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STARTING CONCEPT:

Inside a “0” there COULD BE many hidden things



Basic introduction
S ViR e e

0 Theoretical framework: Standard Model + factorization theorem __

=

>

do dOap—v+X a 2
dxd o

27y ANy Z/ z1dzy 1 331) *(z2 )dg  dM2dQdy — _g g
c

PDFs Partonic cross-section o §

(non-perturbative) (perturbative) ;-:

—

0 Deal with ill-defined expressions in intermediate steps |:> DREG!!

O Proposed by {Giambiagi&Bollini, t'Hooft&Veltman, Cicuta&Montaldi,
Ashmore,...}, it becomes a standard in HEP since it preserves gauge invariance

0 Abstract idea: «Change the dimension of the loop-momentum space»

o Reality: «Introduce a parameter € in order to make everything integrablen

1. linearity ]ddt (aF(x) +bG(x)) = fddxf + bf(fd\:{l-

2. scaling ]fffx Fisx) = s~ 1[&”.\; Fix) proper’ries!!
d = 4 — 28 3. translational invariance fﬂm‘x Flx+y) = /ddx F(x) (“TOdO bOﬂifO")

Ou [F] — fddx F(x) Nice mathematical



Basic introduction

~ 6 [ Theoretical motivation
0 Singularities in perturbative theories with DREG |:> Poles in g

0 Two kind of physical singularities:

o Ultraviolet poles coming from the high-energy region in loop integrals

SOLUTION: Add proper counterterms obtained from RENORMALIZATION

procedure. These counterterms have EXPLICIT &—poles and are proportional
to lower-order amplitudes.

o Infrared poles associated with degenerate configurations: extra-particle
radiation in soft (i.e. low energy) or collinear (i.e. parallel) configurations

SOLUTION: Kinoshita-Lee-Nauenberg theorem states that adding real-
emission processes and computing IR-safe observables guarantees the

cancellation of all the IR poles present in renormalized virtual amplitudes and
INTEGRATED real-radiation contributions.

o Loop integrals could contain UV and IR singularities



Basic introduction

0 Summary scheme: obtaining finite physical results at higher-orders

Vacuum Virtual corrections Renormalization

aj |P_‘lm!'_s¥‘e
quantum (loop integrals) counter-terms )

fluctuations (no IR/UV divergences UV divergences
experimental
signature) Renormalization
procedure

KLN theorem + IR "
safe observables

Finite physical - Renormalized Real corrections
observable virtual corrections (PS integrals)
IR divergences IR divergences

Contributions with
WE WANT INTEGRAND extrerodliaion
LEVEL CANCELLATION!! definition of the

observable)




Towards Loop-Tree Duality

~ 8 | Feynman integrals and propagators

Residue theorem j{f(z) dz = 21 Z Rgs(fj gk)
(from Wikipedia) ¥

«If f is a holomorphic function in U/{a}, and g a simple
positively oriented curve, then the integral is given by the
sum of the residues at each singular point a.»

LV
Feynman propagator x X x

vr =1 :
Residue theorem can be Glg)] =0 = q==*vq*—i X X X o

used to compute integrals Cr
involving propagators:

the prescription and the Advanced propagator L)
A

contour that we choose . 1 _ . o
determine the result! Galg)] =0 = q==*vqg*+il >

o

NO POLES CLOSED BY C,! o,




Towards Loop-Tree Duality

~ 9 ] Dual representation of one-loop integrals

Loop 1
LY (py, ... i
Feynman (P1,- > PN) /HGF %) /H 2 — m?2 +40

integral

Dual Sum of phase-
. L(l)(pla'”)pN Z/ Q'L H GD Q’MQJ .

integral space integrals!
J=1,5#1

1 ~
D(q QJ) Q? _ m? _ ZO??(Qj _ Qi) (q ) Lam (q ,O) (qZ mz)

Pi—1 5(‘?} P
- Even at higher-

q
orders, the number
N 1

= = > (q+p)" — i0np,;

of cuts is equal the

number of loops

S Pi41

Catani et al, JHEPO?(2008)065; Rodrigo et al, JHEP02(2016)044



- Part |: Applications of LTD

I)- Deal with massless Feynman integrals
ll)- Analysis of IR-divergent integrals

lll)- Study of UV-divergent integrals and
local UV counter-terms



LTD for Feynman integrals

11 [ Motivation and introduction

-1 Two different kinds of physical singularities: UV and IR

O IR divergences: massless triangle —
: er 8 0 "
LU (pe po. —pa) — f Golg) = - —8&12 —
(1, P2, —P3) fél_ll () Zs P
IR pole .

IDEA: Define a proper MOMENTUM MAPPING to generate REAL EMISSION
KINEMATICS, and use REAL TERMS as fully local IR counter-terms!

o UV divergences: bubble with massless propagators

2e
- . 7!
L{]’{Pr —p) fHCI (@) = W{ P —10)7"
UV pole

IDEA: Define an INTEGRAND LEVEL REPRESENTATION of standard UV counter-
terms, and combine it with the DUAL REPRESENTATION of virtual terms!

Rodrigo et al, JHEPO2(2016)044; JHEPO8(2016)160; JHEP10(2016)162



LTD for Feynman integrals: IR case

IR singularities

Reference example: Massless scalar three-point function in the time-like region

Cr $12 :
L(l)(plap% —p3) = fHGF(Qi) ) (——2 — 10
ti=1 € H
— L —1 . -1
L= $12 d[&1,0] dv1] &1 g (1 (1 —v1))
l,
1 (1 — ’UQ>_1
2 S1o [52,0] [v2] 1~ a0 i0
T h 1 vt To regularize
Is=—|[d d 3
|5 . ; S12 $5.0] dlvs] 14 &30 —i0 threshold

singularity

O This integral is UV-finite (power counting); there are only IR-singularities,
associated to soft and collinear regions

o OBJECTIVE: Define a IR-regularized loop integral by adding real corrections at
integrand level (i.e. no epsilon should appear, 4D representation)

Rodrigo et al, JHEPO2(2016)044; JHEPO8(2016)160; JHEP10(2016)162




LTD for Feynman integrals: IR case

Location of IR singularities in the dual-space

Analize the dual integration region. It is obtained as the positive energy

solution of the on-shell condition:

m? +i0 =0 ::> aS = £y /a? + m? —i0

Gr'(¢) = q; —

Massive case: hyperboloids

Forward (backward) on-shell
hyperboloids associated with

1.0

oy o 0.5
positive (negative) energy

solutions. 0.0
Degenerate to light-cones for os

massless propagators. =

. -1.0
Dual integrands become
singular at intersections (two -15

or more on-shell propagators)  _,,

-1.5 -1.0 -05 0.0 0.5 1.0 1.5
I,

Massless case: light-cones

e

Rodrigo et al, JHEP11(2014)014, JHEP02(2016)044, JHEPO8(2016)160



LTD for Feynman integrals: IR case

Location of IR singularities in the dual-space

The application of LTD converts loop-integrals into PS ones: integration over
forward light-cones.

* Only forward-backward interferences
originate threshold or IR poles (other
propagators become singular in the
integration domain)

* Forward-forward singularities cancel among
dual contributions

* Threshold and IR singularities associated with

finite regions (i.e. contained in a compact
region)

* No threshold or IR singularity at large loop
momentum

LY
R
.
b
p"
b
\
LY
h"
~
b

threshold

This structure suggests how to perform real-virtual combination! Also, how to
overcome threshold singularities (integrable but numerically unstable)

Rodrigo et al, JHEP11(2014)014, JHEPO2(2016)044, JHEP08(2016)160



LTD for Feynman integrals: UV case

UV singularities

Reference example: two-point function with massless propagators

LD (p, —p) = /ﬁGF(q@-) _ 6(1C_F26) (—p—z _7;0> - ZI

£

1=1 @ 1=1
I]_ — —/ (5(q1) S
—2aq1 -+ p? & 20 To regularize
4 qi-pTPp
~ &)\ threshold

Ih = — 5(@'2) singularity
2q2 - p+p? —i0
¢ 4492 "pTpP
O In this case, the integration regions of dual integrals are two energy-displaced

forward light-cones. This integral contains UV poles only

o OBJETIVE: Define a UV-regularized loop integral by adding unintegrated UV
counter-terms, and find a purely 4-dimensional representation of the loop

integral

Rodrigo et al, JHEP02(2016)044; JHEPO8(2016)160; JHEP10(2016)162



LTD for Feynman integrals: UV case

16 UV counter-term

71 Divergences arise from the high-energy region (UV poles) and can be
cancelled with a suitable renormalization counter-term. For the scalar
case, we use

Iﬁ-r{; — 1 Becker, Reuschle, Weinzierl,
¢ (CI%V — M%V + i0)2 JHEP 12 (2010) 013

71 Dual representation (new: double poles in the
loop energy)

~

ent 5(QUV) Bierenbaum et al.
, (+) 2 JHEP 03 (2013) 025
2 (4ivo) :

+ .
qI(JV),O = \/q%v + ugy — 40

71 Loop integration for loop energies larger
than Yy

£,
Rodrigo et al, JHEPO2(2016)044; JHEPO8(2016)160; JHEP10(2016)162



- Part ll: FDU formalism

I)- Adding real contributions to locally cancel IR
singularities: Universal kinematical mappings

lI)- Local four-dimensional representation of
renormalization counter-terms

OBJETIVE: Avoid using DREG (or any other
regularization) through a purely 4D
representation of physical observables



Towards local IR regularization

Finite real+virtual integration

Virtual

Real

According to KLN theorem real contributions. Suppose one-loop scalar
scattering amplitude given by the friangle

P1
" I |«M{?(P1=P22P3)> = ig D . = Re (MO | M)
e P2 (MWD (p1,p2;ps)) = —ig” £ (p1,p2, —pa)
1->2 one-loop process 1->3 with uniesolved extra-parton

Add scalar tree-level contributions with one extra:-particle; consider
interference terms:

P
4
0 . g
- v MO phplipe)) = —ig?/sh, = Re (MO IMD) = Lo
P3 Sir Sj*.r"
!
P2

Generate 1->3 kinematics starting from 1->2 configuration plus the loop
three-momentum | !l

Rodrigo et al, JHEPO2(2016)044; JHEPO8(2016)160; JHEP10(2016)162



Generalization of mappings

- 19 JReal-virtual momentum mapping

0 Real-virtual momentum mapping with massive particles:
o Consider 1 the emitter, r the radiated particle and 2 the spectator

0 Apply the PS partition and restrict to the only region where 1//r is

allowed (i.e. R1 = {y}, < min yéj H 4 Py )
. . p1
0 Propose the following mapping: 7 I P,
T p3 . P3
Pr = 4 P2 jf
~ A 2
pl=0—a)pi + (1 —n)ph —af| - o

Impose on-shell conditions to
determine mapping parameters

!/ A ~
Py =1y + b
with p; massless four-vectors build using p; (simplify the expressions)

0 Express the loop three-momentum with the same parameterization used for
describing the dual contributions!

Repeat in each region of the partition...

Rodrigo et al, JHEPO2(2016)044; JHEPO8(2016)160; JHEP10(2016)162



Generalization of mappings

- 20 |Example: massive scalar three-point function (DREG vs LTD)

0 We combine the dual contributions with the real terms (after applying the
proper mapping) to get the total decay rate in the scalar toy-model.

0 The result agrees perfectly with 8
standard DREG. '

0 Massless limit is smoothly

— Analytical (DREG)

6; e 4D unsubtracted (LTD)
approached due to proper

treatment of quasi-collinear

-1 r(1),r(0)

configurations in the RV mapping

[
[
[
T
[
[
[

Rodrigo et al, JHEPO2(2016)044; JHEPO8(2016)160; JHEP10(2016)162



Local renormalization within LTD
a1 | e e sz R

0 LTD can also deal with UV singularities by building local versions of the
usual UV counterterms.

0 1: Expand internal propagators around the “UV propagator”

L — 1 Becker, Reuschle, Weinzierl, JHEP 12 (2010) 013
Fomit® Gy — iy 10
y [1 ~ 2quv - kipv + kivy —mi + 1y N (2quv - kiuv)? + O (())
qty — My + 20 (qtv — Ky +10)? o

0 2: Apply LTD to get the dual representation for the expanded UV
expression, and subtract it from the dual+real combined integrand.

[61{3 — f 5(QUV) 5 LTD extended to deal with multiple poles
9 (q(+) ) (use residue formula to obtain the dual
uvio representation)
(+) :
quv () — qUV + /'I’UV 20 Bierenbaum et al. JHEP 03 (2013) 025

Rodrigo et al, JHEPO2(2016)044; JHEPO8(2016)160; JHEP10(2016)162



In the massless case, the renormalization
factors are usually ignored because they are
“O”: but they hide a cancelation between
UV and IR singularities...



Local renormalization within LTD
Vx| e e sz R

O

Requires unintegrated wave-function, mass and vertex renormalization
constants

Self-energy corrections with on-shell renormalization conditions

Yr(pr=M) =0 dzﬁfl)

A=M
Wave function renormalization constant, both IR and UV poles

Mlp) = ~GiCr [ Grla)Gr(a) ((d 2y p2+4M2( - pE)GF( ))

Remove UV poles by expanding around the UV-propagator (same for the vertex
counterterm)

Integrated form of local counterterms agrees with standard UV counterterms

Rodrigo et al, JHEPO2(2016)044; JHEPO8(2016)160; JHEP10(2016)162



- Part lll: Physical examples

Application of the FDU/LTD formalism to express
amplitudes and observables in four space-time
dimensions.

I)- Vector boson decays at NLO

Il)- Higgs amplitudes at one and two loop

REMARK: First application of two-loop local

renormalization in 4D!!!
Driencourt-Mangin et al, JHEP 02 (2019) 143



Physical example: A* — qq(g) @NLO

Results and comparison with DREG

r(,r(0)

0.6

0.5

0.4/
0.3
0.2

0.1F

— Analytical (DREG)

® 4D unsubtracted (LTD)

Hgy =112

H-qq

0.0

0.2 0.4

0.6 0.8

Total decay rate for Higgs
into a pair of massive
quarks:

O Agreement with the
standard DREG result

0 Smoothly achieves the
massless limit

o Local version of UV
counterterms
succesfully reproduces
the expected
behaviour

o Efficient numerical
implementation

Rodrigo et al, JHEP10(2016)162



Physical example: A* — qq(g) @NLO

- 26 | Results and comparison with DREG

e 0 Total decay rate for a
0e) vector particle into a pair
' of massive quarks:
_ O Agreement with the
-0.8¢ standard DREG result
S o Smoothly achieves the
S massless limit
> o Efficient numerical
- ol implementation
I — Analytical (DREG)
'1'4_' ® 4D unsubtracted (LTD) |
00 02 04 06 08
m

Rodrigo et al, JHEP10(2016)162



Physical example: A* — qq(g) @NLO

Important remarks

0 The total decay-rate can be expressed using purely four-dimensional
integrands (which are integrable functionsl!!)

0 We recover the total NLO correction, avoiding to deal with DREG (ONLY
used for comparison with known results)

0 Main advantages:
v Direct numerical implementation (integrable functions for €=0)  \ith FDU
Integrability with €=0 is true!

v No need of tensor reduction (avoids the presence of Gram determinants,
which could intfroduce numerical instabilities)

Finite integral for €=0

v Smooth transition to the massless limit (due to the efficient treatment of
quasi-collinear configurations)

v Mapped real-contribution used as a fully local IR counter-term for the
dual contribution!

Rodrigo et al, JHEP10(2016)162



Physical example: Higgs@(N)NLO

~ 28 [ Using LTD to regularize finite amplitudes

0 Application of LTD to compute one-loop Higgs amplitudes:

99 — H H — vy
0 They are IR/UV finite BUT still not well-defined in 4D!Il Hidden cancellation of
singularities leads to potentially undefined results (scheme dependencelll)

0 We start by defining a tensor basis and projecting (amplitude levell):

5
WIE LA with g 2 (1))
B 512

w o 2PIDy . 200 P52V Py 294 ph
= g,u _ ’g,u ) ) )
! 512 512 512 512

Projectors

0 Then, scalar coefficients P/ A(l S = AN gre dualized.

1

0 IMPORTANT: Take into account 1-2 exchange symmetry (different cuts and non-
trivial cancellations!!!)

Driencourt-Mangin et al, Eur.Phys.). C78 (2018) no.3 231; JHEP 02 (2019) 143



Physical example: Higgs@(N)NLO

- 29 [ Using LTD to regularize finite amplitudes

0 Combine expressions (use “zero integrals” in DREG associated with Ward
identities):

5 €(+) E(Jr) 2 (20 - p12)? S19 M2
A(l ) _ /5 / [( s _|_ ) ! C<f) Il
= 4y . ( ) qg_g) qé(l_z) (26 D1 — ZO) (25 . p1)(2€ . Dg ) 1 "Well defined in 4-d!

2 812 (f)k N ° ° ° .
on-commutativity of limit
— sty — (20~ p12 —10)? < ‘ and in’regra’rion““y
UV divergent O(e)

0 Use local renormalization (equivalent to Dyson’s prescription...)

(+) 2
(1f) (4 L) 5 0 () by 512 L 3ugv \ (on
AR, (4 AlvUV)d:Ll ALUV__”/ ey P ed—a )
£ (qUVO) (qu,o)

o Counter-term mimics UV behaviour at integrand level.
o Term proportional to /iy used to fix DREG scheme (vanishing counter-term in d-dimll)

o Valid also for W amplitudes in unitary-gauge (naive Dyson’s prescription fails to subtract
subleading terms due to enhanced UV divergencesjf*—

: Qv 1
O\Im TN ) MR a0

Driencourt-Mangin et al, Eur.Phys.). C78 (2018) no.3 231; JHEP 02 (2019) 143




Physical example: Higgs@(N)NLO

30 | Asymptotic expansions

0 Infinite-mass limit used to define effective vertices. Equivalent to explore
asymptotic expansions!

0 Expansions at integrand level are non-trivial in Minkowski space (i.e. within
Feynman integrals) and additional factors are neccesary

0 Dual amplitudes are expressed as phase-space integralsmpEuclidean space!!

~ 0 (g3) Mf > 512 0(q3) ~=[ —s5 "
4] G ; - =
(g3) Gp(as:q2) = S19 + 203 - pro — 1) —) 0(gs) G (asi02) = 2q3-p12;(2q:3'p12>

Expansion of the dual propagator (q; on-shell)

0 Example: Higgs amplitudes with heavy-particles within the loop

A(Lf)(b’m < 4M?) S /5(8) [L A(f) ( O ( 12 ) ) C(f)]
LR f ‘d:4 )y Jy (qg;/) ) (() RZ 26(()+))2 1
1
z=(2¢€- pl)/(ﬁéﬂ /512) and Qn(z) = — 5 (Pan(z) — 1) Reproduces all the

known-resultsl!

Driencourt-Mangin et al, Eur.Phys.J. C78 (2018) no.3 231; JHEP 02 (2019) 143



About Higgs@NNLO...

31 ]Introducing the notation

0 Dual amplitudes can be defined at higher-orders (even with multiple poles)
Bierenbaum, Catani, Draggiotis, Rodrigo; JHEP 10 (2010) 073
0 Standard example: two-loop N-point scalar amplitude

Lrparox) = [ [ GrlarasUay)
{1 J Ao

/ef:_Z/ (Czljffd o . Grlaw)=]]Gra) Pra

1EQ

Di—1

0 Three possible sets of momenta, according Q-2
to their dependence on [;, I, or |, +1, (inte-
gration variables)

ap={0,1,...r} ,ao={r+1,7r+2,..,0} ,as={l+1,l+2,...N}

61 +p1,7; ,’i €
qi = ly + pii— ,1 € ap  with
O+l +Dpig—1 .1 € Qs

/1 anti—clockwise Dry1
/5 clockwise

Generic two-loop diagram

Driencourt-Mangin, Rodrigo, G.S., Torres Bobadilla, JHEP 02 (2019) 143




About Higgs@NNLO...

- 32 | Cuts and LTD formula

0 “The number of cuts equals the number of loops™

0 Derivation: “lterate” the one-loop formula and use propagator properties

0 Standard example: two-loop N-point scalar amplitude

L(2)(p17p27"'7pN):/ /{GD(Q2)GD<&1UQ3)
01 Jlo

Pi—1

Pir—2
+ GD(_sz U 041) GD(Otg) — GF(Ckl) GD<CY2) GD(Oég)}
~ qi—
where we used Gp(ax) = > d(a) |[ Gnlaia)) -
1EQy, JEay
J#i

1 Remarks and subtleties:

Modified prescription depends on loop momenta.

Not a “trivial” iteration: connection with Cauchy’s theorem
and multivariable residues.

Pr+1

Thesis: “Virtual-real amplitudes mapped with one-loop formulae” (partial cancellations),
but a new mapping required for double-real emission.

Driencourt-Mangin, Rodrigo, G.S., Torres Bobadilla, JHEP 02 (2019) 143




- Part IV: Singular structures

LTD formalism recasts Minkowski integrals into
Euclidean ones, thus leading to some ‘“nice”
mathematical properties.

I)- Characterization of threshold singularities
within the LTD approach



Characterization of singularities with LTD
~+ ] Descripfion of fhreshold singularifies @1loop

0 In general, the location of the singularities is given by the solutions of
++ 4 (+) (+) o
)\’z}j = X¢ 0 Tq0 t kjio= 0
with 4i on-shell and ka‘ = {5 — qi.
0 We consider the following test functions

(1) —1 oNF : : Up to 2 on-shell states
Sij B (QWZ) GD(q“ Cb) 0 (C]@) + (Z < ‘7) (standard thresholds)

(1) _

W — om) "t Gp g q1) Gp(qi: q; 5 q;) + perm. Up to 3 on-shell states
ijk 7

(anomalous thresholds)

0 IMPORTANT: The singular structure of scattering amplitudes is dictated by
their propagators. So, the proposed test functions are general enough to do a
proper analysis of threshold singularities.

Rodrigo et al, arXiv:1904.08389 [hep-ph]



Characterization of singularities with LTD
~5 ] Descripfion of fhreshold singularifies @1loop

0 The singular structure depends on the separation among momenta:

* Time-like separation (causal connection):

kfz — (mj +m)* >0

Physical threshold singularities are originated.

0(—Fkji0)0(kF; — (mi +m;)?)

. lim S = LO (A0
,Z VEOUENN R
Always +io !

The prescription is crucial to determine the imaginary part: it is

o

always +i0 and corresponds to the usual Feynman prescription! For

this configuration, LTD and FTT give equivalent descriptions!

N,
\
threshold

& Rodrigo et al, arXiv:1904.08389 [hep-ph]



Characterization of singularities with LTD
5] Description of threshold singularifies @l-loop

0 The singular structure depends on the separation among momenta:

* Space-like separation:
2 2
ki — (my —m;)” <0

The dual-prescription changes sign within the different contributions,
which allows a perfect cancellation of any singular behaviour.

+ . + .
- qg(’,o) GD(qvlvqgr'”Ajj——m - _qz'(,O)GD(ijqi”Aj;_—)O

Cancellation codified

m (1) _ +—0

)\+h_ OSij _O((/\@g ) ) by multiple-cuts in FTT!!
.. —

ij

o

* Light-like separation:

It originates IR and threshold singularities that remain in a compact

threshold ™ region of the integration domain. There is a partial cancellation

among dual contributions, but IR might remain!

& Rodrigo et al, arXiv:1904.08389 [hep-ph]




Characterization of singularities with LTD

Description of threshold singularities @ 1-loop

0 Anomalous thresholds: causal (i.e. time-like separated) singularities originated
by multiple propagators going on-shell.

. 1 9(—]674@'0)9(]{2- — (m@ _|_mfr')2)
lim S-(.l) = : e
AET AT =0 U Tgk (=X —10kyi0)

+) (+) (+
Lijk = SQg,o)Qﬁ,o)Q;i,o)
* Intersections of two hyperboloids lead to the standard IR
and threshold singularities.

* Anomalous thresholds are originated from the intersection
of two forward (backward) and one backward (forward)
hyperboloids.

* There are not singularities for A\;," = A\," — AT~ 0 W
Rodrigo et al, arXiv:1904.08389 [hep-ph]



R NEW!
- Part V: Multiloop numerical approach

LTD allows to transform loop into phase-space
integrals: we integrate on space components!

I)- Combination with spinor-helicity formalism in
four-dimensions (NEW!)

ll)- Novel multiloop formulae based on iterative
LTD!! (ONGOING, RESULTS TO APPEAR SOON!)



Towards multiloop&multileg numerical LTD

39 | 1-loop examples in four space-time dimensions

0 We consider three processes which are UV and IR finite, at one-loop.

\\\\\\\\\\\\\\\\\
. Helicity: ++++ [ .
141 12 y - [ 0014 Helicity: +++ 1
[ s=-5 | -oo00t0 [ =12 S1==1/3, Spa=—11T |
")/")/ —) f)/f)/ ] 0012} F ' : ]
1 00015} i g g g ]
] 1 o010 ]
=, 4 1 [ - h
< L ]
-0.0020 - ] i 1
I 1 o008k 2
-0.0025|- I i — ")/ "}/ ] ooos|- $13=8 ]
L 1 o004t ]
=0.0030 Helicity: ++ A [ ]
[ 1 T T S S S S S S S S R

160 — 150 — 1“‘0 — 1,;0 — 15‘,0 — 260 100 120 140 160 180 200
2
m? m? m?

0 Purely 4D numerical implementation for fixed helicity configurations!
0 Complete agreement with well-known analytical results (solid blue lines)

0 Smooth dependence on the external parameters (kinematical invariants &
masses)

0 Competitive computational performance (vs. SecDec and standard tools)

Rodrigo et al, arXiv:1911.11125 [hep-ph]



Conclusions and perspectives
B

v Loop-tree duality allows to treat virtual and real contributions in
the same way (implementation simplified)

v Physical interpretation of IR/UV singularities in loop integrals
(light-cone diagrams) and proper disentanglement

v Combined virtual-real terms are integrable in 4D!!
v Local 4-dimensional 2-loop results (Higgs/heavy quarks)

v Efficient numerical implementation for multiloop multileg
processes!! =) ongoing!!l (“paso a paso”)

Perspectives:
Automation of multileg processes at NLO and beyond!!!

“WorkStop-ThinkStart”

\Eur.Phys..l. C77 (2017) no.7, 471

NEW! Firenze Meeting 2019

Carefull comparison with other schemes



Inside a “O” there ARE many hidden things

HSVIOVaoO
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