimeter information

• Improved performance for boosted jets

• Less trainable weights

Anja Butter Simulating LHC events with generative networks 11 / 34



Comparative top tagging study

[1902.09914] G. Kasieczka, et al.

→ Other applications: jet calibration, particle identification, ...

→ Open questions: precision, uncertainties, visualization

Anja Butter Simulating LHC events with generative networks 12 / 34



Precision in forward simulations

• ML 2.0 Generative models

→ Can we simulate new data?

Speed

more events

=

higher order

Precision

Speed

modular
speed up

wrapper new concepts
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Boosting standard event generation...

1. Generate phase space points

2. Calculate event weight

wevent = f (x1,Q
2)f (x2,Q

2) × M(x1, x2, p1, . . . pn) × J(pi (r))−1

3. Unweighting via importance sampling
→ optimal for w ≈ 1

Anja Butter Simulating LHC events with generative networks 14 / 34



Boosting standard event generation...

Matrix element

wevent = f (x1,Q
2)f (x2,Q

2) × M(x1, x2, p1, . . . pn) × J(pi (r))−1

PDF Phase space mapping
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Boosting standard event generation...

Matrix element

wevent = f (x1,Q
2)f (x2,Q

2) × M(x1, x2, p1, . . . pn) × J(pi (r))−1

- NNPDF since 2002(!)
- S. Carrazza, J. Cruz-Martinez
[1907.05075]

Phase space mapping
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Boosting standard event generation...

Figure 5: Comparison of a single neural network (left) vs. our ensemble approach (right)
in estimating the differential cross-section against y, where y is the minimum yij as ordered
by pT . Data is normalised to the maximum Njet bin value. Uncertainty bands denote
1 s.d. calculated over 20 trained models (red and green) and Monte Carlo error on the
Njet result (blue). – 13 –

- Amplitude estimation
- S. Badger, J. Bullock [2002.07516]
- J. Bendavid [1707.00028]

wevent = f (x1,Q
2)f (x2,Q

2) × M(x1, x2, p1, . . . pn) × J(pi (r))−1

- NNPDF since 2002(!)
- S. Carrazza, J. Cruz-Martinez
[1907.05075]

Phase space mapping

Anja Butter Simulating LHC events with generative networks 14 / 34



Boosting standard event generation...
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- Amplitude estimation
- S. Badger, J. Bullock [2002.07516]
- J. Bendavid [1707.00028]

wevent = f (x1,Q
2)f (x2,Q

2) × M(x1, x2, p1, . . . pn) × J(pi (r))−1

- NNPDF since 2002(!)
- S. Carrazza, J. Cruz-Martinez
[1907.05075]
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(a) 3-jet production
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(b) 4-jet production

Figure 4: Event weight distributions for sampling the total cross section for gg!n jets for
p

s = 1 TeV
with N = 106 points, comparing VEGAS optimisation, NN-based optimisation and an unoptimised
(“Uniform”) distribution. Note that we now use a logarithmic scale for the x axis. The inset plot
in (b) shows the peak region in more detail and using a linear scale.

an upcoming study [36], where increasing the final-state multiplicity (and hence the number of channels) in
V + jets production also leads to a rapid reduction in the gain factor.

However, the results for the top quarks and the 3-jet production are promising and indicate that con-
ventional optimisers such as VEGAS can potentially be outperformed by NN-based approaches also for more
complex problems in the future. To this end the computational challenges outlined above need to be ad-
dressed. In future research we will therefore aim to extend the range in final-state multiplicity while keeping
the training costs at an acceptable level, and—if successful—to implement the new sampling techniques
within the SHERPA general-purpose event generator framework. A starting point should be the further study
and comparison of alternative ways to integrate our NN approach within multi-channel sampling, beginning
with our ansatz and the one proposed in [36], to find out if the scaling behaviour can be optimised. On the
purely NN side, the exploration of possible extensions or alternatives to piecewise-quadratic coupling layers
is promising, such as [51]. Also adversarial training has the potential to reduce training times significantly.
The limitation of the statistical accuracy by a large number of zero-weight events found in the jet-production
examples furthermore suggests that it is worthwhile to investigate the construction of optimised importance
sampling maps that better respect common phase space cuts, or alternatively to modify the optimisation
procedure to further reduce the generation of points outside the fiducial phase space volume.
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- Learn phase space mapping (→
w ≈ 1)
- Gao et al. [2001.10028]
- Bothmann et al. [2001.05478]
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... or training directly on event samples

Event generation
• Generating 4-momenta

• Z > ll , pp > jj , pp > tt̄+decay
[1901.00875] Otten et al. VAE & GAN

[1901.05282] Hashemi et al. GAN

[1903.02433] Di Sipio et al. GAN

[1903.02556] Lin et al. GAN

[1907.03764, 1912.08824] Butter et al. GAN

[1912.02748] Martinez et al. GAN

[2001.11103] Alanazi et al. GAN

Detector simulation
• Jet images

• Fast shower simulation in
calorimeters
[1701.05927] de Oliveira et al. GAN

[1705.02355, 1712.10321] Paganini et al. GAN

[1802.03325, 1807.01954] Erdmann et al. GAN

[1805.00850] Musella et al. GAN

[ATL-SOFT-PUB-2018-001, ATLAS-SIM-2019-004,
ATL-SOFT-PROC-2019-007] ATLAS VAE & GAN

[1909.01359] Carazza and Dreyer GAN

[2005.05334] Buhmann et al. VAE

NO claim to completeness!
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Generative Adversarial Networks

Discriminator [D(xT ) → 1, D(xG ) → 0]

LD =
〈
− logD(x)

〉
x∼PTruth

+
〈
− log(1−D(x))

〉
x∼PGen

→ −2 log 0.5

Generator [D(xG ) → 1]

LG =
〈
− logD(x)

〉
x∼PGen

⇒ New statistically independent samples
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What is the statistical value of GANned events?[2008.06545]

• Camel function

• Sample vs. GAN vs. 5 param.-fit

Evaluation on quantiles:

MSE∗ =

Nquant∑

j=1

(
pj −

1

Nquant

)2
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What is the statistical value of GANned events?[2008.06545]

• Camel function

• Sample vs. GAN vs. 5 param.-fit

Evaluation on quantiles:

MSE∗ =

Nquant∑

j=1

(
pj −

1

Nquant

)2

→ Amplification factor 2.5

Sparser data → bigger amplification
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How to GAN LHC events [1907.03764]

• tt̄ → 6 quarks

• 18 dim output
• external masses fixed
• no momentum conservation

+ Flat observables X

– Systematic undershoot in tails [10-20% deviation]

0.0

2.0

4.0

6.0

1 �
d
�

d
p T

,t
[G

eV
�

1
]

⇥10�3

True

GAN

pT,t [GeV]
0.8
1.0
1.2

G
A

N
T
ru

e

0 50 100 150 200 250 300 350 400
pT,t [GeV]

0.1

1.0

1
p

N
cu

m

Anja Butter Simulating LHC events with generative networks 18 / 34

t

t

W

W



Special features
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No MMD

Solution: MMD kernel

MMD2(PT ,PG ) =
〈
k(x , x ′)

〉
x,x′∼PT

+
〈
k(y , y ′)

〉
y ,y ′∼PG

−2
〈
k(x , y)

〉
x∼PT ,y∼PG
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Correlations
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Correlations
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Reaching precision (preliminary)

1. Representation pT , η, φ

2. Momentum conservation

3. Resolve log pT

4. Regularization: spectral norm

5. Batch information

→ 1% precision X

Automization?

W + 2 jets
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Training on weighted events
Information contained in distribution or event weights
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Train on weighted → generate unweighted events

LD =
〈
− w logD(x)
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Training on weighted events
Information contained in distribution or event weights

−2 −1 0 1 2 3 4
x

10−4

10−3

10−2

10−1

100

p(
x

)

weights

data

−2 −1 0 1 2 3 4
x

10−4

10−3

10−2

10−1

100

p(
x

)

weights

data

combined

−2 −1 0 1 2 3 4
x

10−4

10−3

10−2

10−1

100

p(
x

)

weights

data

Train on weighted → generate unweighted events

LD =
〈
− w logD(x)

〉
x∼PTruth

+
〈
− log(1− D(x))

〉
x∼PGen

10−4

10−3

10−2

10−1

p(
x

)

Truth

uwGAN

−2 −1 0 1 2 3 4
x

0.8
1.0
1.2

uw
G

A
N

T
ru

th

10−4

10−3

10−2

10−1

p(
x

)

Truth

uwGAN

−2 −1 0 1 2 3 4
x

0.8
1.0
1.2

uw
G

A
N

T
ru

th

10−4

10−3

10−2

10−1

p(
x

)

Truth

uwGAN

−2 −1 0 1 2 3 4
x

0.8
1.0
1.2

uw
G

A
N

T
ru

th

Anja Butter Simulating LHC events with generative networks 22 / 34



Training on weighted events
Information contained in distribution or event weights

−2 −1 0 1 2 3 4
x

10−4

10−3

10−2

10−1

100

p(
x

)

weights

data

−2 −1 0 1 2 3 4
x

10−4

10−3

10−2

10−1

100

p(
x

)

weights

data

combined

−2 −1 0 1 2 3 4
x

10−4

10−3

10−2

10−1

100

p(
x

)

weights

data

Train on weighted → generate unweighted events

LD =
〈
− w logD(x)

〉
x∼PTruth

+
〈
− log(1− D(x))

〉
x∼PGen

10−4

10−3

10−2

10−1

p(
x

)

Truth

uwGAN

−2 −1 0 1 2 3 4
x

0.8
1.0
1.2

uw
G

A
N

T
ru

th

10−4

10−3

10−2

10−1

p(
x

)

Truth

uwGAN

−2 −1 0 1 2 3 4
x

0.8
1.0
1.2

uw
G

A
N

T
ru

th

10−4

10−3

10−2

10−1

p(
x

)

Truth

uwGAN

−2 −1 0 1 2 3 4
x

0.8
1.0
1.2

uw
G

A
N

T
ru

th

Anja Butter Simulating LHC events with generative networks 22 / 34



The unweighting bottleneck

• High-multiplicity processes & higher-order calculations
→ unweighting efficiency below 1%

→ Simulate conditions with naive Monte Carlo generator
[ME by Sherpa, parton densities from LHAPDF, Rambo-on-diet]

pp → µ+µ− with mµµ > 50 GeV

10−33 10−28 10−23 10−18 10−13 10−8 10−3

weight

100

101

102

103

104

#
ev

en
ts

unweighting efficieny 4 · 10−3
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Results
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Large amplification factor
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Can we invert a Markov process?

(
xp
) Pythia,Delphes:g→
←−−−−−−−−−−−→

← unfolding:ḡ

(
xd
)
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Invertible networks

[1808.04730] L. Ardizzone, J. Kruse, S. Wirkert, D. Rahner,

E. W. Pellegrini, R. S. Klessen, L. Maier-Hein, C. Rother, U. Köthe

• Fast evaluation in both directions

• Tractable Jacobian

• Arbitrary networks s and t
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Inverting detector effects

• pp → ZW → (ll)(jj)

• Train parton → detector

• Evaluate detector → parton
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Including stochastical effects
• So far only mapping of mean values

• Extend with noise to include probabilistic nature
• So far only mapping of mean values
• Extend with noise to include probabilistic nature

INN

{x̃p, r̃p}

{x̃d , r̃d}{xp, rp}

parton

LMMD, MSE

{xd , rd}

detector

LMMD, MSE

ḡ(xd , rd)

g(xp, rp)

Anja Butter ML for particle physics 28 / 34• Improved stability via training in both directions

• MSE fixes mean values

• MMD fixes distributions
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Calibration curves

(
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• Mean correct, distribution too narrow

• Problem: arbitrary balance of many loss functions
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Condition INN on detector data [2006.06685]

xp
g(xp,f (xd ))→

←−−−−−−−−−−−−−−−−→
← unfolding: ḡ(r ,f (xd ))

r

Training: Maximize posterior over model parameters

Minimizing L = −〈log p(θ|xp , xd )〉xp∼Pp ,xd∼Pd

=
〈
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〉
xp∼Pp ,xd∼Pd

− log p(θ)
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→ calibrated parton level distributions
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Cross check distributions
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Inverting the full event

pp >WZ > qq̄l+l− + ISR

Train on inclusive dataset

Evaluate
exclusive 2/3/4 jet channels
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We can use ML to ...

... improve analyses with optimized S vs B classification

... enable precision simulations in forward direction

... unfold high dimensions

... learn more about particle physics!
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BACK UP
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The GAN challenge
or

Why do we need regularization?
Which Training Methods for GANs do actually Converge?

pD = �0 p✓ = �✓

D (x)

x

y

(a) t = t0

pD = �0 p✓ = �✓

D (x)

x

y

(b) t = t1

Figure 1. Visualization of the counterexample showing that gra-
dient descent based GAN optimization is not always convergent:
(a) In the beginning, the discriminator pushes the generator towards
the true data distribution and the discriminator’s slope increases.
(b) When the generator reaches the target distribution, the slope of
the discriminator is largest, pushing the generator away from the
target distribution. This results in oscillatory training dynamics
that never converge.

than 1, the training algorithm will converge to (✓⇤,  ⇤) with
linear rate O(|�max|k) where �max is the eigenvalue of
F 0(✓⇤,  ⇤) with the biggest absolute value. If all eigenval-
ues of F 0(✓⇤,  ⇤) are on the unit circle, the algorithm can
be convergent, divergent or neither, but if it is convergent
it will generally converge with a sublinear rate. A similar
result (Khalil, 1996; Nagarajan & Kolter, 2017) also holds
for the (idealized) continuous system

✓
✓̇(t)

 ̇(t)

◆
=

✓
�r L(✓,  )
r✓L(✓,  )

◆
(3)

which corresponds to training the GAN with infinitely small
learning rate: if all eigenvalues of the Jacobian v0(✓⇤,  ⇤)
at a stationary point (✓⇤,  ⇤) have negative real-part, the
continuous system converges locally to (✓⇤,  ⇤) with lin-
ear convergence rate. On the other hand, if v0(✓⇤,  ⇤) has
eigenvalues with positive real-part, the continuous system
is not locally convergent. If all eigenvalues have zero real-
part, it can be convergent, divergent or neither, but if it is
convergent, it will generally converge with a sublinear rate.

For simultaneous gradient descent linear convergence can
be achieved if and only if all eigenvalues of the Jacobian
of the gradient vector field v(✓,  ) have negative real part
(Mescheder et al., 2017). This situation was also considered
by Nagarajan & Kolter (2017) who examined the asymptotic
case of step sizes h that go to 0 and proved local convergence
for absolutely continuous generator and data distributions
under certain regularity assumptions.

2.2. The Dirac-GAN

Simple experiments, simple theorems are the building
blocks that help us understand more complicated systems.

Ali Rahimi - Test of Time Award speech, NIPS 2017

In this section, we describe a simple yet prototypical coun-
terexample which shows that in the general case unregular-
ized GAN training is neither locally nor globally convergent.

Definition 2.1. The Dirac-GAN consists of a (univariate)
generator distribution p✓ = �✓ and a linear discriminator
D (x) =  · x. The true data distribution pD is given by a
Dirac-distribution concentrated at 0.

Note that for the Dirac-GAN, both the generator and the
discriminator have exactly one parameter. This situation
is visualized in Figure 1. In this setup, the GAN training
objective (1) is given by

L(✓,  ) = f( ✓) + f(0) (4)

While using linear discriminators might appear restrictive,
the class of linear discriminators is in fact as powerful as
the class of all real-valued functions for this example: when
we use f(t) = � log(1 + exp(�t)) and we take the supre-
mum over  in (4), we obtain (up to scalar and additive
constants) the Jensen-Shannon divergence between p✓ and
pD. The same holds true for the Wasserstein-divergence,
when we use f(t) = t and put a Lipschitz constraint on the
discriminator (see Section 3.1).

We show that the training dynamics of GANs do not con-
verge in this simple setup.

Lemma 2.2. The unique equilibrium point of the training
objective in (4) is given by ✓ =  = 0. Moreover, the
Jacobian of the gradient vector field at the equilibrium point
has the two eigenvalues ±f 0(0) i which are both on the
imaginary axis.

We now take a closer look at the training dynamics produced
by various algorithms for training the Dirac-GAN. First, we
consider the (idealized) continuous system in (3): while
Lemma 2.2 shows that the continuous system is generally
not linearly convergent to the equilibrium point, it could
in principle converge with a sublinear convergence rate.
However, this is not the case as the next lemma shows:

Lemma 2.3. The integral curves of the gradient vector field
v(✓,  ) do not converge to the Nash-equilibrium. More
specifically, every integral curve (✓(t),  (t)) of the gradient
vector field v(✓,  ) satisfies ✓(t)2 +  (t)2 = const for all
t 2 [0,1).

Note that our results do not contradict the results of Nagara-
jan & Kolter (2017) and Heusel et al. (2017): our example
violates Assumption IV in Nagarajan & Kolter (2017) that
the support of the generator distribution is equal to the sup-
port of the true data distribution near the equilibrium. It
also violates the assumption2 in Heusel et al. (2017) that
the optimal discriminator parameter vector is a continuous
function of the current generator parameters. In fact, unless

2This assumption is usually even violated by Wasserstein-
GANs, as the optimal discriminator parameter vector as a function
of the current generator parameters can have discontinuities near
the Nash-equilibrium. See Section 3.1 for details.

Solutions:
Additional loss or restricted network parameters
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Improving GAN training

Solutions
• Regularization of the discriminator, eg. gradient penalty [Ghosh, Butter et al.,

...]

• Modified training objective:
• Wasserstein GAN (incl. gradient penalty) [Lin et al., Erdmann et al., ...]

• Least square GAN (LSGAN) [Martinez et al., ...]

• MMD-GAN [Otten et al., ...]

• MSGAN [Datta et al., ...]

• Cycle GAN [Carazza et al., ...]

• Use of symmetries [Hashemi et al., ...]

• Whitening of data [Di Sipio et al., ...]

• Feature augmentation [Alanazi et al., ...]
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Amplification

5-dim sphere
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Model dependence

Training on SM dataset
Evaluation on W ’ dataset
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