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The attobarn Era

∫
L dt

[fb−1]
Reference

WZjj EWK 20.3 PRD 93, 092004 (2016)
36.1 PLB 793 92019) 469

W±W±jj EWK 20.3 PRD 96, 012007 (2017)
36.1 PRL 123, 161801 (2019)

Zγjj EWK 20.3 JHEP 07 (2017) 107
WWγ 20.2 EPJC 77, 646 (2017)
Wγγ 20.3 PRL 115, 031802 (2015)
Zγγ 20.3 PRD 93, 112002 (2016)
Zjj EWK 20.3 JHEP 04, 031 (2014)

3.2 PLB 775 (2017) 206
Wjj EWK 4.7 EPJC 77 (2017) 474

20.2 EPJC 77 (2017) 474

t̄tγ
4.6 PRD 91, 072007 (2015)

20.2 JHEP 11 (2017) 086
36.1 EPJC 79, 382 (2019)

t̄tZ (tot.) 20.3 JHEP 11, 172 (2015)
36.1 PRD 99, 072009 (2019)

t̄tW (tot.) 20.3 JHEP 11, 172 (2015)
36.1 PRD 99, 072009 (2019)

WV 4.6 JHEP 01, 049 (2015)
20.2 EPJC 77 (2017) 563 [hep-ex]

Zγ 4.6 PRD 87, 112003 (2013)
20.3 PRD 93, 112002 (2016)

Wγ 4.6 PRD 87, 112003 (2013)
γγ

4.9 JHEP 01, 086 (2013)
20.2 PRD 95 (2017) 112005

ZZ (tot.)
4.6 JHEP 03, 128 (2013)

20.3 JHEP 01, 099 (2017)
36.1 PRD 97 (2018) 032005

WZ (tot.)
4.6 EPJC 72, 2173 (2012)

20.3 PRD 93, 092004 (2016)
36.1 EPJC 79, 535 (2019)

WW (tot.)
4.6 PRD 87, 112001 (2013)

20.3 PLB 763, 114 (2016)
36.1 EPJC 79 (2019) 884

tZj 36.1 PLB 780 (2018) 557

Wt
2.0 PLB 716, 142-159 (2012)

20.3 JHEP 01, 064 (2016)
3.2 JHEP 01 (2018) 63

ts−chan (tot.) 20.3 PLB 756, 228-246 (2016)

tt−chan (tot.)
4.6 PRD 90, 112006 (2014)

20.3 EPJC 77 (2017) 531
3.2 JHEP 04 (2017) 086

t̄t
4.6 EPJC 74: 3109 (2014)

20.2 EPJC 74: 3109 (2014)
3.2 PLB 761 (2016) 136

Z
0.025 EPJC 79 (2019) 128
4.6 JHEP 02 (2017) 117

20.2 JHEP 02 (2017) 117
3.2 JHEP 02 (2017) 117

W
0.025 EPJC 79 (2019) 128
4.6 EPJC 77 (2017) 367

20.2 EPJC 79 (2019) 760
0.081 PLB 759 (2016) 601

γ
4.6 PRD 89, 052004 (2014)

20.2 JHEP 06 (2016) 005
3.2 PLB 2017 04 072

Dijets R=0.4 4.5 JHEP 05, 059 (2014)
3.2 JHEP 09 (2017) 020

Jets R=0.4
4.5 JHEP 02, 153 (2015)

20.2 JHEP 09 (2017) 020
3.2 JHEP 09 (2017) 020

pp
8×10−8 Nucl. Phys. B, 486-548 (2014)

50×10−8 PLB 761 (2016) 158

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4

data/theory

Status:
November 2019

ATLAS Preliminary

Run 1,2
√
s = 5,7,8,13 TeV

Theory

LHC pp
√

s = 5 TeV

Data
stat
stat ⊕ syst

LHC pp
√

s = 7 TeV

Data
stat
stat ⊕ syst

LHC pp
√

s = 8 TeV

Data
stat
stat ⊕ syst

LHC pp
√

s = 13 TeV

Data
stat
stat ⊕ syst

Standard Model Production Cross Section Measurements

20-fold increase in data sets
at the LHC experiments in
the next decades

Reaching few-percent uncertainties in
cross sections for processes with 3 (or
more) objects in the final state
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Few % Frontier at the LHC

I pllT in Drell-Yan, an
impressive example of
precise differential
measurements by
ATLAS (8 TeV)

I By normalizing to
inclusive Z cross
section, improvement
in uncertainties

I Total uncertainties
below 1% for
pllT < 200 GeV
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Few % Frontier in Theory
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I pll
′

T , an impressive example of precise
differential predictions

I Uncertainty estimates from NNLO
QCD, NLO EW including higher
orders Sudakov logs and PDF
uncertainties

Lindert, Pozzorini, Boughezal, Campbell,
Denner, Dittmaier, Gehrmann-De Ridder,
Gehrmann, Glover, Huss, Kallweit,
Maierhöfer, Mangano, Morgan, Mück,
Petriello, Salam, Schönherr, Williams
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NNLO QCD for Multi-Scale Processes

I Great advances over the last several years on NNLO QCD
studies for 2→ 2 processes, with up to four scales
[Anastasiou, Angeles-Martinez, Asteriadis, Behring, Berger, Billis, Binoth, Bonciani, Boughezal,
Brucherseifer, Buonocore, Cacciari, Campbell, Caola, Cascioli, Catani, Chen, Cieri, Cruz-Martinez, Currie,
Czakon, de Florian, Del Duca, Delto, Devoto, Dreyer, Duhr, Ebert, Ellis, Ferrera, Fiedler, Focke, Frellesvig,
Gao, Gauld, Gaunt, Gehrmann, Gehrmann-De Ridder, Giele, Glover, Grazzini, Hanga, Heinrich, Heymes,
Huss, Höfer, Jaquier, Jones, Kallweit, Kardos, Karlberg, Kerner, Li, Lindert, Liu, Magnea, Maierhöfer,
Maina, Majer, Mazzitelli, Melnikov, Michel, Mitov, Morgan, Neumann, Niehues, Pelliccioli, Petriello, Pires,
Poncelet, Pozzorini, Rathlev, Rietkerk, Röntsch, Salam, Sapeta, Sargsyan, Schulze, Signorile-Signorile,
Somogyi, Stahlhofen, Szőr, Tackmann, Tancredi, Torre, Torrielli, Tramontano, Trócsányi, Tulipánt,
Uccirati, van Hameren, von Manteuffel, Walker, Walsh, Wang, Weihs, Wells, Wever, Wiesemann, Williams,
Yuan, Zanderighi, Zhang, Zhu, · · · ]

I First 2→ 3 NNLO QCD study completed!
[Chawdhry, Czakon, Mitov, Poncelet, 2019]

I Physics cases make precision studies for more complex
processes necessary, like H + 2j, V + 2j, 3j, tt̄+H, V V ′j,
among other (more than five scales!) [See e.g.Les Houches Wish List]

I About 15 years ago, 2→ 3 was the frontier for NLO QCD
(one-loop) calculations, and the work beyond relied mainly on
efficient numerical algorithms (now available through many
powerful tools, e.g. BlackHat, GoSam, HELAC-1Loop/CutTools,

Madgraph, NJet, NLOX, OpenLoops, Recola, · · · )
7 / 32
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Key Building Blocks for NNLO QCD Corrections

I Strategy to handle and
cancel IR divergences

I Two-loop matrix elements

Regarding IR structure

→ real hard

→ virtual easy
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Key Building Blocks for NNLO QCD Corrections

I Strategy to handle and
cancel IR divergences

I Two-loop matrix elements

Full O(ε0) structure

→ real hard

→ virtual hard
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Key Building Blocks for NNLO QCD Corrections

I Strategy to handle and cancel IR divergences

I Two-loop matrix elements

I Many recent advances and complete calculations (e.g. tt̄, 2j,
V V ′, V j, HH, 3γ, etc)

I Several well-developed approaches
I Antenna subtraction
I ColorfulNNLO
I Nested soft-collinear subtractions
I N-Jettiness slicing
I Projection to born
I qT slicing
I SecToR Improved Phase sPacE for real Radiation
I · · ·

I Different degrees of automation, handling many 2→ 3
processes maybe in sight
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Key Building Blocks for NNLO QCD Corrections

I Strategy to handle and cancel IR divergences

I Two-loop matrix elements

I Great steps towards understanding mechanisms to compute
multi-scale master Feynman integrals, including insights into
functional forms and numerical procedures, over the last few
years

I Also new efficient tools developed for multi-loop integral
reduction

I Integrand reduction techniques have shown a lot of power to
tackle complicated amplitudes. Here we focus on the
numerical unitarity method
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Stressing Computational Methodology

I Not related to collider phenomenology but, treated as an
EFT, it can showcase the strengths and weaknesses of the
multi-loop numerical unitarity method

I Of interest for classical gravitational applications, as already
shown in the computation of classical deflection angles in
Einstein gravity [Bern, Ita, Parra-Martinez, Ruf, 2020]

I Showing the robustness of our computational framework
Caravel, testing non-planar, colorless calculations with
different particle content (as compared to the SM)
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Target Amplitudes

L = LEH + LGB + LR3 + . . .
[Weinberg], [’t Hooft, Veltman],
[Goroff, Sagnotti], [Donogue], ...

Only three helicity configurations necessary:
+ + ++, −+ ++, −−++

12 / 32



Main Challenges
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Two-Loop Numerical Unitarity

Decompose A in terms of master integrals:

A(L) =
∑
Γ∈∆

∑
i∈MΓ

cΓ,i IΓ,i

All 4-point 2-loop integrals known [Anastasiou, Smirnov, Tausk, Tejeda-Yeomans, Veretin]

Drop the integral symbol, introducing the integrand ansatz:

A(L)(`l) =
∑
Γ∈∆

∑
k∈QΓ

cΓ,k
mΓ,k(`l)∏
j∈PΓ

ρj(`l)

Functions QΓ = {mΓ,k(`l)|k ∈ QΓ} parametrize every possible
integrand (up to a given power of loop momenta).

E.g.:

I Tensor Basis: construct Q from monomials of loop momenta
(parameters). Easy to build for general integrands, tough to relate
to master integrals. Easy to extract function-space dimension

I Master-Surface Basis: a clever choice of parametrization makes
mapping to master integrals straightforward [Ita, 2015]. Break
QΓ = MΓ ∪ SΓ, where SΓ integrate to zero and MΓ correspond to
master integrands
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The Four-Graviton Hierarchy

All propagator structures (Γ ∈ ∆) necessary for graviton-graviton
scattering at two loops
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Master/Surface Decompositions [Ita ’15; Abreu, FFC, Ita, Page, Zeng ’17]

Consider the integration by parts (IBP) relation on Γ

0 =

∫ ∏
i

dD`i
∂

∂`νj

[
uνj∏

k∈PΓ
ρk

]
making it unitarity compatible (controlling the propagator
structure) [Gluza, Kadja, Kosower ’10; Schabinger ’11]

uνj
∂

∂`νj
ρk = fkρk

Write ansatz for uνj expanded in external and loop momenta, and
find solution to the polynomial equations using the CAS Singular

Build a full set of surface terms and fill the rest of the space with
master integrands

Related [Boehm, Georgoudis, Larsen, Schulze, Zhang ’16 - ’19]
[Agarwal, von Manteuffel ’19]
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A 1-loop Example for Surface Terms: Part 1

Consider the 1-loop 1-mass triangle with

ρ1 = (`+ p1)2, ρ2 = `2, ρ3 = (`− p2)2

and we construct uν∂/∂`ν by parametrizing

uν = uext
1 pν1 + uext

2 pν2 + uloop`ν p1

p2

l

l − p2

l + p1

We then get the syzygy equation (polynomial equation):

(
uext

1 pν1 + uext
2 pν2 + uloop`ν

) ∂

∂`ν

ρ1

ρ2

ρ3

−
f1ρ1

f2ρ2

f3ρ3

 =

0
0
0


We can then show that we have an IBP-generating vector, with
constrained propagator structure:

uν
∂

∂`ν
=
[
(ρ3 − ρ2)pν1 + (ρ1 + ρ2)pν2 + (−s+ 2ρ3 − 2ρ2)`ν

] ∂
∂`ν
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A 1-loop Example for Surface Terms: Part 2

Now we have the surface term:

0 =

∫
dD`

∂

∂lν
uν

ρ1ρ2ρ3
=

∫
dDl

1

ρ1ρ2ρ3

[
−(D−4)s−2(D−3)ρ2+2(D−3)ρ3

]
The scalar triangle integrand can be replaced by a surface term,
though commonly it is kept, leading to a corresponding “master”
integral in OPP reduction.

The IBP relation between the triangle and the s = (p1 + p2)2

bubble is:
−(D − 4)sItri − 2(D − 3)Is-bub = 0

Similar manipulations can be carried out at two loops. More
complicated syzygy equations (polynomial relations) need to be
solved → Singular. Surface terms appear as relatively compact
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Surface Terms Factory

Solutions to uνj are power-counting independent. When parametrizing a
given numerator of a Γ ∈ ∆ we need to consider the required
power-counting for the theory at hand.

But we can industrially produce surface terms by considering polynomials

tr(`l), and then considering the vector tr(`l)u
ν
j :

mΓ,(r,s) = uνj
∂tr(`l)

∂`νi
+ tr(`l)

∂uνj
∂`νi
−
∑
k∈PΓ

fsk



A four-graviton amplitude calculation in Einstein gravity structurally the
same as a four-gluon amplitude calculation in QCD!

Though numerically much more demanding...
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Computing Integrand Coefficients

[Bern, Dixon, Dunbar, Kosower] [Britto, Cachazo, Feng]

I In on-shell configurations of `l, the integrand factorizes

∑
states

∏
i∈TΓ

Atree
i (`Γl ) =

∑
Γ′≥Γ
k∈QΓ′

cΓ′,k mΓ′,k(`Γl )∏
j∈(PΓ′/PΓ) ρj(`

Γ
l )

I Need efficient computation of (products of) tree-level
amplitudes
I Off-shell recursions [Berends, Giele ’88], [Draggiotis, Kleiss, Papadopoulos ’02 ... ]

[Cheung, Remmen ’17]

I Ds-dimensional state sum, Ds = 6, . . . , 10

I Never construct analytic integrand, numerics for every
phase-space point
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[Abreu, FFC, Ita, Jaquier, Page, Zeng, ’17]
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Make your numerical evaluations in FF’s & avoid all
numerical-stability issues!
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Make your numerical evaluations in FF’s & avoid all
numerical-stability issues!
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Extracting Functional Form from Numerics
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Extracting Functional Form from Numerics

See also [Peraro, ’16] for multi-variate
reconstruction algorithms!

This same idea can be employed for the analytic reconstruction of
the kinematic x = t/s dependence of 4-pt amplitudes!
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Gravity Results: 4-Graviton Amplitudes
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QCD Results: 5-Parton Amplitudes
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Outline

PERCENT-LEVEL QCD ERA
Precision @ (HL-)LHC, example pllT , NNLO QCD

GRAVITON-GRAVITON SCATTERING
Challenging EFT, 2-Loop Numerical Unitarity, QCD & Gravity Results

THE CARAVEL FRAMEWORK
Public release, Modules, Example programs, Outlook
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The Caravel Framework

A framework to explore multi-loop multi-leg
scattering amplitudes in the SM and beyond

I A modular C++17 library implementing the
multi-loop numerical unitarity method

[Abreu, Dormans, FFC, Ita, Kraus, Page, Pascual, Ruf, Sotnikov, arxiv:2008.xxxxx]

I Numerics in (high-precision) floating-point, rational and
modular arithmetic

I Tested in the (analytic) computation of planar 2-loop 4- and
5-parton QCD amplitudes and 4-graviton amplitudes

I Soon to be publicly released

29 / 32



Caravel’s Modules

∑
states

∏
i∈TΓ

Atree
i (`Γl ) =

∑
Γ′≥Γ
k∈QΓ′

cΓ′,kmΓ′,k(`
Γ
l )∏

j∈(PΓ′/PΓ) ρj(`
Γ
l )

A(L) =
∑
Γ∈∆

∑
i∈MΓ

cΓ,i · IΓ,i

∑
i

ri · hi

Forest OnshellStrategies FunctionSpace

Coefficient Providers

FunctionalReconstruction Integral Providers

Core / GraphLibrary

Core: Includes general tools for
debugging, arithmetics, kinemat-
ics, as well as utilities for linear
algebra, rational reconstruction,
type traits, and special algebra
handling (like for example tools
for Laurent expansions). Optional
dependencies: QD, GMP, Eigen,
Lapack

GraphLibrary: This mod-
ule implements tools for the
classification and canonical-
ization of multi-loop graphs.
Graph isomorphism is imple-
mented by building a partial or-
der in the representation of the
graph (which is ultimately based
on the standard C++ function
std::lexicographical compare)

FunctionalReconstruction:
Here we include algorithms for an-
alytic reconstruction of univari-
ate and multivariate rational func-
tions from exact numerical evalu-
ations. The reconstruction algo-
rithms are parallelized, and can be
run using native C++ threads or us-
ing MPI. The latter can be used
for the runs on computer clusters.

Checkout also Firefly [Klappert, Klein, Lange], and

FiniteFlow [Peraro] !

Forest: This module supplies the
tools required for the computa-
tion of general tree-level ampli-
tudes and cuts (the products of
trees on the left-hand side of the
top equation) in generalDs di-
mensions. Calculations are per-
formed through off-shell recursion
relations. The recursions can be
constructed from any given set of
Feynman rules and can be evalu-
ated over an arbitrary numerical
type.

FunctionSpace: Takes care
of constructing the integrand
ansaetze, both for tensor bases
and master-surface bases. The
former can be constructed for gen-
eral two-loop diagrams Γ while
the latter are provided for general
one-loop diagrams and for those
two-loop diagrams required for
completed calculations. Those
master-surface bases have been
produced with the usage of sev-
eral in-house computer-algebra
programs, and finally collected as
Mathematica expressions. The
latter can be transformed in an
automated fashion into C++ code
to be handled by this module.

Integral Providers: Two dis-
tinct modules are included, one
for general one-loop master inte-
grals (up toO(ε0)) and one for
the (semi-analytical) evaluation
of 1- and 2-loop master integrals
for the evaluation of 4- and 5-
parton two-loop amplitudes. For
the latter, analytic expressions in
Mathematica format are auto-
matically mapped into C++ code
by in-house tools

Coefficient Providers: These
modules can handle the hierarchi-
cal extraction of master-integrand
coefficients through the usage
of cut equations. For a given 2-
loop amplitude, it requires an in-
put data file (the process library).
These process libraries contain
all hierarchical kinematical rela-
tions between the included dia-
grams (propagator structures) in
the amplitude, as well as informa-
tion about color decomposition
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on the standard C++ function
std::lexicographical compare)

FunctionalReconstruction:
Here we include algorithms for an-
alytic reconstruction of univari-
ate and multivariate rational func-
tions from exact numerical evalu-
ations. The reconstruction algo-
rithms are parallelized, and can be
run using native C++ threads or us-
ing MPI. The latter can be used
for the runs on computer clusters.

Checkout also Firefly [Klappert, Klein, Lange], and

FiniteFlow [Peraro] !

Forest: This module supplies the
tools required for the computa-
tion of general tree-level ampli-
tudes and cuts (the products of
trees on the left-hand side of the
top equation) in generalDs di-
mensions. Calculations are per-
formed through off-shell recursion
relations. The recursions can be
constructed from any given set of
Feynman rules and can be evalu-
ated over an arbitrary numerical
type.

FunctionSpace: Takes care
of constructing the integrand
ansaetze, both for tensor bases
and master-surface bases. The
former can be constructed for gen-
eral two-loop diagrams Γ while
the latter are provided for general
one-loop diagrams and for those
two-loop diagrams required for
completed calculations. Those
master-surface bases have been
produced with the usage of sev-
eral in-house computer-algebra
programs, and finally collected as
Mathematica expressions. The
latter can be transformed in an
automated fashion into C++ code
to be handled by this module.

Integral Providers: Two dis-
tinct modules are included, one
for general one-loop master inte-
grals (up toO(ε0)) and one for
the (semi-analytical) evaluation
of 1- and 2-loop master integrals
for the evaluation of 4- and 5-
parton two-loop amplitudes. For
the latter, analytic expressions in
Mathematica format are auto-
matically mapped into C++ code
by in-house tools

Coefficient Providers: These
modules can handle the hierarchi-
cal extraction of master-integrand
coefficients through the usage
of cut equations. For a given 2-
loop amplitude, it requires an in-
put data file (the process library).
These process libraries contain
all hierarchical kinematical rela-
tions between the included dia-
grams (propagator structures) in
the amplitude, as well as informa-
tion about color decomposition

30 / 32



Example Programs [PRELIMINARY]

Other than an extensive suite of unit tests and integration tests,
which continuosly check that libraries work as expected, we provide
a series of example programs to showcase the following
functionalities:
I Analytic reconstruction of (simple) 1- and 2-loop master

integral coefficients, employing Thiele’s formula or
reconstruction of multivariate rational functions [Peraro ’16]

I Numerical evaluation of 4- and 5-parton one-loop amplitudes
to O(ε2) as required for 2-loop finite remainder computations

I Numerical evaluation of planar 4- and 5-parton two-loop
amplitudes to O(ε0) and also for the corresponding finite
remainder

I Example of numerical reduction of two-loop integrals within
the numerical unitarity method

I Tree-level amplitude calculator for processes with n partons or
n gravitons, using (high-precision) floating-point, rational, or
finite-field evaluations
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Outlook

I We have numerically computed the planar two-loop
five-parton QCD amplitudes, as well as the two-loop
four-graviton amplitudes in Einstein gravity.

I Exploiting modular arithmetic, we have also extracted the
analytic form of those amplitudes

I We expect these and future results to contribute to the
coming precision program at the HL-LHC

I Multi-loop numerical unitarity appears as a robust method to
explore multi-loop multi-leg amplitudes

I We presented the Caravel framework which will be released
soon! We hope that this will benefit the larger HEP theory
community, by giving access to related implementations

Thanks!
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