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The discovery of the /:(125) at the LHC (2012)
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h(125) — bb observed through VH(bb)

h — bb finally observed recently at the LHC in the VH-events!
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Much theoretical work done already ...

Much work done on the ZH production at LHC: P+ P — Z(II') + H(bb)

° qq — /ZH: >““% Starting from O (a, a?)

» The Higgs-bremsstrahlung (Drell-Yan) part up to NNLO in massless QCD [srein,
Harlander,Wiesemann,Zirke, 2012; Ferrera,Grazzini, Tramontano, 2015/2018; Campbell,Ellis,Williams, 2016]

> The top-loop induced NNLO (non-Drell-Yan type) QCD corrections in the heavy-top
I|m|t [Brein,Djouadi,Harlander, 2004; Brein,Harlander,Wiesemann,Zirke, 2012]

» N3LO corrections in massless QCD [Ahmed,Mahakhud,Rana,Ravindran, 2014; Li,von Manteuffel, Schabinger,Zhu,
2014; Catani,Cieri,Florian,Ferrera,Grazzini, 2014; Kumar,Mandal,Ravindran, 2015]

» NLO electroweak corrections [Ciccolini,Dittmaier,Kramer, 2003; Denner,Dittmaier,Kallweit,Mueck, 2011]

.93 — ZH: 1

> The exact LO (with full m; dependence) knieni, 1990]
» NLO QCD corrections to the Higgs-bremsstrahlung (Drell-Yan) part in the heavy-top

I|m|t [Brein, Harlander,Wiesemann,Zirke, 2012; Altenkamp, Dittmaier, Harlander, Rzehak, Zirke, 2013]

Starting from O(a, as)



Focus of the talk

Here we focus on a part of the b-quark-induced ZH process that involves a
non-vanishing Yukawa coupling A, (i.e. (B) and (C)) but with m;, = o.

©

®) (B)

Aims of the work:

@ Computing the 2-loop (massless) QCD corrections in analytic form

@ Addressing a subtlety appearing in the conventional FF decomposition of amplitudes
involving axial currents regularised in D dimensions (with a non-anticommuting ;)

@ Verifying the unitarity of a particular regularisation prescription implied by projectors
prescribed recently (chen, 2019]]

@ The “same” loop amplitudes built up from just vector FFs of properly grouped classes of
diagrams (bypassing completely the need of explicitly manipulating -5)




Kinematics and the 5 prescription

We consider

b(p:) +b(p2) = Z(q:) + H(q2)

in nf = 5 massless QCD.

The Mandelstam variables:
S=(pr+p2)?, t=(pr—q.)* and u = (p —q:)?
satisfying s +t +u = q7 + q3 = mZ + mj.

Regarding the definition of -y5 in dimensional regularisation (HV/BM and Larin):

i
V5 = ypemee "

i

1
YuYs = 2 (7}175 - 75')’;!) 6€;4vp0'YV'Yp’)/g 8




Form Factor Decomposition: the vector part

By Lorentz covariance, the amplitude bbZH can be expressed as a
linear combination of a finite basis of Lorentz structures at any
finite order.

For the vector part :

0(p2) Thee tt(p1) = Faoec 0(p2) u(p1) i + Faec 0(pa) u(ps) ph
+ F3,00c 0(p2) u(p1) ‘7’14 + Fypec 0(p2) 7’171“(?1) ,

under the following constraints:

@ Even power y-matrices (one Yukawa vertex on the massless fermion line);
@ Parity even for the vector coupling;

@ Equations of motion for the on-shell massless spinors: p u(p:) = o, p,v(p.) = o.




Form Factor Decomposition: Gram matrix and Projectors

For a scattering amplitude M at a fixed perturbative order,

~ N A
M=) F, Ty,

n=1

compute the Gram matrix G

to project out the Lorentz-invariant coefficient (form-factor) F,,.



Projectors for vector form factors

The projectors for vector form factors are still compact enough to be documented
explicitly:

Pluee = (p){ (—2+ D)pl + (2(—3 + D)mis — (—2+ D)tu)ph + (2 — D)st}

1
+ stgpy” ,
S ‘1/1’7 }v(pZ)ICvec
Phoee = i(p2){ (2(=3 + D)m2s — (—2+ D)tu)pl + (=2 + D)up} + (4 — D)sug)

1
- suq/lfy”}v(pz)m p

1
Pl = (pi){ — (—2+ D)stpl — (—4+ D)supk — (2 = D)s*ql — s*qur" }o(p2) o

P vec = ﬂ(PI){stP? — suph — s%q + 52%7”}1)(;72) e
where

Koec = 2(=3 + D)s(mZs — tu).



Form Factor Decomposition: issues with the axial part

A set of Lorentz structure basis for the axial part of bb — ZH linearly complete in 4
dimensions, but not in D dimensions (unless a fully anticommutating - is used):

{2p2) 75 u(p2) P 5(pa) v5 u(pr) P, B(pa) 75 1(pa) 0, B(pa) v v5 g,1u(pr) } -

Whether M,,; lives in a space linearly spanned by these 4 structures in D dimensions:

» Enlarge this list by appending the (tree-level) M,,;;

» and then compute the Gram matrix of this enlarged
list of 5 elements;

» one finds out that the matrix rank is increased to 5
rather than staying at 4!




Form Factor Decomposition: issues with the axial part

A set of Lorentz structure basis for the axial part of bb — ZH linearly complete in 4
dimensions, but not in D dimensions (unless a fully anticommutating - is used):

{op2) v5 u(pa) P, 0(p2) 15 u(pa) P, 3(p2) v u(pa) gl B(p2) 775 ,(pi) }

Therefore, if a non-anticommuting -5 is used in the dimensional regularisation, we may
face the following issues regarding the axial FF-decomposition :

@ ltis not easy to construct the full D-dimensional linearly complete basis for the
FF-decomposition of 5(p.) ngi u(p,) at loop orders.

© Even with just an incomplete basis, keeping the full D-dependence could lead to
expressions with too complicated D-dependence to use.

@ Setting D=4 could simplify the expressions a bit, which, however, is not known to
be legitimate in general (for FF-decomposition).



Projectors for axial form factors

The projectors for 4 axial FFs (corresponding to the basis of 4 structures) read as:

P

i = (e (pa) {(4 +D)? (48 — 14D+ D) (2 — )l
+ (176 + 22D — 69D* + 16D° — D4yt
+2(—148 — 54D + 73D* — 16D% + D*)mZs
+ (176 + 22D — 69D* + 16D — D*)tu
— (176 + 22D — 69D + 16D’ 7D‘)m§(t+u)>pg

— (—1+4D)* (48 — 14D + D*)s(m? — u)q’,'} W
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Pl = (ps )f'rnwv())z){ (=176 — 22D+ 69D* — 1607 + D*ymt
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An acrobatic form factor decomposition for the axial part

Due to the aforementioned theoretical issues, we define our “axial form factors” as

Foaxi = P 5(pa) Th u(py) gy
Foxi = YL 0(p2) Tl u(pa) g
Fyaxi = Pl 5(pa) Th u(py) gy
Fpari = PUnl 6(p2) Tl u(pa) g

where the [4] in the superscript denotes the setting D = 4 in the original P’

iaxi*

Subsequently, we build up an intermediate axial amplitude Mfl’xi defined as

M,I;x,‘ = Fyaxi 0(p2) s u(p1) P? + Foani 9(p2) Vs u(p1) PZ
+ Fyaxi o(p2) Vs u(p1) q? + F4,axiz_’(?72) i V5 ﬂ1u(p1) :

which is not algebraically identical to the original Feynman amplitude.



Projectors for linearly polarised amplitudes

Projecting D-dimensional amplitudes directly onto a linear polarisation basis |.c,

19 (arXiv: 1904.00705)] .

ga(pa)

Momentum basis representations of elementary linear polarisation vectors:

e = c§p¥+c§pg+c§p’3‘ ,
er = ciph +elph+elph
= {NY ewmyplvpzppg;v ) ifN <4
YT g Pl el N>



Projectors for linearly polarised amplitudes

e For bbZH, we need only
i(p:) Niv(p.)el, fori=spandj=T,Y,L

where all open Lorentz indices are D-dimensional by definition and
all pairs of €"??F should be contracted first (in one definite ordering).

e Upon pulling out the overall normalization factors, all projectors so
constructed have only polynomial dependence in kinematics, and it
is always g, used in index contraction.

e Resulting (bare) amplitudes are different from those defined in
CDR, HV, FDH, DRED, - - -, albeit unitarity is still preserved.

e The usual helicity amplitudes can be constructed optionally, as
circular polarisation states from the linear ones, e.g.

1 I .U
el (p1) = ﬁ (SFX + ZSFY) :



Projectors for linearly polarised amplitudes

Up to overall normalization factors, our “linear polarisation” projectors for bbZH read:
Pl = a(p:) v(p2) ( — (2md +u(t+u) —m2(2s +t+3u)) p
(a4 () = m2 (254 3t + ) ph +s(t— )k ),
P = (ps) v(p2) < - €VVPUPIVP2MW> ’
PY = lpy) o(p2) ((2m2 —t =) gk — 22 (i +45) ),
Py = (p1)eyyro(pa) (= (amd 4+ u(t+u) — m2(as + -+ 3u)) p
+ (2m +t(t+u) —m2(2s + 3t +u)) ph +s(t7u)q’f) ,
Pl = ﬂ(pl)é ((—zm§ +t+4u) (pz'yy + 7;,;71) + 25 ('yygl - ﬂﬂﬂ)
+2(u—t) (PI;A + P2y>>U(P2) ,

Py = it(p1)eyyyy0(p2) ((2m§ —t—u)qy —2m(py +p£l)> '



The tool chain employed for computing (projected) amplitudes

e Unreduced (projected) amplitudes: QGRAF i noouer 1905 + FORM .

Vermaseren, 2000]

o IBP'tabIeS Kil’a [P. Maierhofer, J. Usovitsch, P. Uwer; 17/18]
> 8 one-loop masters known to O(e?)
> 134 two-loop masters known to O(e°).

All these masters are available in HepForge in computer readable

fOI’mat [J. Henn, K. Melnikov, V. A. Smirnov, 2014; T. Gehrmann, A. von Manteuffel, L. Tancre, 2015]

e Simplifying rational coefficients of masters: mathematica +
fermat [R. Lewis; 2009]



Samples of loop diagrams

@ 1-loop:

A b T

@ 2-loop flavor-nonsinglet (non-anomalous):
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UV renormalisation
o Vector part: the MS scheme.
» The QCD coupling:

w2\ e
ase =312, ) ()

N

» The Yukawa coupling:

5 w2\ ¢
hse = 22 ) (1)
HR

e Axial part: additional axial-current ren. ]ZiSXS) (x) = Z;ligs) zns f:i&s)(x) M. Chanowitz,

M. Furman, I. Hinchliffe, 1979; T. Trueman, 1979].

> Flavor-Nonsinglet (non-anomalous) is. Larin, J. Vermaseren, 1991]:
1 22
Zj‘qs =1 +ﬂq2(]/l?{)g <;CFCA - %C[ﬂ’lf) ,

10 2
28 = 1+ (k) (—4Ce) + a2 (2262 = L CrCa+ 2oy ).
» Flavor-Singlet (anomalous) (s. Larin, 1993]:
Zy = 1+a2(i)2C,

3
Z;A =1 +a§(y§)£Cp.



UV renormalisation

e Vector part: the MS scheme.
> The QCD coupling:

2 —€
458 = as(]‘lzz)zﬂs (]‘IZQ) (%)
MR

» The Yukawa coupling:

5 AN
hse = 24011226 (1)

e Axial part: additional axial-current ren. ]Zsff) (x) = ZE,[(‘S) z jﬂjj ) (x) . charow

M. Furman, I. Hinchliffe, 1979; T. Trueman, 1979].

UV renormalised amplitudes:
MU= MU (a,22)) + M (as(43))
= MU (as(43)) + M (a5 (123)) + M (ag( ;))
(s,

= N (6, %) + 72 (a5 (13)) 225 (a5 (1)) AT

axi
+ 73 (as(14R)) Z3 s () M <us,u2>,
where [j] runs over all six polarisation configurations.



IR factorisation formulae

The IR pole structures in the UV renormalised bbZH amplitudes can be exhibited
through a factorisation formula in terms of “universal” I() (¢) s.catani, 1502

MUV® = 510 () Alib0) 4 pglAD)

fin

MUV = 413 () MILO) 1 510) () Al 4 Aql12)

fin

M E]I;U) and M g]r;<2) (in 4 dimensions) are defined as the finite remainders.

The explicit expressions of the 1() (¢) (needed for bbZH) are given (in CDR) by . catani

1998; T. Becher, M. Neubert, 2009]

(o) = —cp O (L4 3) (_FRY
e CFF(l—e) (€2+2€) s !

10(e) = ~ 10 (e) (100 ¢) + 1) + ST =29)

a2 (2,1 )10 20

IR poles contained in our renormalised amplitudes match with those predicted by these formulae.



The same RS-independent finite remainders

The linear transformation connecting Fi uec t0 P! (p,) Toec,u 1(p1) reads as
,Py (pz) Toec 1 u(P1) Fivec (,Piy '(_)(Pz) M(Pl) P1,y) + Fz,vec (,P,y 7_}(P2) ”(Pl) Pz,y)

+ F3,Ugc (PIM Z_J(pz) u(pl) L]L”) + F4,ve£ (P,’/l T’(pz) ’Yyﬂlu(lh)) ’
and similarly for the axial part,

[,P} (Pz) Lo o (pl)]ﬁn = Fl,axi,fin [,Piﬂ Z_’(pz) s V(Pl) Pl,y] + Fz,axi,fin [,sz T’(Pz) s ”(PI) Pz,y}

+ F3,uxi,ﬁn {'P,y Z_](pz) s u(P1) ‘h,y] + F4,axi,ﬁn |:,Pz‘y z_)(pz) Yurs ﬂlu(Pl)] ’
where i runs from 1 to 6 linear polarisation configurations.

Through the verified equality between the finite remainders computed following
different approaches,

we confirm:

projectors derived in “four” dimensions can be used also in calculations in
D dimensions and lead to correct results (for physical observables),
irrespective of whether the quantity projected out is a form factor or a
linearly polarised amplitude.

(even though the resulting amplitudes may not be regularised strictly in the HV scheme.)



Axial Form factors restored from Vector Form Factors

With m;, = o, all 2-loop diagrams with the Higgs (and Z) radiated from a closed fermion
loop vanish, e.g.

5y Yo

due to odd number of Dirac v matrices.

Consequently, all non-vanishing non-anomalous Feynman diagrams can be divided
into the class-HZ and class-ZH




Axial Form factors restored from Vector Form Factors

Turning off completely the axial coupling of the Z boson,

Moee =0(p2) FQH”(PI)S;Z(QI) + 9(p2) r?[zu(r’l)fgt(”h)

b B e A\YAVAVAVAYAY) Z b ——— e, H
[ B H b ——hAn Z
® ®
o(p2) FQH u(p1) = F1,zr 0(p2) u(p: )i+ Fb 71 9(p2) u(p:) rh
+ F3 71 0(p2) u(p )qh + Fuzu0(p2) 7" q,u(p1),

0(p2) Ty u(py) = Fuuz 0(p2) u(ps) P + Fa iz 0(p2) u(p:) ph
+ F3 a7 0(p2) u(ps) Q? + Fy iz 0(p2) vV q,u(ps) -

Axial (and vector) Form factors can be restored as:

Fivee = Finz +FizH,
Figxitns) = Fiz — FizH -

HU Berlin



The Ward identity for bbZH: the non-anomalous part
Starting from the classical Lagrangian,

Le= —1G, G 4 biy"Dyb — J5 Zy — ApbbH,
one obtains the Ward identity for the non-anomalous diagrams:

4" My = —2ga 7y (H(2) B(0)i5b(0)H(0) b(p)B(p2) . J

u
VZ—>p

S LNy

2i7s

whose RHS can be perturbatively expanded as

b(p1) 7 /
5 @~ I;Etiz) > .

b(p2)

HU Berlir
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Checking the Ward identity for bbZH using F; zg and F; 1z

i My = 284,25 (H(q2)[b(0)ivsb (0)H(0)[b(p2)b(p2)) - J

Qﬁpz

N

21fy5 ..............................

The LHS of the Ward identity can be composed in terms of “split” vector form factors:

2
mz —u

m2 —t
1 - Moec = 0(p2) u(p1) ( (FI,HZ +F1,ZH) — + (Fz,Hz +F2,ZH)

+ <F3,HZ +F3,ZH> m3 + <F4,HZ +F4,ZH) m%),

2
mZ —u

_ m2 —t
71 Mgyj = 0(p2) 15 u(p1) < (FI,HZ *FI,ZH) —+ (Fz,HZ - Fz,ZH)

+ (FS,HZ ~Fyzm) mE + <F4,HZ ~Fy7H) m%)

HU Berlin
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The Ward identity for bbZH: the anomalous part

The Adler-Bell-Jackiw (ABJ) anomaly equation:

(014) = a5 (GG

where GG = €uvpor Gy G With the gluonic field strength tensor GJ, .

At the level of matrix elements (regarding the anomalous part of bb — ZH),

9(p2) Thay 4(P1) Guu = 840 = (H(42)| [GG(0)] g9 (p2)7(p2))

(with the kinematics p; +p. — 4> = g4)-

Diagrammatically, the RHS consists of

,
¢
;
7



Numerical results

The numerical results of the total cross section of ZH production at
LHC@13TeV (in unit pb):

’ Order ‘ s-channel ‘ EW ‘ ol ‘ quH(top) ‘ (t + u)-channel ‘
LO 5897107 | -3.111 1072 - - 2.989 104
NLO 7.756 1071 - - - 29341074
NNLO 8.015107* - 5.051 1072 | 9.4421073 3.027 104
N3LOgy | 8.013 107 - - - -

Setting: ur = pr = my +mz, Gp = 1.16637 x 10> GeV ™2, m, (g = my) = 4.18 GeV.

» The s-channel contributions (Higgs-bremsstrahlung) are obtained using

vh@nnlo Brein Harlander Zirke, 2012].

> The U'ngH refers to the contribution coming from the gluon initiated sub-processes.

» The top quark loop contribution is denoted by o2 (top).

> The (t 4 u)-channel contribution at NLO is obtained using
Madgraph [Alwall,Frederix,Frixione,Hirschi,Maltoni,Mattelaer et al.,2014], and at NNLO is under the Soft-Virtual
approximation (ravinran,2005].




Summary

i Computed the 2-loop QCD corrections to bb — ZH amplitude via directly
projecting onto a linear polarisation basis, with the analytic results expressed in
terms of multiple polylogarithms;

7i Addressed an interesting subtlety appearing in the conventional form-factor(FF)
decomposition of amplitudes involving axial currents regularised in D dimensions;

7 Revealed a relation between axial and vector FFs of the non-Drell-Yan bb — ZH,
which enables us to restore axial FFs from “split” vector ones;

i Derived the Ward identities for bb — ZH in the presence of A;, which are checked
using the axial FFs restored from their vector counterparts;

i Computed the SV cross section at NNLO, in order to make a quantitative analysis
of the contribution from these non-Drell-type processes.
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