A NEW METHOD TO COMPUTE PHYSICAL OBSERVABLES

THE FDU FRAMEWORK

German Fabricio Sborlini

in collaboration with F. Driencourt-Mangin, R. Hernández-Pinto, W. Torres Bobadilla and G. Rodrigo

Institut de Física Corpuscular, UV-CSIC (Spain)

HU/DESY Seminar – Dec. 19th 2019
LTD-VALENcia TEAM

Director:
 Dr. Germán Rodrigo

Post-docs:
 Dr. William Javier Torres Bobadilla
 Dr. Félix “Nancy” Driencourt-Mangin
 Dr. German “Fabricio” Sborlini
 Dr. Szymon Tracz

PhD. Students:
 Jesús “Christ” Aguilera-Verdugo
 Judith Plenter
 Selomit Ramírez-Uribe
 Andrés “Andreas Olivia” Rentería-Olivo

UAS team
 Dr. Roger “Chapo” Hernández-Pinto & students
Content

- Basic introduction
- Towards Loop-Tree Duality
- “LTD en acción”
 - I)- Applications of LTD
 - II)- FDU approach
 - III)- Singular structures
 - IV)- Multiloop numerical approach
- Conclusions and perspectives

Supported by
STARTING CONCEPT:

Inside a “0” there COULD BE many hidden things
Basic introduction

Theoretical motivation

- Theoretical framework: **Standard Model + factorization theorem**

\[
\frac{d\sigma}{d^2 q_T \, dM^2 \, d\Omega \, dy} = \sum_{a,b} \int dx_1 dx_2 \, f^h_a(x_1) f^h_b(x_2) \frac{d\hat{\sigma}_{ab \to V+X}}{d^2 q_T \, dM^2 \, d\Omega \, dy}
\]

- **Deal with ill-defined expressions** in intermediate steps **DREG!!!**
 - Proposed by {Giambiagi&Bollini, t’Hooft&Veltman, Cicuta&Montaldi, Ashmore,…}, it becomes a standard in HEP since it preserves gauge invariance
 - **Abstract idea:** «Change the dimension of the loop-momentum space»
 - **Reality:** «Introduce a parameter \(\varepsilon\) in order to make everything integrable»

PDFs (non-perturbative)
Partonic cross-section (perturbative)

\[O_d[F] = \int d^d x \, F(x) \]
\[d = 4 - 2\varepsilon \]

1. linearity \[\int d^d x \, (a F(x) + b G(x)) = a \int d^d x \, F(x) + b \int d^d x \, G(x) \]
2. scaling \[\int d^d x \, F(s x) = s^{-d} \int d^d x \, F(x) \]
3. translational invariance \[\int d^d x \, F(x + y) = \int d^d x \, F(x) \]

Nice mathematical properties!!
(“Todo bonito”)

What we want to compute!
Basic introduction

- Singularities in perturbative theories with DREG

- Two kinds of physical singularities:
 - **Ultraviolet poles** coming from the high-energy region in loop integrals

 SOLUTION: Add proper counterterms obtained from RENORMALIZATION procedure. These counterterms have EXPLICIT ε-poles and are proportional to lower-order amplitudes.

 - **Infrared poles** associated with degenerate configurations: extra-particle radiation in soft (i.e. low energy) or collinear (i.e. parallel) configurations

 SOLUTION: Kinoshita-Lee-Nauenberg theorem states that adding real-emission processes and computing IR-safe observables guarantees the cancellation of all the IR poles present in renormalized virtual amplitudes and INTEGRATED real-radiation contributions.

- **Loop integrals** could contain **UV and IR** singularities
Basic introduction

Theoretical motivation

- **Summary scheme:** obtaining finite physical results at higher-orders

- **Vacuum quantum fluctuations (no experimental signature)**

- **Virtual corrections (loop integrals)**
 - IR/UV divergences

- **Renormalization counter-terms**
 - UV divergences

- **Renormalization procedure**

- **KLN theorem + IR safe observables**

- **Finite physical observable**

- **Renormalized virtual corrections**
 - IR divergences

- **Real corrections (PS integrals)**
 - IR divergences

- **Contributions with extra-radiation (included in the definition of the observable)**

WE WANT INTEGRAND LEVEL CANCELLATION!!!
Towards Loop-Tree Duality

Residue theorem (from Wikipedia)

\[\oint_{\gamma} f(z) \, dz = 2\pi i \sum \text{Res}(f, a_k) \]

«If \(f \) is a holomorphic function in \(U/\{a_i\} \), and \(g \) a simple positively oriented curve, then the integral is given by the sum of the residues at each singular point \(a_i \)»

Feynman propagator

\[[G(q)]^{-1} = 0 \implies q_0 = \pm \sqrt{q^2 - i0} \]

Advanced propagator

\[[G_A(q)]^{-1} = 0 \implies q_0 \simeq \pm \sqrt{q^2 + i0} \]

NO POLES CLOSED BY \(C_L \)!

Residue theorem can be used to compute integrals involving propagators: the prescription and the contour that we choose determine the result!
Towards Loop-Tree Duality

Dual representation of one-loop integrals

\[L^{(1)}(p_1, \ldots, p_N) = \int_\ell \prod_{i=1}^{N} G_F(q_i) = \int_\ell \prod_{i=1}^{N} \frac{1}{q_i^2 - m_i^2 + i0} \]

Even at higher-orders, the number of cuts is equal the number of loops

\[G_D(q_i, q_j) = \frac{1}{q_j^2 - m_j^2 - i0\eta(q_j - q_i)} \]

\[\tilde{\delta}(q_i) = i2\pi \theta(q_i,0) \delta(q_i^2 - m_i^2) \]
Part I: Applications of LTD

• I)- Deal with massless Feynman integrals
• II)- Analysis of IR-divergent integrals
• III)- Study of UV-divergent integrals and local UV counter-terms
LTD for Feynman integrals

Motivation and introduction

- Two different kinds of physical singularities: **UV** and **IR**
 - IR divergences: *massless triangle*
 \[L^{(1)}(p_1, p_2, -p_3) = \int \prod_{i=1}^{3} G_F(q_i) = -\frac{c_T}{\epsilon^2 s_{12}} \left(\frac{-s_{12} - i0}{\mu^2} \right)^{-\epsilon} \]

 IR pole

 IDEA: Define a proper **MOMENTUM MAPPING** to generate **REAL EMISSION KINEMATICS**, and use **REAL TERMS** as fully local IR counter-terms!

- UV divergences: *bubble with massless propagators*
 \[L^{(1)}(p, -p) = \int \prod_{i=1}^{2} G_F(q_i) = c_T \frac{\mu^{2\epsilon}}{\epsilon (1 - 2\epsilon)} \left(-p^2 - i0 \right)^{-\epsilon} \]

 UV pole

 IDEA: Define an **INTEGRAND LEVEL REPRESENTATION** of standard UV counter-terms, and combine it with the **DUAL REPRESENTATION** of virtual terms!

LTD for Feynman integrals: IR case

Reference example: Massless scalar three-point function in the time-like region

\[L^{(1)}(p_1, p_2, -p_3) = \int \prod_{i=1}^{3} G_F(q_i) = -\frac{c\Gamma}{\epsilon^2} \left(-\frac{s_{12}}{\mu^2} - i0\right)^{-1-\epsilon} = \sum_{i=1}^{3} I_i \]

\[I_1 = \frac{1}{s_{12}} \int d[\xi_{1,0}] d[v_1] \xi_{1,0}^{-1} (v_1(1-v_1))^{-1} \]
\[I_2 = \frac{1}{s_{12}} \int d[\xi_{2,0}] d[v_2] \frac{(1-v_2)^{-1}}{1-\xi_{2,0} + i0} \]
\[I_3 = \frac{1}{s_{12}} \int d[\xi_{3,0}] d[v_3] \frac{v_3^{-1}}{1+\xi_{3,0} - i0} \]

- This integral is UV-finite (power counting); there are only IR-singularities, associated to soft and collinear regions

- **OBJECTIVE:** Define a IR-regularized loop integral by adding real corrections at integrand level (i.e. no epsilon should appear, 4D representation)

LTD for Feynman integrals: IR case

Location of IR singularities in the dual-space

- Analyze the dual integration region. It is obtained as the positive energy solution of the on-shell condition:

\[G^{-1}_F(q_i) = q_i^2 - m_i^2 + i\epsilon = 0 \]

\[q_{i,0}^{(\pm)} = \pm \sqrt{q_i^2 + m_i^2 - i\epsilon} \]

- **Forward** (backward) on-shell hyperboloids associated with **positive** (negative) energy solutions.
- Degenerate to light-cones for massless propagators.
- Dual integrands become **singular at intersections** (two or more on-shell propagators)

Massive case: hyperboloids

Massless case: light-cones

The application of LTD converts loop-integrals into PS ones: integration over forward light-cones.

- Only forward-backward interferences originate threshold or IR poles (other propagators become singular in the integration domain)
- Forward-forward singularities cancel among dual contributions
- Threshold and IR singularities associated with finite regions (i.e. contained in a compact region)
- No threshold or IR singularity at large loop momentum

This structure suggests how to perform real-virtual combination! Also, how to overcome threshold singularities (integrable but numerically unstable)
LTD for Feynman integrals: UV case

- **Reference example:** two-point function with massless propagators

\[
L^{(1)}(p, -p) = \int_\ell \prod_{i=1}^{2} G_F(q_i) = \frac{c_T}{\epsilon(1 - 2\epsilon)} \left(-\frac{p^2}{\mu^2} - i0 \right)^{-\epsilon} = \sum_{i=1}^{2} I_i
\]

- **OBJETIVE:** Define a UV-regularized loop integral by adding unintegrated UV counter-terms, and find a purely 4-dimensional representation of the loop integral

- In this case, the integration regions of dual integrals are two energy-displaced forward light-cones. This integral contains UV poles only

- **OBJETIVE:** Define a UV-regularized loop integral by adding unintegrated UV counter-terms, and find a purely 4-dimensional representation of the loop integral

LTD for Feynman integrals: UV case

UV counter-term

- Divergences arise from the high-energy region (UV poles) and can be cancelled with a suitable renormalization counter-term. For the scalar case, we use

\[
I_{\text{cnt}}^{\text{UV}} = \int_{\ell} \frac{1}{(q_{\text{UV}}^2 - \mu_{\text{UV}}^2 + i0)^2}
\]

- Dual representation (new: double poles in the loop energy)

\[
I_{\text{cnt}}^{\text{UV}} = \int_{\ell} \frac{\tilde{\delta}(q_{\text{UV}})}{2 (q_{\text{UV},0}^{(+)})^2}
\]

\[
q_{\text{UV},0}^{(+)} = \sqrt{q_{\text{UV}}^2 + \mu_{\text{UV}}^2 - i0}
\]

Bierenbaum et al. JHEP 03 (2013) 025

- Loop integration for loop energies larger than \(\mu_{\text{UV}} \)

Part II: FDU formalism

I)- Adding real contributions to locally cancel IR singularities: Universal kinematical mappings

II)- Local four-dimensional representation of renormalization counter-terms

OBJETIVE: Avoid using DREG (or any other regularization) through a purely 4D representation of physical observables
Towards local IR regularization

According to KLN theorem real contributions. Suppose one-loop scalar scattering amplitude given by the triangle.

\[|\mathcal{M}^{(0)}(p_1, p_2; p_3)\rangle = ig \]
\[|\mathcal{M}^{(1)}(p_1, p_2; p_3)\rangle = -ig^3 L^{(1)}(p_1, p_2, -p_3) \Rightarrow \text{Re} \langle \mathcal{M}^{(0)} | \mathcal{M}^{(1)} \rangle \]

- 1->2 one-loop process \[\rightarrow\] 1->3 with unresolved extra-parton
- Add scalar tree-level contributions with one extra-particle; consider interference terms:

\[|\mathcal{M}_{ir}^{(0)} (p'_1, p'_2, p'_r; p_3)\rangle = -ig^2 / s'_{ir} \Rightarrow \text{Re} \langle \mathcal{M}_{ir}^{(0)} | \mathcal{M}_{jr}^{(0)} \rangle = \frac{g^4}{s'_{ir} s'_{jr}} \]

- Generate 1->3 kinematics starting from 1->2 configuration plus the loop three-momentum \[l\] !!!

Generalization of mappings

Real-virtual momentum mapping with massive particles:

- Consider 1 the emitter, r the radiated particle and 2 the spectator.
- Apply the PS partition and restrict to the only region where 1/r is allowed (i.e. $R_1 = \{ y_{1r} < \min y_{kj} \}$).
- Propose the following mapping:

$$
\begin{align*}
\hat{p}_r^\mu &= q_1^\mu \\
\hat{p}_1^\mu &= (1 - \alpha_1) \hat{p}_1^\mu + (1 - \gamma_1) \hat{p}_2^\mu - q_1^\mu \\
\hat{p}_2^\mu &= \alpha_1 \hat{p}_1^\mu + \gamma_1 \hat{p}_2^\mu
\end{align*}
$$

with \hat{p}_i massless four-vectors build using p_i (simplify the expressions).

- Express the loop three-momentum with the same parameterization used for describing the dual contributions!

Repeat in each region of the partition...

Generalization of mappings

- We combine the dual contributions with the real terms (after applying the proper mapping) to get the total decay rate in the scalar toy-model.
 - The result agrees perfectly with standard DREG.
 - Massless limit is smoothly approached due to proper treatment of quasi-collinear configurations in the RV mapping.

Example: massive scalar three-point function (DREG vs LTD)

Local renormalization within LTD

- LTD can also deal with **UV singularities** by building local versions of the usual UV counterterms.

 1: Expand internal propagators around the “UV propagator”

 \[
 \frac{1}{q_i^2 - m_i^2 + i0} = \frac{1}{q_{UV}^2 - \mu_{UV}^2 + i0} \\
 \times \left[1 - \frac{2q_{UV} \cdot k_{i,UV} + k_{i,UV}^2 - m_i^2 + \mu_{UV}^2}{q_{UV}^2 - \mu_{UV}^2 + i0} + \frac{(2q_{UV} \cdot k_{i,UV})^2}{(q_{UV}^2 - \mu_{UV}^2 + i0)^2} \right] + \mathcal{O} \left((q_{UV}^2)^{-5/2} \right)
 \]

 - **2: Apply LTD** to get the **dual representation** for the expanded UV expression, and **subtract** it from the **dual+real** combined integrand.

 \[
 I_{UV}^{\text{cnt}} = \int \frac{\tilde{\delta}(q_{UV})}{2 (q_{UV,0}^{(+)})^2} \\
 q_{UV,0}^{(+)} = \sqrt{q_{UV}^2 + \mu_{UV}^2 - i0}
 \]

 LTD extended to deal with multiple poles
 (use residue formula to obtain the dual representation)

 Bierenbaum et al. JHEP 03 (2013) 025

In the massless case, the renormalization factors are usually ignored because they are “0”: but they hide a cancelation between UV and IR singularities...
Local renormalization within LTD

- Requires **unintegrated** wave-function, mass and vertex renormalization constants

- Self-energy corrections with **on-shell renormalization** conditions

\[
\Sigma_R(p_1 = M) = 0 \quad \frac{d\Sigma_R(p_1)}{dp_1}\bigg|_{p_1=M} = 0
\]

- Wave function renormalization constant, **both IR and UV poles**

\[
\Delta Z_2(p_1) = -g_5^2 C_F \int G_F(q_1) G_F(q_3) \left((d-2) \frac{q_1 \cdot p_2}{p_1 \cdot p_2} + 4M^2 \left(1 - \frac{q_1 \cdot p_2}{p_1 \cdot p_2} \right) G_F(q_3) \right)
\]

- **Remove UV poles** by expanding around the UV-propagator (same for the vertex counterterm)

- Integrated form of local counterterms agrees with standard UV counterterms

Part III: Physical examples

- Application of the FDU/LTD formalism to express amplitudes and observables in four space-time dimensions.

 I)- Vector boson decays at NLO
 II)- Higgs amplitudes at one and two loop

- REMARK: First application of two-loop local renormalization in 4D!!!
Physical example: $A^* \rightarrow q\bar{q}(g)$ @NLO

Results and comparison with DREG

- Total decay rate for Higgs into a pair of massive quarks:
 - Agreement with the standard DREG result
 - Smoothly achieves the massless limit
 - Local version of UV counterterms successfully reproduces the expected behaviour
 - Efficient numerical implementation

Rodrigo et al, JHEP10(2016)162
Physical example: $A^* \rightarrow q\bar{q}(g)@$NLO

Results and comparison with DREG

- Total decay rate for a vector particle into a pair of massive quarks:
 - Agreement with the standard DREG result
 - Smoothly achieves the massless limit
 - Efficient numerical implementation

Rodrigo et al, JHEP10(2016)162
Physical example: $A^* \rightarrow q\bar{q}(g)@NLO$

- The total decay-rate can be expressed using purely **four-dimensional integrands** (which are **integrable** functions!!)

- We recover the total NLO correction, **avoiding to deal with** DREG (ONLY used for comparison with known results)

- **Main advantages:**
 - Direct **numerical** implementation (integrable functions for $\epsilon=0$)
 - **Smooth transition** to the massless limit (due to the efficient treatment of quasi-collinear configurations)
 - **Mapped real-contribution used as a fully local IR counter-term for the dual contribution!**

Important remarks

- Finite integral for $\epsilon=0$
 - Integrability with $\epsilon=0$
 - With FDU is true!
Physical example: Higgs@((N)NLO)

Using LTD to regularize finite amplitudes

- Application of LTD to compute one-loop Higgs amplitudes:

 ![Diagram of gg → H and H → γγ](image)

- They are IR/UV finite BUT still not well-defined in 4D!!! Hidden cancellation of singularities leads to potentially undefined results (scheme dependence!!!)

- We start by defining a tensor basis and projecting (amplitude level!):

 \[
 A_{\mu\nu}^{(1,f)} = \sum_{i=1}^{5} A_{i}^{(1,f)} T_{i}^{\mu\nu}
 \]

 with

 \[
 T_{i}^{\mu\nu} = \left\{ g^{\mu\nu}, \frac{2 p_{1}^{\mu} p_{2}^{\nu}}{s_{12}}, \frac{2 p_{1}^{\mu} p_{1}^{\nu}}{s_{12}}, \frac{2 p_{2}^{\mu} p_{2}^{\nu}}{s_{12}} \right\}
 \]

 \[
 P_{1}^{\mu\nu} = \frac{1}{d-2} \left(g^{\mu\nu} - \frac{2 p_{1}^{\mu} p_{2}^{\nu}}{s_{12}} - (d-1) P_{2}^{\mu\nu} \right)
 \]

 \[
 P_{2}^{\mu\nu} = \frac{2 p_{1}^{\mu} p_{2}^{\nu}}{s_{12}}
 \]

- Then, scalar coefficients \(P_{i}^{\mu\nu} A_{i}^{(1,f)} = A_{i}^{(1,f)} \) are dualized.

- **IMPORTANT:** Take into account 1-2 exchange symmetry (different cuts and non-trivial cancellations!!!)
Physical example: Higgs@NLO

Using LTD to regularize finite amplitudes

- Combine expressions (use “zero integrals” in DREG associated with Ward identities):

\[
A^{(1,f)}_1 = g_f \int_\ell \delta(\ell) \left[\left(\frac{\ell_0^{(+)}}{q_{1,0}^{(+)}} + \frac{\ell_0^{(+)}}{q_{4,0}^{(+)}} + \frac{2 (2\ell \cdot p_{12})^2}{s_{12} - (2\ell \cdot p_{12} - i0)^2} \right) \frac{s_{12} M_f^2}{(2\ell \cdot p_1)(2\ell \cdot p_2)} \right] c_1^{(f)} + \frac{2 s_{12}^2}{s_{12} - (2\ell \cdot p_{12} - i0)^2} c_{23}^{(f)} \nonumber
\]

- Use local renormalization (equivalent to Dyson’s prescription…)

\[
A^{(1,f)}_{1,R} \bigg|_{d=4} = \left(A^{(1,f)}_1 - A^{(1,f)}_{1,UV} \right)_{d=4},
A^{(1,f)}_{1,UV} = -g_f \int_\ell \delta(\ell) \frac{\ell_0^{(+)}}{2(q_{UV,0}^{(+)})^3} \left(1 + \frac{1}{(q_{UV,0}^{(+)})^2} \frac{3 \mu_{UV}^2}{d-4} \right) c_{23}^{(f)}
\]

- Counter-term mimics UV behaviour at integrand level.
- Term proportional to μ_{UV}^2 used to fix DREG scheme (vanishing counter-term in d-dim!!)
- Valid also for W amplitudes in unitary-gauge (naive Dyson’s prescription fails to subtract subleading terms due to enhanced UV divergences)

Physical example: Higgs@(N)NLO

- Infinite-mass limit used to define effective vertices. Equivalent to explore asymptotic expansions!
- Expansions at **integrand level** are non-trivial in **Minkowski** space (i.e. within Feynman integrals) and additional factors are necessary
- **Dual amplitudes** are expressed as **phase-space integrals** → **Euclidean space!!**

\[\delta(q_3) G_D(q_3; q_2) = \frac{\tilde{\delta}(q_3)}{s_{12} + 2q_3 \cdot p_{12} - i0} M_f^2 \gg s_{12} \quad \tilde{\delta}(q_3) G_D(q_3; q_2) = \frac{\tilde{\delta}(q_3)}{2q_3 \cdot p_{12}} \sum_{n=0}^{\infty} \left(\frac{-s_{12}}{2q_3 \cdot p_{12}} \right)^n \]

Expansion of the dual propagator (q$_3$ on-shell)

- **Example**: Higgs amplitudes with heavy-particles within the loop

\[A_{1,R}^{(1,f)}(s_{12} < 4M_f^2) \bigg|_{d=4} = \frac{M_f^2}{\langle v \rangle} \int \tilde{\delta}(\ell) \left[\frac{3 \mu_{UV}^2 \ell_0^{(+)}}{(q_{UV,0}^{(+)})^5} \tilde{c}_2(f) + \frac{M_f^2}{(\ell_0^{(+)})^4} \left(\sum_{n=0}^{\infty} Q_n(z) \left(\frac{s_{12}}{(2\ell_0^{(+)})^2} \right)^n \right) c_1^{(f)} \right] \]

\[z = (2\ell \cdot p_1)/(\ell_0^{(+)})^2 \quad \text{and} \quad Q_n(z) = \frac{1}{1 - z^2} (P_{2n}(z) - 1) \]

Reproduces all the known-results!!

Introducing the notation

- Dual amplitudes can be defined at higher-orders (even with multiple poles)
 Bierenbaum, Catani, Draggiotis, Rodrigo; JHEP 10 (2010) 073

- Standard example: two-loop N-point scalar amplitude

\[
L^{(2)}(p_1, p_2, \ldots, p_N) = \int_{\ell_1} \int_{\ell_2} G_F(\alpha_1 \cup \alpha_2 \cup \alpha_3) \\
\int_{\ell_i} \cdot = -i \int \frac{d^d \ell_i}{(2\pi)^d} \cdot , \quad G_F(\alpha_k) = \prod_{i \in \alpha_k} G_F(q_i)
\]

- Three possible sets of momenta, according to their dependence on \(l_1, l_2 \) or \(l_1 + l_2 \) (integration variables)

\[
\alpha_1 \equiv \{0, 1, \ldots, r\}, \quad \alpha_2 \equiv \{r + 1, r + 2, \ldots, l\}, \quad \alpha_3 \equiv \{l + 1, l + 2, \ldots, N\}
\]

\[
q_i = \begin{cases}
\ell_1 + p_{1,i}, & i \in \alpha_1 \\
\ell_2 + p_{i,l-1}, & i \in \alpha_2 \\
\ell_1 + \ell_2 + p_{i,l-1}, & i \in \alpha_3
\end{cases} \quad \text{with} \quad \ell_1 \text{ anti-clockwise} \\
\ell_2 \text{ clockwise}
\]

Generic two-loop diagram

Driencourt-Mangin, Rodrigo, G.S., Torres Bobadilla, JHEP 02 (2019) 143
About Higgs@NNLO...

- **“The number of cuts equals the number of loops”**
- **Derivation:** “Iterate” the one-loop formula and use propagator properties
- **Standard example:** two-loop N-point scalar amplitude

\[
L^{(2)}(p_1, p_2, \ldots, p_N) = \int_{\ell_1} \int_{\ell_2} \{G_D(\alpha_2) G_D(\alpha_1 \cup \alpha_3) \\
+ G_D(-\alpha_2 \cup \alpha_1) G_D(\alpha_3) - G_F(\alpha_1) G_D(\alpha_2) G_D(\alpha_3)\}
\]

where we used
\[
G_D(\alpha_k) = \sum_{i \in \alpha_k} \tilde{\delta}(q_i) \prod_{j \in \alpha_k \setminus j \neq i} G_D(q_i; q_j)
\]

- **Remarks and subtleties:**
 - Modified prescription depends on loop momenta.
 - Not a “trivial” iteration: connection with Cauchy’s theorem and multivariable residues.
 - **Thesis:** “Virtual-real amplitudes mapped with one-loop formulae” (partial cancellations), but a new mapping required for double-real emission.

Driencourt-Mangin, Rodrigo, G.S., Torres Bobadilla, JHEP 02 (2019) 143
Part IV: Singular structures

- LTD formalism recasts Minkowski integrals into Euclidean ones, thus leading to some “nice” mathematical properties.

- 1)- Characterization of threshold singularities within the LTD approach
In general, the location of the singularities is given by the solutions of

\[\lambda_{ij}^{\pm} = \pm q_{i,0}^{(+)} \pm q_{j,0}^{(+)} + k_{ji,0} = 0 \]

with \(q_i \) on-shell and \(k_{ji} = q_j - q_i \).

We consider the following test functions

\[S_{ij}^{(1)} = (2\pi\nu)^{-1} G_D(q_i; q_j) \tilde{\delta}(q_i) + (i \leftrightarrow j) \]

Up to 2 on-shell states
(statistical thresholds)

\[S_{ijk}^{(1)} = (2\pi\nu)^{-1} G_D(q_i; q_k) G_D(q_i; q_j) \tilde{\delta}(q_i) + \text{perm.} \]

Up to 3 on-shell states
(anomalous thresholds)

IMPORTANT: The singular structure of scattering amplitudes is dictated by their propagators. So, the proposed test functions are general enough to do a proper analysis of threshold singularities.

The singular structure depends on the separation among momenta:

- **Time-like separation (causal connection):**

\[
 k_{ji}^2 - (m_j + m_i)^2 \geq 0
\]

Physical threshold singularities are originated.

\[
 \lim_{\lambda_{ij}^{++} \to 0} S_{ij}^{(1)} = \frac{\theta(-k_{ji,0}) \theta(k_{ji}^2 - (m_i + m_j)^2)}{x_{ij}(-\lambda_{ij}^{++} - i0k_{ji,0})} + \mathcal{O} \left((\lambda_{ij}^{++})^0 \right)
\]

Always +i0 !!!

The prescription is crucial to determine the imaginary part: it is always +i0 and corresponds to the usual Feynman prescription! For this configuration, LTD and FTT give equivalent descriptions!
Characterization of singularities with LTD

The singular structure depends on the separation among momenta:

- **Space-like separation:**
 \[k_{ji}^2 - (m_j - m_i)^2 \leq 0 \]
 The dual-prescription changes sign within the different contributions, which allows a perfect cancellation of any singular behaviour.

 \[q_{j,0}^{(+) \, G_D(q_i; q_j)}|_{\lambda_{ij}^{+-} \to 0} = -q_{i,0}^{(+) \, G_D(q_j; q_i)}|_{\lambda_{ij}^{+-} \to 0} \]

 \[\lim_{\lambda_{ij}^{+-} \to 0} S_{ij}^{(1)} = \mathcal{O} \left((\lambda_{ij}^{+-})^0 \right) \]

- **Light-like separation:**
 It originates IR and threshold singularities that remain in a compact region of the integration domain. There is a partial cancellation among dual contributions, but IR might remain!

Characterization of singularities with LTD

- **Anomalous thresholds:** causal (i.e. time-like separated) singularities originated by multiple propagators going on-shell.

\[
\lim_{\lambda_{ij}^{++}, \lambda_{ik}^{++} \to 0} S_{ijk}^{(1)} = \frac{1}{x_{ijk}} \prod_{r=j,k} \theta(-k_{ri,0}) \theta(k_{ri}^2 - (m_i + m_r)^2) \left(-\lambda_{ir}^{++} - \nu 0 k_{ri,0} \right)
+ \mathcal{O} \left((\lambda_{ij}^{++})^{-1}, (\lambda_{ik}^{++})^{-1} \right)
\]

\[x_{ijk} = 8 q_{i,0}^{(+)} q_{j,0}^{(+)} q_{k,0}^{(+)}\]

- Intersections of two hyperboloids lead to the standard IR and threshold singularities.

- Anomalous thresholds are originated from the intersection of two forward (backward) and one backward (forward) hyperboloids.

- **There are not singularities for** \(\lambda_{jk}^{-+} = \lambda_{ik}^{++} - \lambda_{ij}^{++} \to 0\) !!!
LTD allows to transform loop into phase-space integrals: we integrate on space components!

I)- Combination with spinor-helicity formalism in four-dimensions (NEW!)

II)- Novel multiloop formulae based on iterative LTD!!! (ONGOING, RESULTS TO APPEAR SOON!)
Towards multiloop & multileg numerical LTD

- We consider three processes which are UV and IR finite, at one-loop.

- Purely 4D numerical implementation for fixed helicity configurations!

- Complete agreement with well-known analytical results (solid blue lines)

- Smooth dependence on the external parameters (kinematical invariants & masses)

- Competitive computational performance (vs. SecDec and standard tools)

Rodrigo et al., arXiv:1911.11125 [hep-ph]
Conclusions and perspectives

- Loop-tree duality allows to treat virtual and real contributions in the same way (implementation simplified)
- Physical interpretation of IR/UV singularities in loop integrals (light-cone diagrams) and proper disentanglement
- Combined virtual-real terms are integrable in 4D!!
- Local 4-dimensional 2-loop results (Higgs/heavy quarks)
- Efficient numerical implementation for multiloop multileg processes!! ongoing!!! (“paso a paso”)

- Perspectives:
 - Automation of multileg processes at NLO and beyond!!!
 - Carefull comparison with other schemes

“WorkStop-ThinkStart”
NEW! Firenze Meeting 2019
Inside a “0” there ARE many hidden things

GRACIAS!!!