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Inside a “0” there COULD BE many hidden things

STARTING CONCEPT:



Basic introduction
 Theoretical framework: Standard Model + factorization theorem

 Deal with ill-defined expressions in intermediate steps DREG!!!
 Proposed by {Giambiagi&Bollini, t’Hooft&Veltman, Cicuta&Montaldi, 

Ashmore,…}, it becomes a standard in HEP since it preserves gauge invariance

 Abstract idea: «Change the dimension of the loop-momentum space»

 Reality: «Introduce a parameter ε in order to make everything integrable»

5 Theoretical motivation

PDFs
(non-perturbative)

Partonic cross-section
(perturbative)

Nice mathematical
properties!!

(“Todo bonito”)
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Basic introduction
 Singularities in perturbative theories with DREG Poles in ε!!!
 Two kind of physical singularities:

 Ultraviolet poles coming from the high-energy region in loop integrals

 Infrared poles associated with degenerate configurations: extra-particle
radiation in soft (i.e. low energy) or collinear (i.e. parallel) configurations

 Loop integrals could contain UV and IR singularities

6

SOLUTION: Add proper counterterms obtained from RENORMALIZATION 
procedure. These counterterms have EXPLICIT ε–poles and are proportional
to lower-order amplitudes.

Theoretical motivation

SOLUTION: Kinoshita-Lee-Nauenberg theorem states that adding real-
emission processes and computing IR-safe observables guarantees the
cancellation of all the IR poles present in renormalized virtual amplitudes and 
INTEGRATED real-radiation contributions.



Basic introduction
 Summary scheme: obtaining finite physical results at higher-orders

7

Finite physical
observable

Renormalized
virtual corrections

Real corrections
(PS integrals)

IR divergences IR divergences

KLN theorem + IR 
safe observables

Theoretical motivation

Virtual corrections
(loop integrals)

Renormalization
counter-terms

UV divergencesIR/UV divergences

Renormalization
procedure

Vacuum
quantum 

fluctuations (no 
experimental 

signature)

Contributions with
extra-radiation
(included in the
definition of  the

observable)

WE WANT INTEGRAND 
LEVEL CANCELLATION!!!



Towards Loop-Tree Duality
8

Residue theorem
(from Wikipedia)

Feynman propagator

Advanced propagator

Residue theorem can be 
used to compute integrals
involving propagators: 
the prescription and the
contour that we choose
determine the result!

Feynman integrals and propagators

«If f is a holomorphic function in U/{ai}, and g a simple 
positively oriented curve, then the integral is given by the
sum of the residues at each singular point ai» 

NO POLES CLOSED BY CL!



Towards Loop-Tree Duality
9 Dual representation of one-loop integrals

Loop
Feynman
integral

Dual 
integral

Sum of phase-
space integrals!

Catani et al, JHEP09(2008)065; Rodrigo et al, JHEP02(2016)044

Even at higher-
orders, the number
of cuts is equal the
number of loops



• I)- Deal with massless Feynman integrals

• II)- Analysis of IR-divergent integrals

• III)- Study of UV-divergent integrals and
local UV counter-terms

Part I: Applications of LTD



LTD for Feynman integrals
11

 Two different kinds of physical singularities: UV and IR

 IR divergences: massless triangle

 UV divergences: bubble with massless propagators

Motivation and introduction

Rodrigo et al, JHEP02(2016)044; JHEP08(2016)160; JHEP10(2016)162

IR pole

UV pole

IDEA: Define a proper MOMENTUM MAPPING to generate REAL EMISSION
KINEMATICS, and use REAL TERMS as fully local IR counter-terms!

IDEA: Define an INTEGRAND LEVEL REPRESENTATION of standard UV counter-
terms, and combine it with the DUAL REPRESENTATION of virtual terms!
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 Reference example: Massless scalar three-point function in the time-like region

 This integral is UV-finite (power counting); there are only IR-singularities, 
associated to soft and collinear regions

 OBJECTIVE: Define a IR-regularized loop integral by adding real corrections at 
integrand level (i.e. no epsilon should appear, 4D representation) 

LTD

To regularize
threshold
singularity

IR singularities

LTD for Feynman integrals: IR case

Rodrigo et al, JHEP02(2016)044; JHEP08(2016)160; JHEP10(2016)162

I1

I3

I2



LTD for Feynman integrals: IR case
13 Location of IR singularities in the dual-space

 Analize the dual integration region. It is obtained as the positive energy 
solution of the on-shell condition:

Rodrigo et al, JHEP11(2014)014, JHEP02(2016)044, JHEP08(2016)160

• Forward (backward) on-shell
hyperboloids associated with
positive (negative) energy
solutions.

• Degenerate to light-cones for
massless propagators.

• Dual integrands become
singular at intersections (two
or more on-shell propagators)

Massless case: light-conesMassive case: hyperboloids



 The application of LTD converts loop-integrals into PS ones: integration over
forward light-cones.

 This structure suggests how to perform real-virtual combination! Also, how to 
overcome threshold singularities (integrable but numerically unstable)

LTD for Feynman integrals: IR case
14

IR 
singular 
regions!

threshold

Location of IR singularities in the dual-space

• Only forward-backward interferences
originate threshold or IR poles (other
propagators become singular in the
integration domain)

• Forward-forward singularities cancel among
dual contributions

• Threshold and IR singularities associated with
finite regions (i.e. contained in a compact 
region)

• No threshold or IR singularity at large loop
momentum

Rodrigo et al, JHEP11(2014)014, JHEP02(2016)044, JHEP08(2016)160



LTD for Feynman integrals: UV case
 Reference example: two-point function with massless propagators

 In this case, the integration regions of dual integrals are two energy-displaced 
forward light-cones. This integral contains UV poles only

 OBJETIVE: Define a UV-regularized loop integral by adding unintegrated UV 
counter-terms, and find a purely 4-dimensional representation of the loop 
integral

15

To regularize
threshold
singularity

UV singularities

LTD

Rodrigo et al, JHEP02(2016)044; JHEP08(2016)160; JHEP10(2016)162



LTD for Feynman integrals: UV case
 Divergences arise from the high-energy region (UV poles) and can be 

cancelled with a suitable renormalization counter-term. For the scalar 
case, we use

 Dual representation (new: double poles in the
loop energy)

 Loop integration for loop energies larger                                                   
than µUV

16 UV counter-term

Becker, Reuschle, Weinzierl, 
JHEP 12 (2010) 013

Bierenbaum et al. 
JHEP 03 (2013) 025

Rodrigo et al, JHEP02(2016)044; JHEP08(2016)160; JHEP10(2016)162



• I)- Adding real contributions to locally cancel IR
singularities: Universal kinematical mappings

• II)- Local four-dimensional representation of
renormalization counter-terms

• OBJETIVE: Avoid using DREG (or any other
regularization) through a purely 4D
representation of physical observables

Part II: FDU formalism



Towards local IR regularization
 According to KLN theorem real contributions. Suppose one-loop scalar

scattering amplitude given by the triangle

 1->2 one-loop process 1->3 with unresolved extra-parton

 Add scalar tree-level contributions with one extra-particle; consider
interference terms:

 Generate 1->3 kinematics starting from 1->2 configuration plus the loop
three-momentum !!!

18 Finite real+virtual integration

Virtual

Real

Opposite sign!

Rodrigo et al, JHEP02(2016)044; JHEP08(2016)160; JHEP10(2016)162



Generalization of mappings
19

 Real-virtual momentum mapping with massive particles:

 Consider 1 the emitter, r the radiated particle and 2 the spectator

 Apply the PS partition and restrict to the only region where 1//r is 
allowed (i.e.                                 )

 Propose the following mapping:

with massless four-vectors build using (simplify the expressions)

 Express the loop three-momentum with the same parameterization used for 
describing the dual contributions!

Repeat in each region of the partition…

Real-virtual momentum mapping

Impose on-shell conditions to 
determine mapping parameters

Rodrigo et al, JHEP02(2016)044; JHEP08(2016)160; JHEP10(2016)162



 We combine the dual contributions with the real terms (after applying the 
proper mapping) to get the total decay rate in the scalar toy-model.

 The result agrees perfectly with 
standard DREG.

 Massless limit is smoothly

approached due to proper 

treatment of quasi-collinear

configurations in the RV mapping

Generalization of mappings
20 Example: massive scalar three-point function (DREG vs LTD)

LTD

Rodrigo et al, JHEP02(2016)044; JHEP08(2016)160; JHEP10(2016)162



Local renormalization within LTD

 LTD can also deal with UV singularities by building local versions of the 
usual UV counterterms.

 1: Expand internal propagators around the “UV propagator”

 2: Apply LTD to get the dual representation for the expanded UV 
expression, and subtract it from the dual+real combined integrand.

21 UV counterterms and renormalization

LTD
Becker, Reuschle, Weinzierl, JHEP 12 (2010) 013

Bierenbaum et al. JHEP 03 (2013) 025

LTD extended to deal with multiple poles
(use residue formula to obtain the dual 

representation)

Rodrigo et al, JHEP02(2016)044; JHEP08(2016)160; JHEP10(2016)162



In the massless case, the renormalization
factors are usually ignored because they are 
“0”: but they hide a cancelation between
UV and IR singularities…



Local renormalization within LTD

 Requires unintegrated wave-function, mass and vertex renormalization 
constants

 Self-energy corrections with on-shell renormalization conditions 

 Wave function renormalization constant, both IR and UV poles 

 Remove UV poles by expanding around the UV-propagator (same for the vertex 
counterterm)

 Integrated form of local counterterms agrees with standard UV counterterms   

23 UV counterterms and renormalization

Rodrigo et al, JHEP02(2016)044; JHEP08(2016)160; JHEP10(2016)162



• Application of the FDU/LTD formalism to express
amplitudes and observables in four space-time
dimensions.

• I)- Vector boson decays at NLO

• II)- Higgs amplitudes at one and two loop

• REMARK: First application of two-loop local
renormalization in 4D!!!

Part III: Physical examples

Driencourt-Mangin et al, JHEP 02 (2019) 143



Physical example:                  @NLO
25 Results and comparison with DREG

LTD

 Total decay rate for Higgs 
into a pair of massive 
quarks:

 Agreement with the 
standard DREG result

 Smoothly achieves the 
massless limit

 Local version of UV 
counterterms 
succesfully reproduces 
the expected 
behaviour

 Efficient numerical 
implementation

Rodrigo et al, JHEP10(2016)162



Physical example:                  @NLO
26

LTD

Results and comparison with DREG

 Total decay rate for a 
vector particle into a pair 
of massive quarks:

 Agreement with the 
standard DREG result

 Smoothly achieves the 
massless limit

 Efficient numerical 
implementation

Rodrigo et al, JHEP10(2016)162
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 The total decay-rate can be expressed using purely four-dimensional 
integrands (which are integrable functions!!)

 We recover the total NLO correction, avoiding to deal with DREG (ONLY 
used for comparison with known results)

 Main advantages:

 Direct numerical implementation (integrable functions for ε=0)

 No need of tensor reduction (avoids the presence of Gram determinants, 
which could introduce numerical instabilities)

 Smooth transition to the massless limit (due to the efficient treatment of 
quasi-collinear configurations)

 Mapped real-contribution used as a fully local IR counter-term for the
dual contribution!

Important remarks

Physical example:                  @NLO

Rodrigo et al, JHEP10(2016)162

Finite integral for ε=0 Integrability with ε=0
With FDU 
is true!



 Application of LTD to compute one-loop Higgs amplitudes:

 They are IR/UV finite BUT still not well-defined in 4D!!! Hidden cancellation of 
singularities leads to potentially undefined results (scheme dependence!!!)

 We start by defining a tensor basis and projecting (amplitude level!):

 Then, scalar coefficients are dualized.

 IMPORTANT: Take into account 1-2 exchange symmetry (different cuts and non-
trivial cancellations!!!)

Physical example: Higgs@(N)NLO
28 Using LTD to regularize finite amplitudes 

LTD

Driencourt-Mangin et al, Eur.Phys.J. C78 (2018) no.3 231; JHEP 02 (2019) 143

with

Projectors



 Combine expressions (use “zero integrals” in DREG associated with Ward 
identities):

 Use local renormalization (equivalent to Dyson’s prescription…)

 Counter-term mimics UV behaviour at integrand level.

 Term proportional to        used to fix DREG scheme (vanishing counter-term in d-dim!!)

 Valid also for W amplitudes in unitary-gauge (naive Dyson’s prescription fails to subtract
subleading terms due to enhanced UV divergences)

Physical example: Higgs@(N)NLO
29 Using LTD to regularize finite amplitudes 

LTD

Well defined in 4-d!!

Non-commutativity of limit 
and integration!!!!

UV divergent

Driencourt-Mangin et al, Eur.Phys.J. C78 (2018) no.3 231; JHEP 02 (2019) 143



Physical example: Higgs@(N)NLO

 Infinite-mass limit used to define effective vertices. Equivalent to explore 
asymptotic expansions!

 Expansions at integrand level are non-trivial in Minkowski space (i.e. within
Feynman integrals) and additional factors are neccesary

 Dual amplitudes are expressed as phase-space integrals Euclidean space!!

 Example: Higgs amplitudes with heavy-particles within the loop

30 Asymptotic expansions

Expansion of the dual propagator (q3 on-shell)

Reproduces all the 
known-results!!

Driencourt-Mangin et al, Eur.Phys.J. C78 (2018) no.3 231; JHEP 02 (2019) 143
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LTD

Introducing the notation

About Higgs@NNLO...

 Dual amplitudes can be defined at higher-orders (even with multiple poles)

 Standard example: two-loop N-point scalar amplitude

 Three possible sets of momenta, according
to their dependence on l1, l2 or l1+l2 (inte-
gration variables)

Driencourt-Mangin, Rodrigo, G.S., Torres Bobadilla, JHEP 02 (2019) 143

Generic two-loop diagram

Bierenbaum, Catani, Draggiotis, Rodrigo; JHEP 10 (2010) 073



32

LTD

Cuts and LTD formula

About Higgs@NNLO...

 “The number of cuts equals the number of loops”

 Derivation: “Iterate” the one-loop formula and use propagator properties

 Standard example: two-loop N-point scalar amplitude

where we used

 Remarks and subtleties:
 Modified prescription depends on loop momenta.

 Not a “trivial” iteration: connection with Cauchy’s theorem
and multivariable residues.

 Thesis: “Virtual-real amplitudes mapped with one-loop formulae” (partial cancellations),                                
but a new mapping required for double-real emission.

Driencourt-Mangin, Rodrigo, G.S., Torres Bobadilla, JHEP 02 (2019) 143



• LTD formalism recasts Minkowski integrals into
Euclidean ones, thus leading to some “nice”
mathematical properties.

• I)- Characterization of threshold singularities
within the LTD approach

Part IV: Singular structures



Characterization of singularities with LTD
34

 In general, the location of the singularities is given by the solutions of

with on-shell and                         .

 We consider the following test functions

 IMPORTANT: The singular structure of scattering amplitudes is dictated by
their propagators. So, the proposed test functions are general enough to do a 
proper analysis of threshold singularities.

Rodrigo et al, arXiv:1904.08389 [hep-ph]

Description of threshold singularities @ 1-loop

Up to 2 on-shell states
(standard thresholds)

Up to 3 on-shell states
(anomalous thresholds)



Characterization of singularities with LTD
35

 The singular structure depends on the separation among momenta:

Rodrigo et al, arXiv:1904.08389 [hep-ph]

Description of threshold singularities @ 1-loop

• Time-like separation (causal connection):

Physical threshold singularities are originated.

The prescription is crucial to determine the imaginary part: it is
always +i0 and corresponds to the usual Feynman prescription! For
this configuration, LTD and FTT give equivalent descriptions!

Always +i0 !!!



Characterization of singularities with LTD
36

 The singular structure depends on the separation among momenta:

Rodrigo et al, arXiv:1904.08389 [hep-ph]

Description of threshold singularities @ 1-loop

• Space-like separation:

The dual-prescription changes sign within the different contributions,
which allows a perfect cancellation of any singular behaviour.

• Light-like separation:
It originates IR and threshold singularities that remain in a compact
region of the integration domain. There is a partial cancellation
among dual contributions, but IR might remain!

Cancellation codified
by multiple-cuts in FTT!!



Characterization of singularities with LTD
37

 Anomalous thresholds: causal (i.e. time-like separated) singularities originated
by multiple propagators going on-shell. 

Rodrigo et al, arXiv:1904.08389 [hep-ph]

Description of threshold singularities @ 1-loop

• Intersections of two hyperboloids lead to the standard IR
and threshold singularities.

• Anomalous thresholds are originated from the intersection
of two forward (backward) and one backward (forward)
hyperboloids.

• There are not singularities for !!!



• LTD allows to transform loop into phase-space
integrals: we integrate on space components!

• I)- Combination with spinor-helicity formalism in
four-dimensions (NEW!)

• II)- Novel multiloop formulae based on iterative
LTD!!! (ONGOING, RESULTS TO APPEAR SOON!)

Part V: Multiloop numerical approach

NEW!



39

 We consider three processes which are UV and IR finite, at one-loop.

 Purely 4D numerical implementation for fixed helicity configurations!

 Complete agreement with well-known analytical results (solid blue lines)

 Smooth dependence on the external parameters (kinematical invariants & 
masses)

 Competitive computational performance (vs. SecDec and standard tools)

Rodrigo et al, arXiv:1911.11125 [hep-ph]

1-loop examples in four space-time dimensions

Towards multiloop&multileg numerical LTD



Conclusions and perspectives
40

 Loop-tree duality allows to treat virtual and real contributions in 
the same way (implementation simplified)

 Physical interpretation of IR/UV singularities in loop integrals
(light-cone diagrams) and proper disentanglement

 Combined virtual-real terms are integrable in 4D!!

 Local 4-dimensional 2-loop results (Higgs/heavy quarks)

 Efficient numerical implementation for multiloop multileg
processes!! ongoing!!! (“paso a paso”)

 Perspectives:
 Automation of multileg processes at NLO and beyond!!!

 Carefull comparison with other schemes “WorkStop-ThinkStart”
Eur.Phys.J. C77 (2017) no.7, 471
NEW! Firenze Meeting 2019



Inside a “0” there ARE many hidden things
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