Calculating compact binary dynamics using effective field theory and computer algebra

Jan Steinhoff

Max-Planck-Institute for Gravitational Physics (AEI), Potsdam-Golm, Germany

DESY Zeuthen, January 9th, 2019

Gravity: from Galileo and Newton to Einstein

Newton's theory of gravity:

- things fall down due to a gravitational force
- universality of free fall

London Science Museum

Einstein's theory of gravity a.k.a. general relativity a.k.a. our best theory of gravity:

- free fall = force-free motion
- no gravitational force
- space & time are curved

Gravity: from Galileo and Newton to Einstein

Newton's theory of gravity:

- things fall down due to a gravitational force
- universality of free fall

London Science Museum

Einstein's theory of gravity a.k.a. general relativity a.k.a. our best theory of gravity:

- free fall = force-free motion
- no gravitational force
- space & time are curved

International Space Station, nasa.gov

Gravitational waves

general relativity predicts gravitational waves: small ripples in the fabric of spacetime

best source: black hole/neutron star binaries \rightarrow chirp signal

Gravitational waves

general relativity predicts gravitational waves: small ripples in the fabric of spacetime

best source: black hole/neutron star binaries

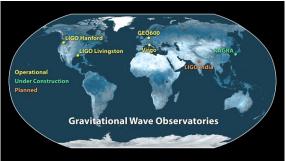
waves from a binary black hole [simulation with the Einstein Toolkit]

Gravitational waves

general relativity predicts gravitational waves: small ripples in the fabric of spacetime

best source: black hole/neutron star binaries

ightarrow chirp signal



waves from a binary black hole [simulation with the Einstein Toolkit]

detector network:

Virgo, www.ligo.caltech.edu/images

www.ligo.caltech.edu/images

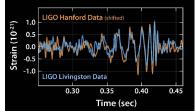
Jan Steinhoff (AEI)

Calculating compact binary dynamics

Detections of gravitational waves (GWs)

https://www.ligo.caltech.edu/page/detection-companion-papers

using LIGO:


- GW150914
- GW151226
- GW170104
- \rightarrow Nobel Prize in physics 2017

many more since then...

GW170817: \rightarrow (likely) a binary neutron star inspiral!

now: LIGO and Virgo

- ightarrow network of detectors still growing
- \rightarrow accuracy/quantity will improve
 - e.g., drastically improved sky localization
- ightarrow need better predictions, too!

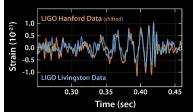
GW150914 (binary black hole), ligo.caltech.edu

Detections of gravitational waves (GWs)

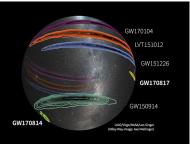
https://www.ligo.caltech.edu/page/detection-companion-papers

using LIGO:

- GW150914
- GW151226
- GW170104
- \rightarrow Nobel Prize in physics 2017

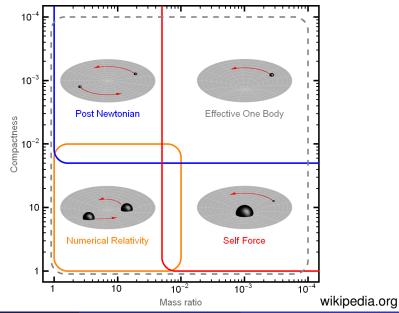

many more since then...

GW170817:


 \rightarrow (likely) a binary neutron star inspiral!

now: LIGO and Virgo

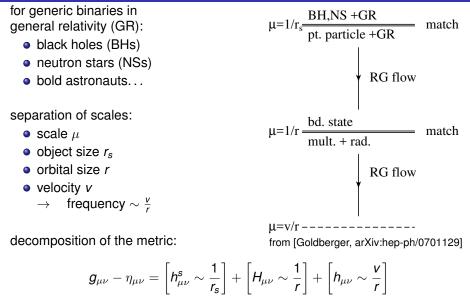
- \rightarrow network of detectors still growing
- \rightarrow accuracy/quantity will improve e.g., drastically improved sky localization
- \rightarrow need better predictions, too!



GW150914 (binary black hole), ligo.caltech.edu

sky location of GW detections, ligo.caltech.edu

Method for predicting gravitational waves



Jan Steinhoff (AEI)

Calculating compact binary dynamics

Effective field theory for post-Newtonian approximation

[Goldberger, Rothstein, PRD 73 (2006) 104029; Goldberger, arXiv:hep-ph/0701129]

Integrating out the orbital scale

action after integrating out $h_{\mu\nu}^s$: point-particles coupled to GR

$$S = -rac{1}{16\pi G}\int d^4x \sqrt{\bar{g}}\bar{R} - \sum_{A=1,2}\int d\sigma_A \sqrt{\bar{g}_{\mu\nu}} rac{dx^{\mu}_A}{d\sigma_A} rac{dx^{
u}_A}{d\sigma_A} (m_A + ...)$$

 $ar{g}_{
u
u} = \eta_{\mu
u} + H_{\mu
u} + h_{\mu
u}$

from now on: ignore radiation, drop $h_{\mu\nu}$ contributions

add gauge fixing, post-Newtonian expansion:

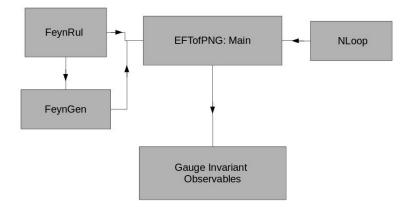
$$S = -\frac{1}{16\pi G} \int dt \, d^3x \left[2\delta^{ij} \partial_i \phi \partial_j \phi + \dots \right] - \sum_A m_A \int dt \left[1 - \frac{\dot{\tilde{x}}_A^2}{2} + \phi + \dots \right]$$
$$\bar{g}_{\mu\nu} dx^{\mu} dx^{\nu} = e^{2\phi} (dt - A_i dx^i)^2 - e^{-2\phi} (\delta_{ij} + \sigma_{ij}) dx^i dx^j$$

integrate out ϕ , A_i , σ_{ij} ...

Explicit example: the Newtonian limit

L

$$m_{1} \left[\begin{array}{c} \phi(x_{1}) & \phi(x_{2}) \\ \hline m_{2} & \text{Newtonian potential as} \\ \text{graviton exchange} \end{array} \right]$$


$$\approx \int dt_{1} m_{1} e^{i\vec{k}\cdot\vec{x_{1}}(t_{1})} 4\pi G\delta(t_{1}-t_{2}) \frac{d^{3}k}{(2\pi)^{3}} \frac{1}{\vec{k}^{2}} dt_{2} m_{2} e^{-i\vec{k}\cdot\vec{x_{2}}(t_{2})}$$

$$= \int dt \frac{G m_{1} m_{2}}{r_{12}(t)} \quad \text{where } r_{12} = |\vec{x}_{1} - \vec{x}_{2}|$$

L

Automation using computer algebra: EFTofPNG

M. Levi, JS, CQG 34 (2017) 244001, arXiv:1705.06309

demo time

git clone -b talk-zeuthen20 https://github.com/jsteinhoff/pncbc-eftofpng.git

- wrap things into package environments, more abstractions
- need to improve substitution/representation of integrals
 - \rightarrow problem solved elsewhere (?)
 - \rightarrow delegate to other packages?
- optimal strategy to remove momentum-conserving δ's?
- more sophisticated way of collecting/sorting terms
 - ightarrow keep subexpressions small
 - \rightarrow keep dim.-dependent prefactors together
- parallelize
 - \rightarrow should be straightforward, but memory is the limiting factor
- run with open source replacement for Mathematica? https://mathics.github.io