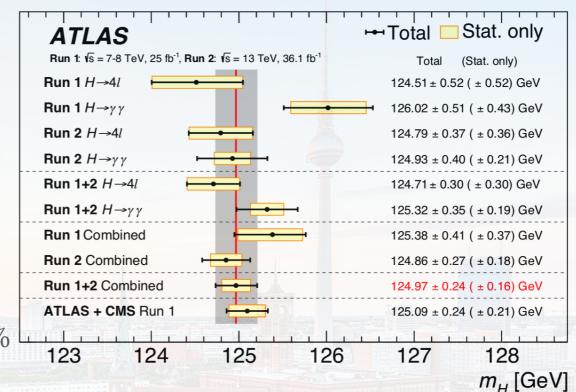
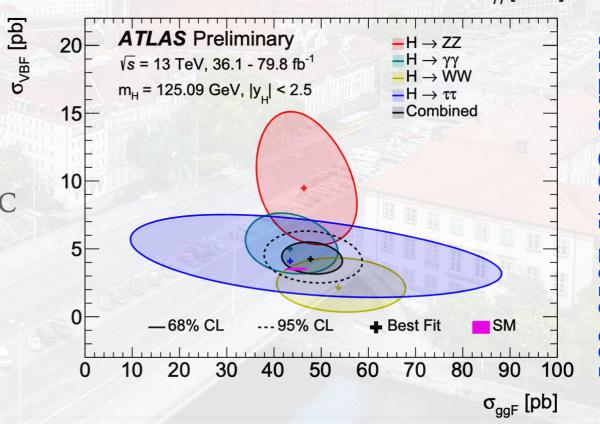
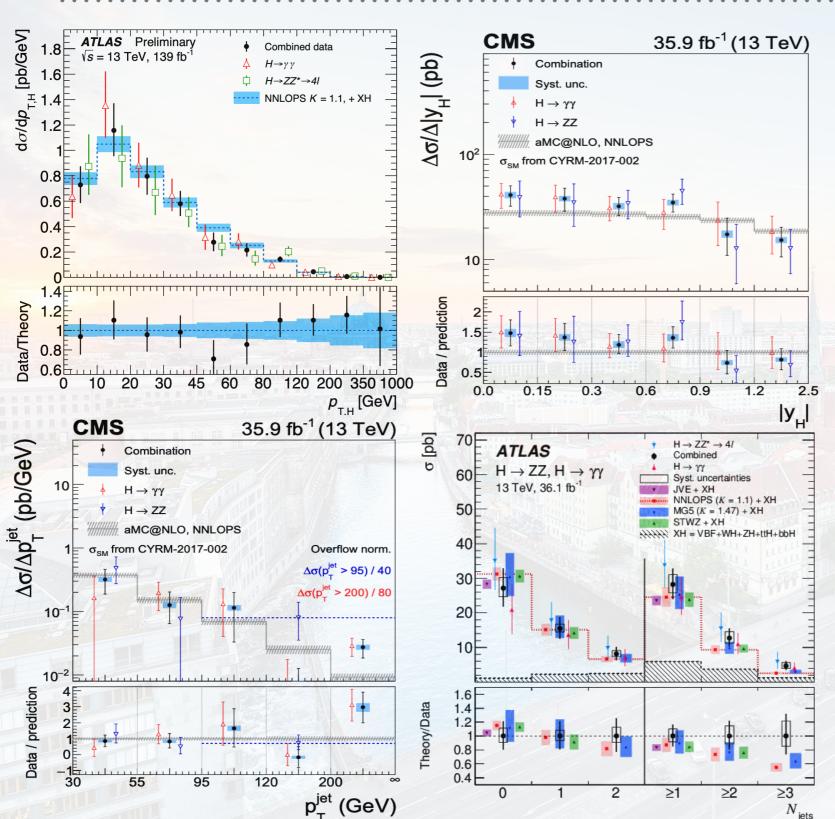


HIGH PRECISION PHENOMENOLOGY OF THE HIGGS BOSON HUMBOLDT-UNIVERSITÄT ZU BERLIN AND DESY SEMINAR


Xuan Chen Physik-Institut, Universität Zürich Berlin, Germany, December 05, 2019


OUTLINE

- Precision measurements and predictions of the Higgs boson
 - Current status from both theory and experiment (cherry pick)
 - Projection of HL-LHC, is it precise enough?
- Precision QCD calculations in the past, present and future
 - Roadmap of NNLO
 - ➤ Roadmap of N3LO
- Higgs production and decay processes in NNLOJET
- ➤ Higgs transverse momentum distribution in full spectrum
 - > Small, medium and boosted regions
- Higgs rapidity distribution at N3LO (ggF channel)
- ➤ Future work & Summary

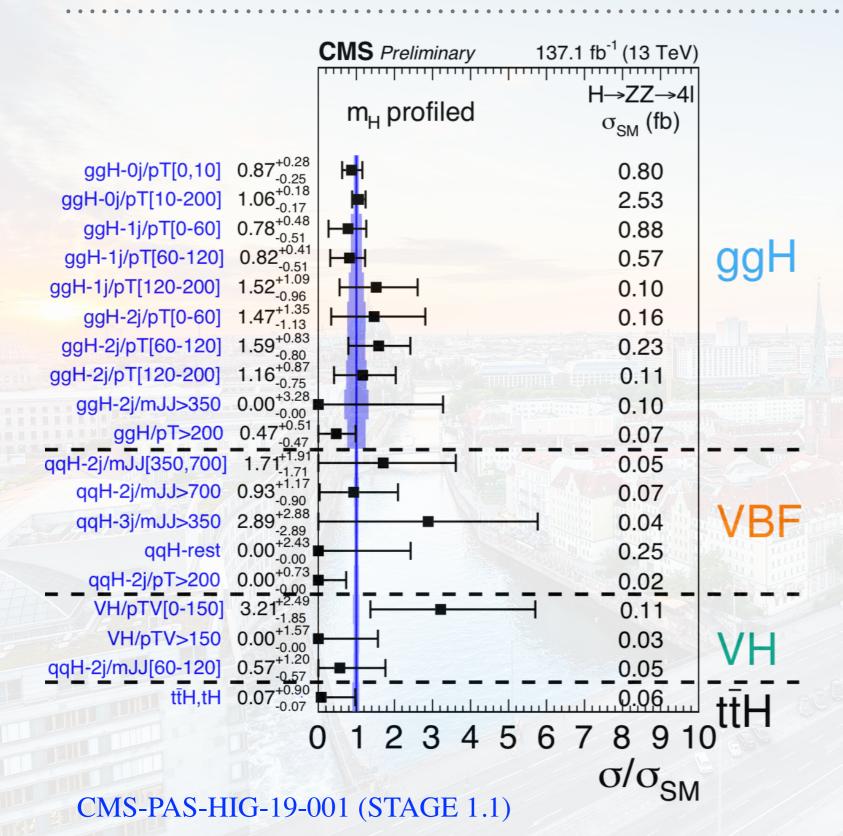

SUCCESS OF LHC HIGGS EXPERIMENTS

- ➤ Higgs boson properties in agreement with SM
 - ➤ Bosonic (Run I) and 3rd generation fermionic couplings (Run II) observed with current precision on coupling ±10-20% (EPS2019)
 - ➤ Higgs mass uncertainty at ±0.2% level (Run I + II)
 - ➤ Fiducial total cross section measured with ±9% accuracy (Run I + II)
 - 2nd generation fermion couplings still to be established
 - ➤ HH signal with 10 times SM exclusion limit
- ➤ Goal for the future: explore full potential of the LHC
 - Differential in production and decay channels
 - Projection to HL-LHC (estimate challenge)
 - Accelerate searches of new physics

SUCCESS OF LHC HIGGS EXPERIMENTS

Xuan Chen (UZH)

➤ Typical differential observables for Higgs (+jet) are:


$$\frac{d\sigma}{dp_T^H} \quad \frac{d\sigma}{d|y^H|} \quad \frac{d\sigma}{dp_T^{j1}} \quad \frac{d\sigma}{dN_{jets}}$$

- Inclusive decay observables are reconstructed from individual decay channel
- Combined results with ± 20-40%
 uncertainties (EPS2019)
 (ATLAS 1805.10197, CMS 1812.06504,
 ATLAS-CONF-2019-032)
- Breakdown in production channels through Simplified Template Cross Section (STXS)
- All Higgs production and decay channels contribute
 - Complexity increase from Stage

$$0 \to 1 \to 1.1 \to \cdots \to 2$$

High Precision Phenomenology of the Higgs Boson

SUCCESS OF LHC HIGGS EXPERIMENTS

> Typical differential observables for Higgs (+jet) are:

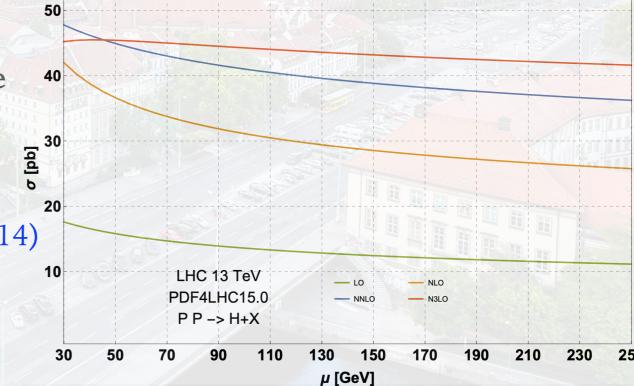
$$\frac{d\sigma}{dp_T^H} \frac{d\sigma}{d|y^H|} \frac{d\sigma}{dp_T^{j1}} \frac{d\sigma}{dN_{jets}}$$

- Inclusive decay observables are reconstructed from individual decay channel
- Combined results with ± 30-50%
 uncertainties
 (ATLAS 1805.10197, CMS 1812.06504,
 ATLAS-CONF-2019-032)
- Breakdown in production channels through Simplified Template Cross Section (STXS)
- All Higgs production and decay channels contribute
- Complexity increase from Stage

$$0 \rightarrow 1 \rightarrow 1.1 \rightarrow \cdots \rightarrow 2$$

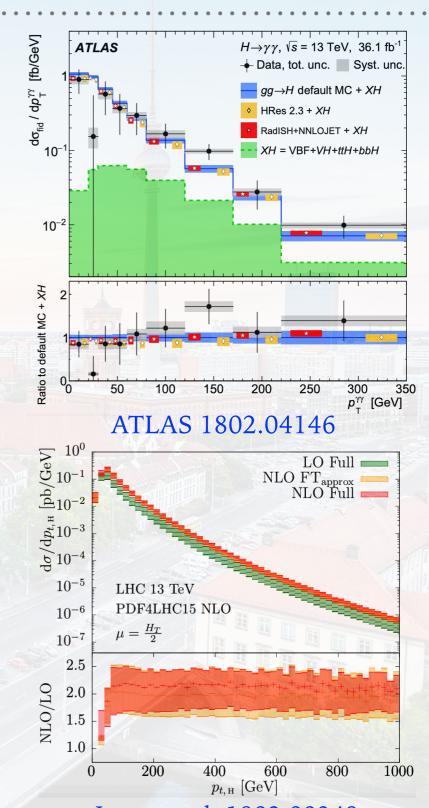
Xuan Chen (UZH)

SUCCESS OF HIGGS THEORY (GLUON FUSION)


$\sigma_{PP \to H+X}$	=	16.00 pb	(+32.87%)	LO, rEFT
	+	20.84 pb	(+42.82%)	NLO, rEFT
	+	9.56 pb	(+19.64%)	NNLO, rEFT
	+	$1.62~\mathrm{pb}$	(+3.32%)	N^3LO , rEFT
	_	2.07 pb	(-4.25%)	(t,b,c) corr. to exact NLO
	+	0.34 pb	(+0.70%)	$1/m_t$ corr. to NNLO
	+	2.37 pb	(+4.87%)	EWK corr.
	=	48.67 pb.		

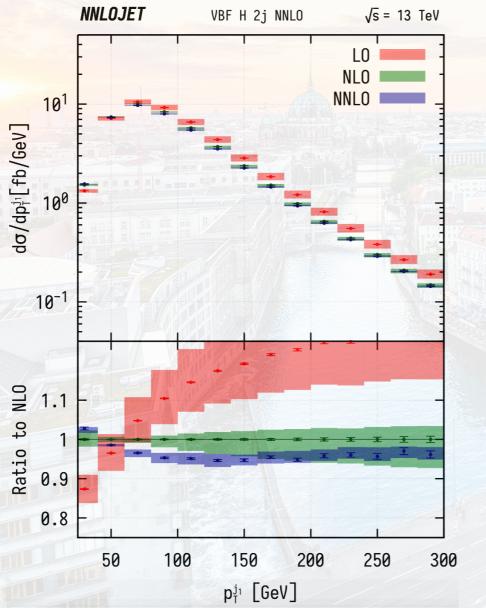
δ (theory)	=	$+0.13pb \\ -1.20pb$	$\binom{+0.28\%}{-2.50\%}$	$\delta(\text{scale})$
	+	$\pm 0.56pb$	$(\pm 1.16\%)$	$\delta(\text{PDF-TH})$
	+	$\pm 0.49pb$	$(\pm 1.00\%)$	$\delta(EWK)$
	+	$\pm 0.41pb$	$(\pm 0.85\%)$	$\delta(\mathrm{t,b,c})$
1100	+	$\pm 0.49pb$	$(\pm 1.00\%)$	$\delta(1/m_t)$
	IE.	$+2.08pb \\ -3.16pb$	$\begin{pmatrix} +4.28\% \\ -6.5\% \end{pmatrix}$,	
$\delta(PDF)$	=	$\pm 0.89 \mathrm{pb}$	$(\pm 1.85\%)$,	4/1 特色
$\delta(lpha_S)$		$+1.25pb \\ -1.26pb$	$\binom{+2.59\%}{-2.62\%}$.	

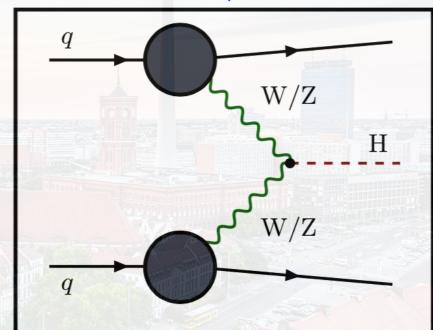
- ➤ Total cross section with N3LO QCD corrections in heavy top limit (HTL) (B. Mistlberger 1802.00833)
- QCD scale variation reduced significantly
- ➤ Public in iHixs2 code (Dulat et al. 1802.00827)
- Uncertainty dominant by QCD (± 4%)
 (C. Anastasiou et al. 1602.00695)
- Three short boards of accuracy: QCD scale, PDF, α_s


Need to attack on many fronts to further improve

- Towards N3LO PDFs (Britzger et al. 1906.05303)
- Top quark mass dependence
 (Davies et al. 1906.00982, Davies et al 1911.10214)
- Bottom quark fusion at N3LO(Duhr, Dulat, Mistlberger 1904.09990)
- **EWK corrections (1801.10403, 1811.11211) ...**

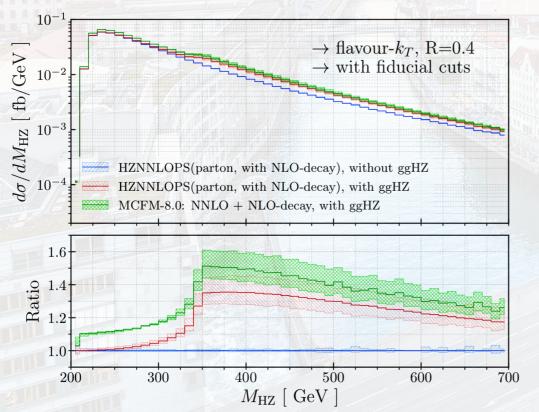
SUCCESS OF HIGGS THEORY (GLUON FUSION)

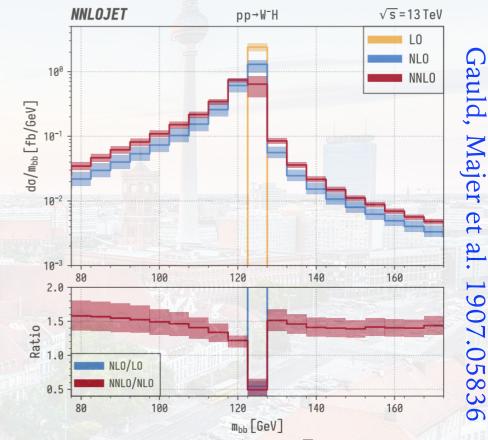

- Differential predictions advance to new precision
 - ➤ HpT (HTL) at NNLO+N3LL accuracy (details later)
 - Robust NNLO calculation at small pT
 - Resummation in two factorisation schemes
 - > yH (HTL) at N3LO accuracy (details later)
 - Two methods with approximation in good agreement
 - ➤ Towards fully differential N3LO accuracy
 - ➤ H+J (full SM) at NLO accuracy (boosted pT region)
 - Still many aspects to improve:
 - Very time consuming at small pT (~ 7M CPU h)
 - Application with decay fiducial cuts
 - ➤ Join with parton shower beyond LO and LL


December 5, 2019

SUCCESS OF HIGGS THEORY (VECTOR BOSON FUSION)

- ➤ Differential NNLO corrections to VBFH-2J production and NLO corrections to VBFH-3J production using structure function approach (Cruz-Martinez et al. 1802.02445)
- ➤ Uncovered error in earlier NNLO calculation stemming from VBF-3J piece (now fixed) (Cacciari, Dreyer et al. 1506.02660) (Jager, Schissler et al. 1405.6950)


DIS⊗DIS

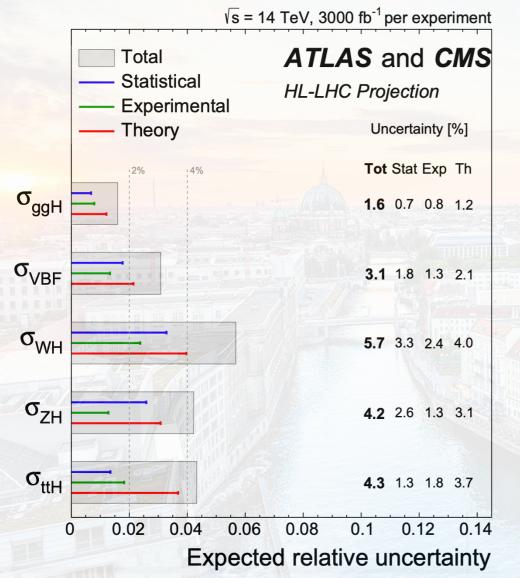


- ➤ NNLO cross section is -4% compared to NLO (VBF cuts)
- Scale variation now reduced to $\pm 3\%$
- Large overlap in fiducial volume with gluon fusion H+2J
- More studies on jet radius and "VFH-cut" via LH19
- Inclusive cross section at N3LO (Dreyer et al. 1606.00840)

SUCCESS OF HIGGS THEORY (VH)

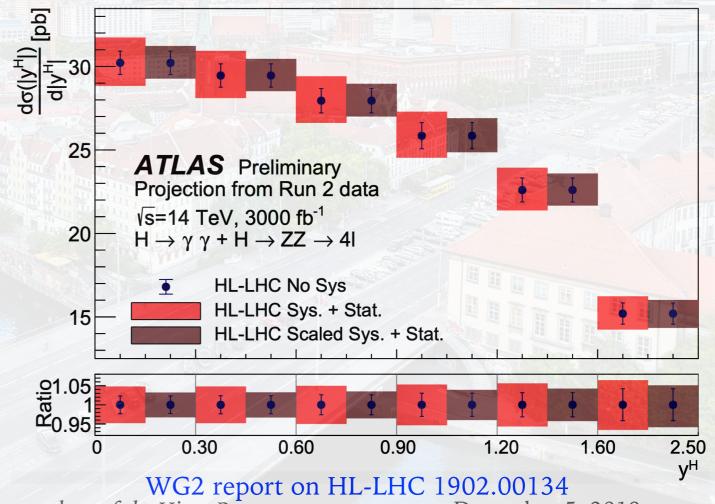
- Current precision with NNLO QCD corrections in both production and decay to process $pp \to W(l\nu) + H(b\bar{b})$ with narrow width approximation and massless b quark (Ferrera et al. 1705.10304), (Caola et al. 1712.06954), (Gauld, Majer et al. 1907.05836)
 - NNLO corrects NLO $H \to b\bar{b}$ decay in both below and above Higgs mass threshold regions
 - ➤ New interference at NNLO from $H \rightarrow gg$
 - N3LO $H \rightarrow b\bar{b}$ decay now available (Mondini, Schiavi, Williams 1904.08960)
 - Future work with b mass and EXP flavour kT jet

- NNLOPS accurate $pp \rightarrow Z(l^+l^-) + H(b\bar{b})$ (Astill, Bizoń et al. 1804.08141)
- Sizeable impact of loop induced $gg \rightarrow Z(l^+l^-) + H(b\bar{b})$ above top mass threshold (1-loop² at LO)
- NLO corrections includes interference with qg and $q\bar{q}$ channels (need two-loop massive top for a through study)

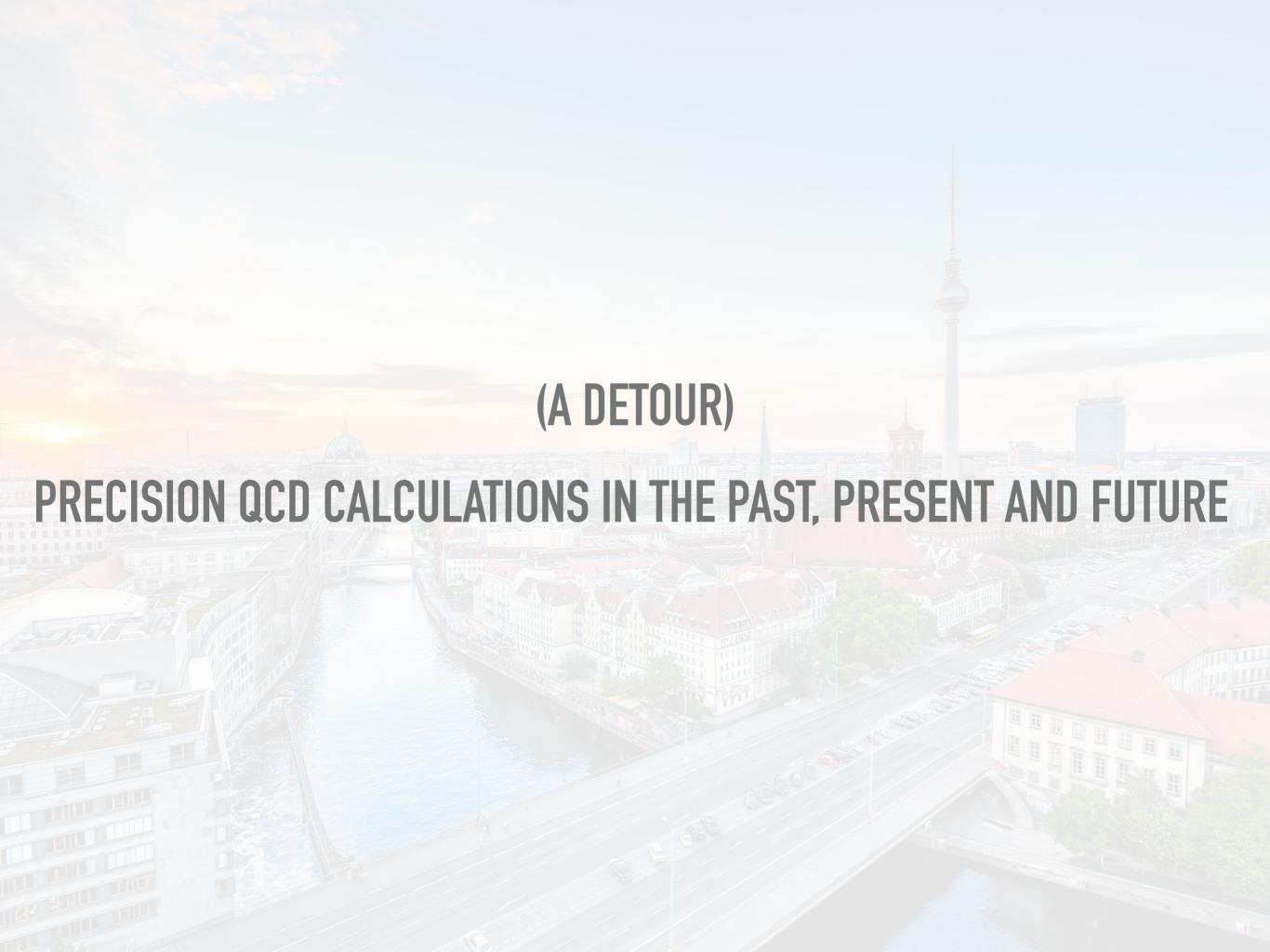

Xuan Chen (UZH)

High Precision Phenomenology of the Higgs Boson

December 5, 2019

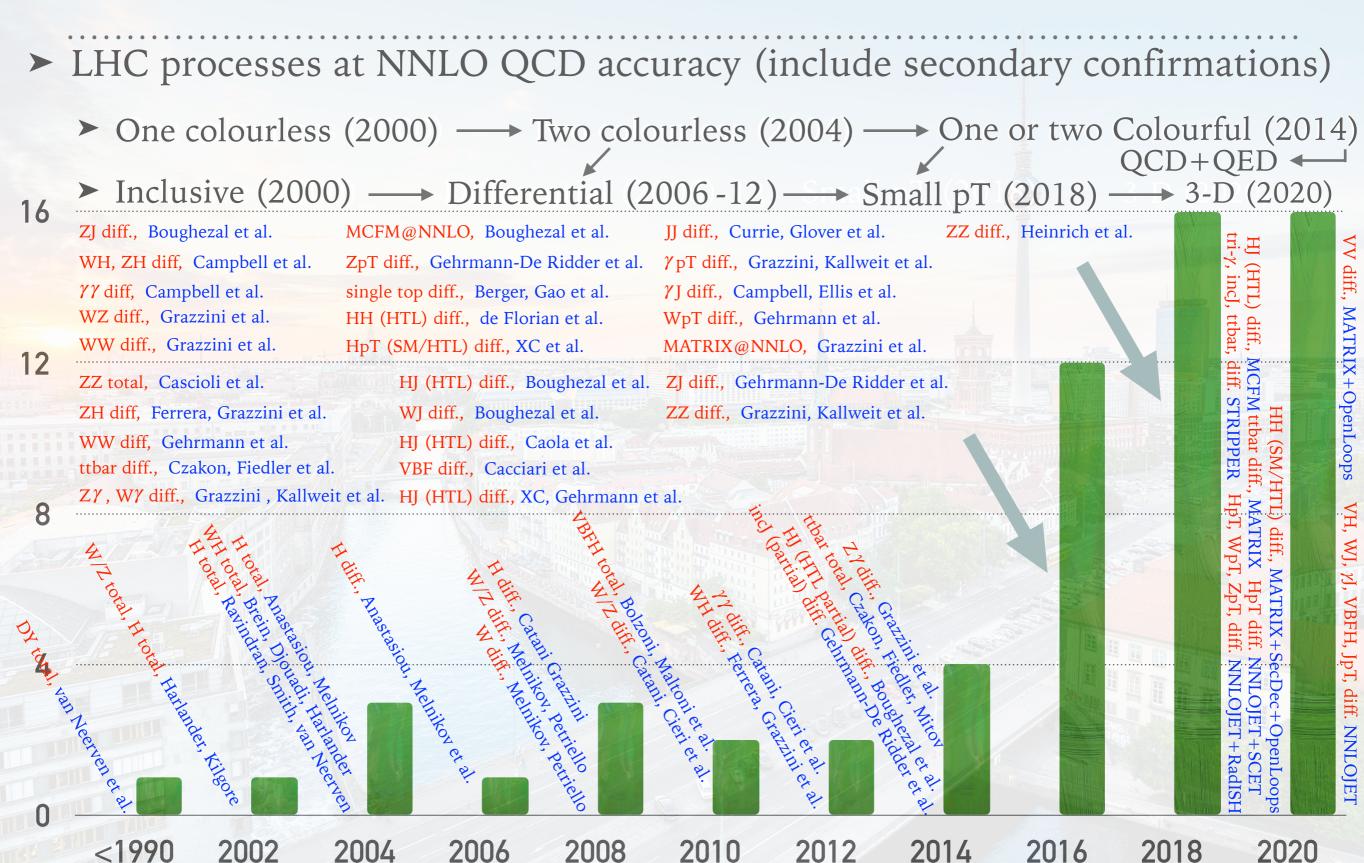

CHALLENGE FROM HL-LHC PROJECTION (20 YEARS)

- ➤ Is it precise enough? Not yet according to HL-LHC Projections!
 - Theory complexity scales up exponentially, EXP error scales down by $1/\sqrt{\mathcal{L}}$



- ➤ HL-LHC expects ± 1.6% in two decades
- ➤ Current N3LO has ± 4% for QCD alone! WG2 report on HL-LHC 1902.00134

- ➤ Differential observables (S2) HL-LHC projections: yH ± 3% HpT ± 5% (more details in this talk)
- Theory need consistent upgrade to reduce PDF and α_s uncertainties



High Precision Phenomenology of the Higgs Boson

THE STANDARD NNLO @ LHC

Xuan Chen (UZH)

High Precision Phenomenology of the Higgs Boson

9

December 5, 2019

- ➤ LHC processes at NNLO QCD accuracy
 - ► 2 → 2 is well developed, 2 → 3 available for limited topology (VBFH-2J, $\gamma\gamma\gamma$). More differential observables in coming years.
 - Rapid progress in the calculations of 2-loop-5-point amplitudes.

- > $\gamma\gamma\gamma$ production from STRIPPER (Chawdhry, Czakon et al 1911.00479)

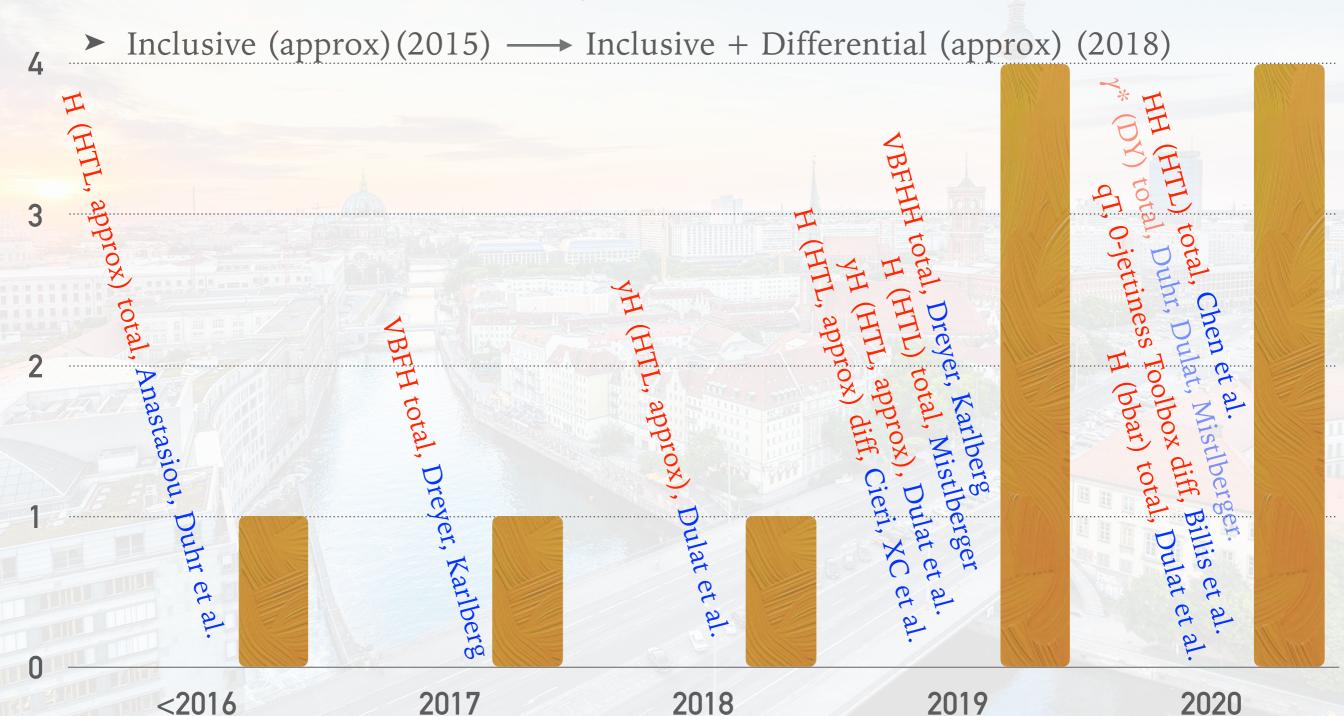
 (excluding small contributions from 2-loop non-planner and internal quark loop) $\gamma+JJ$, $\gamma\gamma+J$, JJJ etc. productions in coming years and desire for $t\bar{t}H$ (bottleneck is the 2-loop AMP but approximations like in $\gamma\gamma\gamma$ might be acceptable)
- > Towards "NNLO revolution" (performance matters)
 - Automation of two-loop matrix elements. SecDec, OpenLoops2
 - Automation of removing IR divergence. STRIPPER, nested-soft-collinear, etc.
- Equally important input resolving NNLO accuracy: top mass effects, $\alpha\alpha_s$ mixing, flavours of jets, resummation corrections, non-perturbative effects etc.

- ➤ LHC processes at NNLO QCD accuracy
 - ► 2 → 2 is well developed, 2 → 3 available for limited topology (VBFH-2J, $\gamma\gamma\gamma$). More differential observables in coming years.
 - Rapid progress in the calculations of 2-loop-5-point amplitudes.

- $ightharpoonup \gamma \gamma \gamma$ production from STRIPPER (Chawdhry, Czakon et al 1911.00479) (excluding small contributions from 2-loop non-planner and internal quark loop) $\gamma + JJ$, $\gamma \gamma + J$, JJJ etc. productions in coming years and desire for $t\bar{t}H$ (bottleneck is the 2-loop AMP but approximations like in $\gamma \gamma \gamma$ might be acceptable)
- > Towards "NNLO revolution" (performance matters)
 - Automation of two-loop matrix elements. SecDec, OpenLoops2
 - Automation of removing IR divergence. STRIPPER, nested-soft-collinear, etc.
- Equally important input resolving NNLO accuracy: top mass effects, $\alpha\alpha_s$ mixing, flavours of jets, resummation corrections, non-perturbative effects etc.

- ➤ LHC processes at NNLO QCD accuracy
 - ► 2 → 2 is well developed, 2 → 3 available for limited topology (VBFH-2J, $\gamma\gamma\gamma$). More differential observables in coming years.
 - Rapid progress in the calculations of 2-loop-5-point amplitudes.

- $ightharpoonup \gamma\gamma\gamma$ production from STRIPPER (Chawdhry, Czakon et al 1911.00479) (excluding small contributions from 2-loop non-planner and internal quark loop) $\gamma+JJ$, $\gamma\gamma+J$, JJJ etc. productions in coming years and desire for $t\bar{t}H$ (bottleneck is the 2-loop AMP but approximations like in $\gamma\gamma\gamma$ might be acceptable)
- ➤ Towards "NNLO revolution" (performance matters)
 - ➤ Automation of two-loop matrix elements. SecDec, OpenLoops2
 - ➤ Automation of removing IR divergence. STRIPPER, nested-soft-collinear, etc.
- Equally important input resolving NNLO accuracy: top mass effects, $\alpha \alpha_s$ mixing, flavours of jets, resummation corrections, non-perturbative effects etc.


- ➤ LHC processes at NNLO QCD accuracy
 - ► 2 → 2 is well developed, 2 → 3 available for limited topology (VBFH-2J, $\gamma\gamma\gamma$). More differential observables in coming years.
 - Rapid progress in the calculations of 2-loop-5-point amplitudes.

- $ightharpoonup \gamma \gamma \gamma$ production from STRIPPER (Chawdhry, Czakon et al 1911.00479) (excluding small contributions from 2-loop non-planner and internal quark loop) $\gamma + JJ$, $\gamma \gamma + J$, JJJ etc. productions in coming years and desire for $t\bar{t}H$ (bottleneck is the 2-loop AMP but approximations like in $\gamma \gamma \gamma$ might be acceptable)
- ➤ Towards "NNLO revolution" (performance matters)
 - ➤ Automation of two-loop matrix elements. SecDec, OpenLoops2
 - ➤ Automation of removing IR divergence. STRIPPER, nested-soft-collinear, etc.
- **Equally important** input resolving NNLO accuracy: top mass effects, $\alpha \alpha_s$ mixing, flavours of jets, resummation corrections, non-perturbative effects etc.

THE CUTTING-EDGE N3LO @ LHC

Xuan Chen (UZH)

- ➤ LHC processes at N3LO accuracy (include secondary confirmation)
 - ➤ N3LO at 2015 was like the early stage of NNLO in 2000's.

High Precision Phenomenology of the Higgs Boson

December 5, 2019

TOWARDS FULLY DIFFERENTIAL N3LO PRECISION?

- ➤ Several cutting edge N3LO differential calculations available recently:
 - ightharpoonup ep: fully differential one-jet DIS (Currie, Gehrmann, Glover et al. 1803.09973)
 - ightharpoonup gg
 ightharpoonup H: in HTL with approximation of N3LO beam function (Cieri, XC et al. 1807.11501)
 - $ightharpoonup H
 ightharpoonup b\bar{b}$: fully differential with massless bottom quark (Mondini, Schiavi et al. 1904.08960)
- More N3LO processes could be available based on established NNLO works for LHC:
 - > VBFH: using N3LO structure function (1606.00840) + NNLO two-jet DIS (1703.05977)
 - > DY: N3LO qT and 0-jettiness toolbox (1909.00811) + NNLO Z+J at small qT (1805.05916)
 - > W: N3LO qT and 0-jettiness toolbox (1909.00811) + NNLO W+J at small qT (1905.05171)
- ➤ However, can we call it N3LO precision? (unsolved issues at NNLO)
 - PDFs fitted at NNLO evolution but with limited NNLO hard coefficients (DIS, p_T^Z , $t\bar{t}$).
 - $\delta(\alpha_s) \sim \pm 2.6\%$ and $\delta(\text{PDF-TH}) \sim \pm 1.16\%$ (missing higher order uncertainty) for $\sigma_{N^3LO}^{H,tot}$
 - Non-perturbative effects fitted at NLOPS accuracy (Underlying events, γ fragmentation etc.)

TOWARDS FULLY DIFFERENTIAL N3LO PRECISION?

- Several cutting edge N3LO differential calculations available recently:
 - ightharpoonup ep: fully differential one-jet DIS (Currie, Gehrmann, Glover et al. 1803.09973)
 - ightharpoonup gg
 ightharpoonup H: in HTL with approximation of N3LO beam function (Cieri, XC et al. 1807.11501)
 - $\rightarrow H \rightarrow b\bar{b}$: fully differential with massless bottom quark (Mondini, Schiavi et al. 1904.08960)
- ➤ More N3LO processes could be available based on established NNLO works for LHC:
 - ➤ VBFH: using N3LO structure function (1606.00840) + NNLO two-jet DIS (1703.05977)
 - ➤ DY: N3LO qT and 0-jettiness toolbox (1909.00811) + NNLO Z+J at small qT (1805.05916)
 - ➤ W: N3LO qT and 0-jettiness toolbox (1909.00811) + NNLO W+J at small qT (1905.05171)
- However, can we call it N3LO precision? (unsolved issues at NNLO)
 - PDFs fitted at NNLO evolution but with limited NNLO hard coefficients (DIS, p_T^Z , $t\bar{t}$).
 - $\delta(\alpha_s) \sim \pm 2.6\%$ and $\delta(\text{PDF-TH}) \sim \pm 1.16\%$ (missing higher order uncertainty) for $\sigma_{N^3LO}^{H,tot}$
 - Non-perturbative effects fitted at NLOPS accuracy (Underlying events, γ fragmentation etc.)

TOWARDS FULLY DIFFERENTIAL N3LO PRECISION?

- ➤ Several cutting edge N3LO differential calculations available recently:
 - ightharpoonup ep: fully differential one-jet DIS (Currie, Gehrmann, Glover et al. 1803.09973)
 - ightharpoonup gg
 ightharpoonup H: in HTL with approximation of N3LO beam function (Cieri, XC et al. 1807.11501)
 - $ightharpoonup H
 ightharpoonup b\bar{b}$: fully differential with massless bottom quark (Mondini, Schiavi et al. 1904.08960)
- ➤ More N3LO processes could be available based on established NNLO works for LHC:
 - ➤ VBFH: using N3LO structure function (1606.00840) + NNLO two-jet DIS (1703.05977)
 - ➤ DY: N3LO qT and 0-jettiness toolbox (1909.00811) + NNLO Z+J at small qT (1805.05916)
 - ➤ W: N3LO qT and 0-jettiness toolbox (1909.00811) + NNLO W+J at small qT (1905.05171)
- ➤ However, can we call it N3LO precision? (unsolved issues at NNLO)
 - ➤ PDFs fitted at NNLO evolution but with limited NNLO hard scatterings (DIS, p_T^Z , $t\bar{t}$)
 - > $\delta(\alpha_s) \sim \pm 2.6\%$ and $\delta(\text{PDF-TH}) \sim \pm 1.16\%$ (missing higher order uncertainty) for $\sigma_{N^3LO}^{H,tot}$
 - Non-perturbative effects fitted at NLOPS accuracy (Underlying events, γ fragmentation etc.)

* NNLOJET: A multiprocess parton level event generator at O(alpha_s^3)*

X. Chen, J. Cruz-Martinez, J. Currie, R. Gauld, A. Gehrmann-De Ridder, T. Gehrmann, E.W.N. Glover, M. Höfer, A. Huss, I. Majer, J. Mo, T. Morgan, J. Niehues, J. Pires, R. Schürmann, D. Walker, J. Whitehead

LHC Higgs Production channels				
$H + J$ (ggF) NNLO HTL \otimes LO SM	1408.5325, 1607,08817, 1805.00736, 1805.05916			
H (ggF) N3LO HTL (approx.)	1807.11501			
H + JJ (VBF) NNLO	1802.02445			
H+V (VH) NNLO	1907.05836			

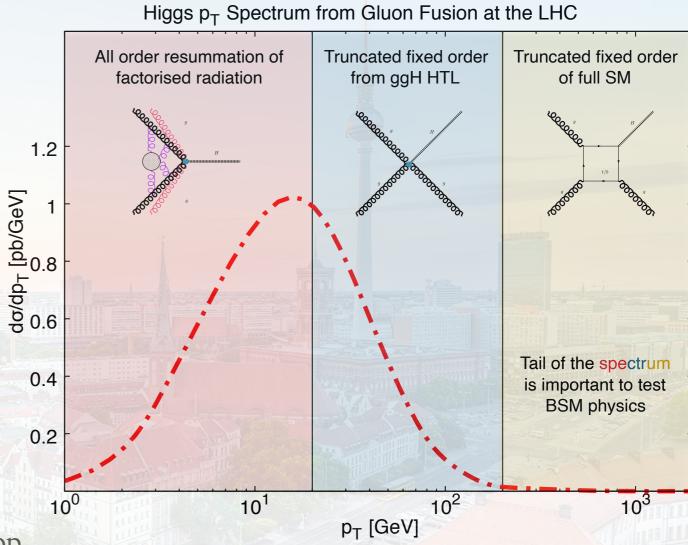
Higgs Decay channels					
$b\bar{b}$	NNLO	b-tagging			
$WW^* \rightarrow 2l2\nu$	LO	Lepton isolation			
$\tau^+\tau^-$	LO	Massive final states			
$ZZ^* \rightarrow 4l$	LO	Lepton isolation			
YY	LO	Photon isolation			
$Z(\rightarrow 2l)\gamma$	LO	Photon + lepton iso.			

- > Parton level event generator with NNLO antenna subtraction method
- NNLOJET provides many cutting-edge predictions of the Higgs boson phenomenology.
- > ggF, VBF and VH channels are linked with limited decay channels.
- > Identification of EW and QCD final states using EXP algorithms.

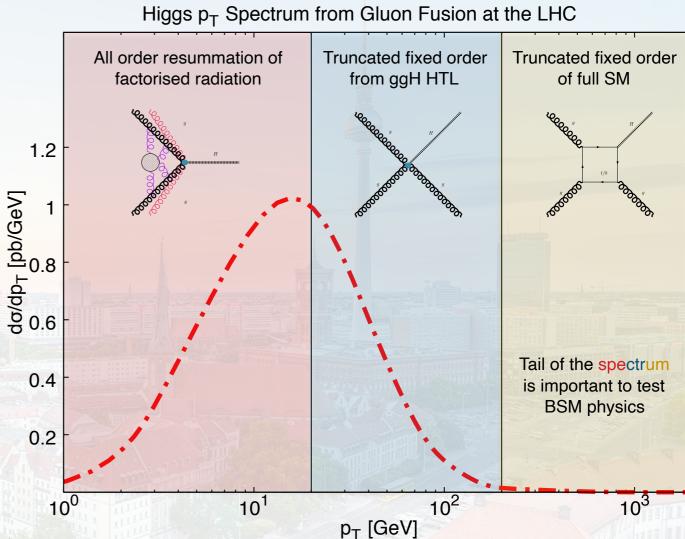
*
* NNLOJET: A multiprocess parton level event generator at O(alpha_s^3)*

X. Chen, J. Cruz-Martinez, J. Currie, R. Gauld, A. Gehrmann-De Ridder, T. Gehrmann, E.W.N. Glover, M. Höfer, A. Huss, I. Majer, J. Mo, T. Morgan, J. Niehues, J. Pires, R. Schürmann, D. Walker, J. Whitehead

LHC Higgs Production channels					
$H + J$ (ggF) NNLO HTL \otimes LO SM	1408.5325, 1607,08817, 1805.00736, 1805.05916				
H (ggF) N3LO HTL (approx.)	1807.11501				
H + JJ (VBF) NNLO	1802.02445				
H + V (VH) NNLO	1907.05836				

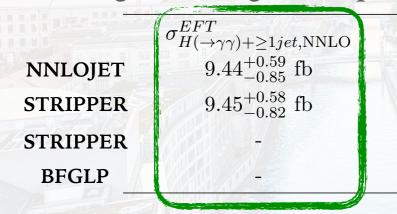

	Higgs Decay channels				
1	$b\bar{b}$	NNLO	b-tagging		
	$WW^* \rightarrow 2l2\nu$	LO	Lepton isolation		
	$\tau^+\tau^-$	LO	Massive final states		
4	$ZZ^* \rightarrow 4l$	LO	Lepton isolation		
X	YY	LO	Photon isolation		
	$Z(\rightarrow 2l)\gamma$	LO	Photon + lepton iso.		

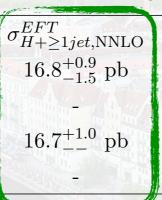
- > Parton level event generator with NNLO antenna subtraction method
- NNLOJET provides many cutting-edge predictions of the Higgs boson phenomenology.
- > ggF, VBF and VH channels are linked with various decay channels.
- ➤ Identification of EW and QCD final states using EXP algorithms.

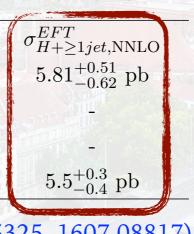

HIGGS TRANSVERSE MOMENTUM SPECTRUM

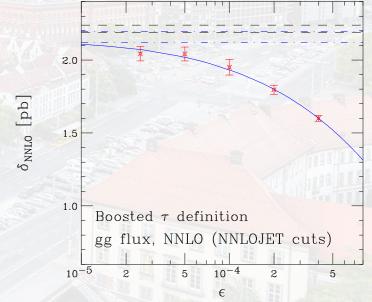
- Higgs pT spectrum tests SM in various aspects
- ➤ Small pT region (< 20 GeV):
 - Singular log terms spoil any reliable fixed order predictions $\ln^k(m_H^2/p_T^2)/p_T^2$
 - Resummation of log terms and match to fixed order: $d\sigma^{FO} \ominus d\sigma^S \oplus d\sigma^R$
- ➤ Medium pT region (20 ~ 200 GeV):
 - ➤ Reliable with heavy top limit (HTL or EFT)
 - ➤ Current best precision is H+J NNLO HTL
- ➤ Boosted pT region (> 200 GeV)
 - ➤ Energy scale resolve mass effect of quark loop
 - ➤ Best ggF precision is H+J at NLO SM
 - ➤ VBF, VH and ttH channels equally important
- ➤ Many other effects involved: top-bottom interference, heavy quark Yukawa couplings, resummation of logs involving quark mass etc.

HIGGS TRANSVERSE MOMENTUM SPECTRUM


- ➤ Higgs pT spectrum tests SM in various aspects
- ➤ Small pT region (< 20 GeV):
 - Singular log terms spoil any reliable fixed order predictions $\ln^k(m_H^2/p_T^2)/p_T^2$
 - Resummation of log terms and match to fixed order: $d\sigma^{FO} \ominus d\sigma^S \oplus d\sigma^R$
- ➤ Medium pT region (20 ~ 200 GeV):
 - Reliable with heavy top limit (HTL or EFT)
 - ➤ Current best precision is H+J NNLO HTL
- ➤ Boosted pT region (> 200 GeV)
 - ➤ Energy scale resolve mass effect of quark loop
 - ➤ Best ggF precision is H+J at NLO SM
 - ➤ VBF, VH and ttH channels equally important
- Many other effects involved: top-bottom interference, heavy quark Yukawa couplings, resummation of logs involving quark mass etc.




Will separately discuss the pheno in each HpT region next

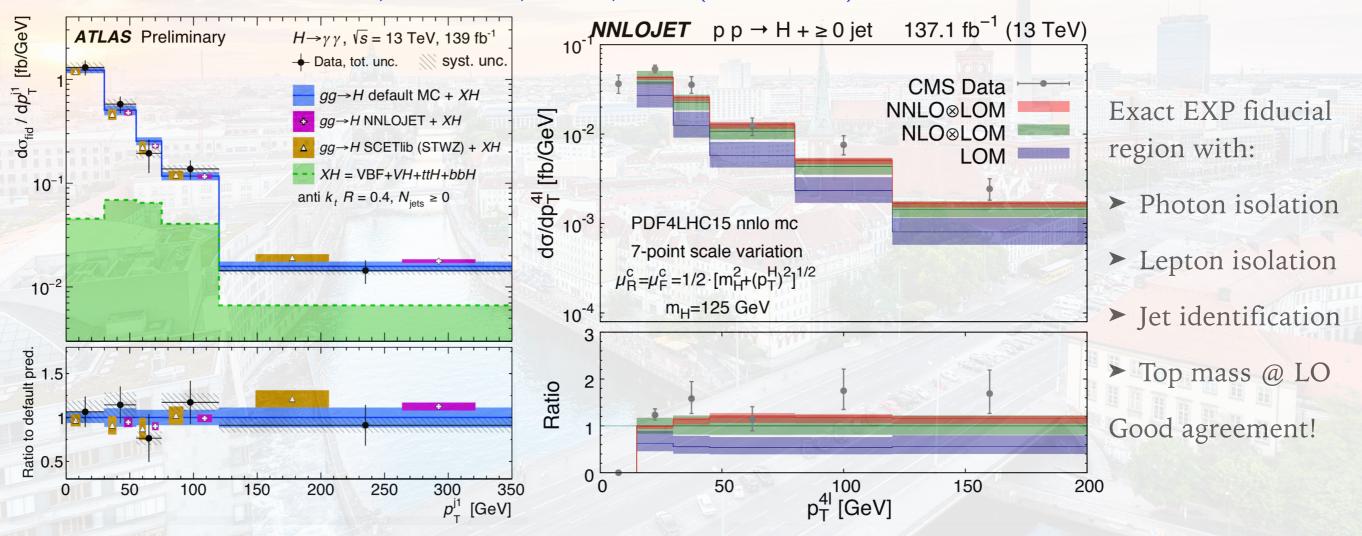

HIGGS TRANSVERSE MOMENTUM AT MEDIUM PT

- ➤ H+J Computed at NNLO QCD (HTL) by 4 groups using 3 methods
 - Antenna subtraction (NNLOJET) XC, Gehrmann, Glover et al. (1408.5325, 1607.08817)
 - ➤ Sector improved subtraction (STRIPPER) Boughezal, Caola, Schulze et al. (1302.6216, 1504.07922)
 - N-Jettiness (BFGLP and MCFM) Boughezal, Focke et al. (1505.03893) Campbell et al. (1906.01020)
- ➤ It was the battle ground for the first LHC process with single jet + colourless @ NNLO
 - Long-standing discrepancy between N-Jettiness and other methods

- XC, Gehrmann, Glover et al. (1408.5325, 1607.08817)
- Finally resolved with MCFM revisit study in this year
 - Jettiness cut 20 times smaller than in BFGLP
 - ► Extrapolate to zero (~5% @ NNLO)
 - Desire sub-leading power correction at NNLO

 (UZH) High Precision Phenomenology of the Higgs Boson

 $\sigma_{NNLO}(\text{NNLOJET}) = 16.73 \pm 0.05 ^{+1.00}_{-1.51} \text{ pb}$ $\sigma_{NNLO}(\text{MCFM, fit}) = 16.71 \pm 0.05 ^{+1.03}_{-1.52} \text{ pb}$


Campbell et al. (1906.01020)

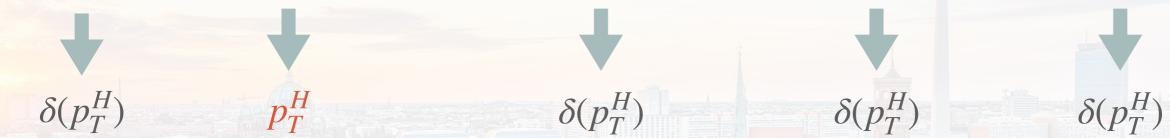
December 5, 2019

16

HIGGS TRANSVERSE MOMENTUM AT MEDIUM PT

- ➤ Fiducial cross section for H+J now known at NNLO QCD for:
 - \blacktriangleright H $\rightarrow \gamma\gamma$ Caola, Melnikov, Schulze (1508.02684), XC, Gehrmann, Glover et al. (1607.08817)
 - $ightharpoonup H o WW^* o 2l2\nu$ Caola, Melnikov, Schulze (1508.02684)
 - \rightarrow H \rightarrow ZZ* \rightarrow 4l XC, Gehrmann, Glover, Huss (1905.13738)

ATLAS-CONF-2019-029


XC, Gehrmann, Glover, Huss (1905.13738)

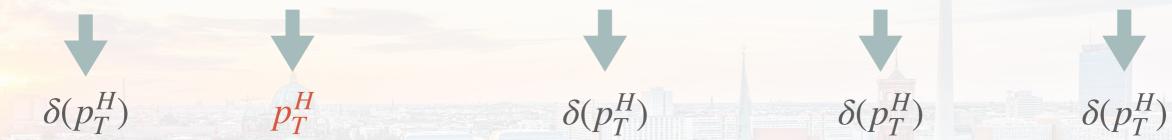
17

HIGGS TRANSVERSE MOMENTUM AT SMALL PT

- ➤ FO break down, where is the problem come from?
 - ► Take $d\sigma_{NLO}^H$ as example:

$$A^0_{2gH}(\hat{g},\hat{g},H) + A^0_{3gH}(\hat{g},\hat{g},g,H) - F^0_3(\hat{g},g,\hat{g})A^0_{2gH}(\tilde{\hat{g}},\tilde{\hat{g}},\tilde{H}) + A^1_{2gH}(\hat{g},\hat{g},H) + \mathcal{F}^0_3(\hat{g},\hat{g})A^0_{2gH}(\tilde{\hat{g}},\tilde{\hat{g}},\tilde{H})$$

- Finite p_T^H region has no IR regulator \rightarrow fixed order predictions break down
- ► How to make reliable predictions of $d\sigma ldp_T^H$ at 1 GeV?
 - Use QCD factorisation to distinguish radiations from Born kinematics.

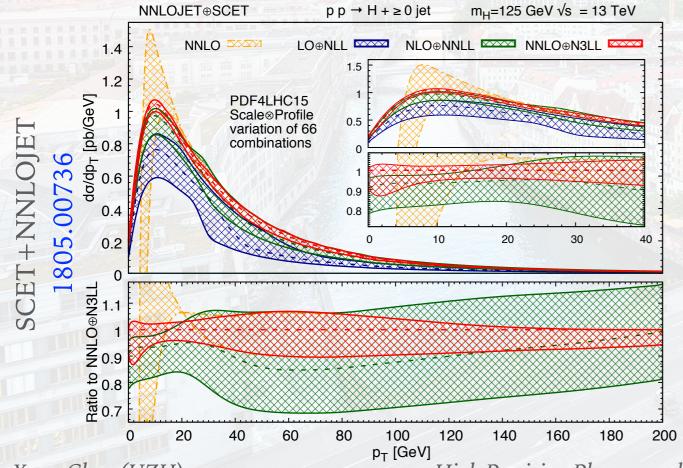

$$d\sigma = \sigma_{LO} \otimes H \otimes B \otimes B \otimes S \otimes J$$

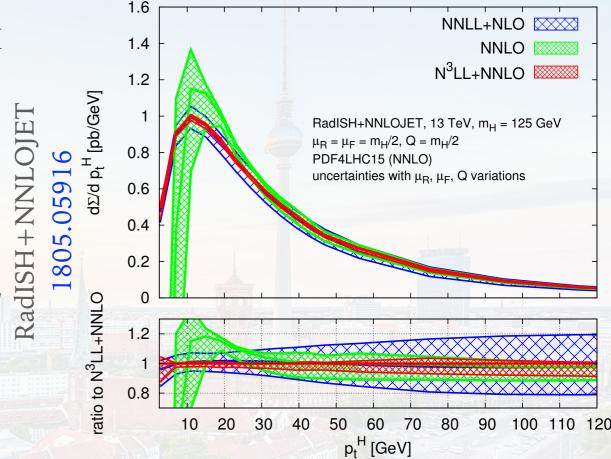
- Replace IR subtraction by IR renormalisation (IR poles removed).
- Find and solve RGE of factorised functions to include all order effects.

HIGGS TRANSVERSE MOMENTUM AT SMALL PT

- ➤ FO break down, where is the problem come from?
 - ► Take $d\sigma_{NLO}^H$ as example:

$$A^0_{2gH}(\hat{g},\hat{g},H) + A^0_{3gH}(\hat{g},\hat{g},g,H) - F^0_3(\hat{g},g,\hat{g})A^0_{2gH}(\tilde{\hat{g}},\tilde{\hat{g}},\tilde{H}) + A^1_{2gH}(\hat{g},\hat{g},H) + \mathcal{F}^0_3(\hat{g},\hat{g})A^0_{2gH}(\tilde{\hat{g}},\tilde{\hat{g}},\tilde{H})$$

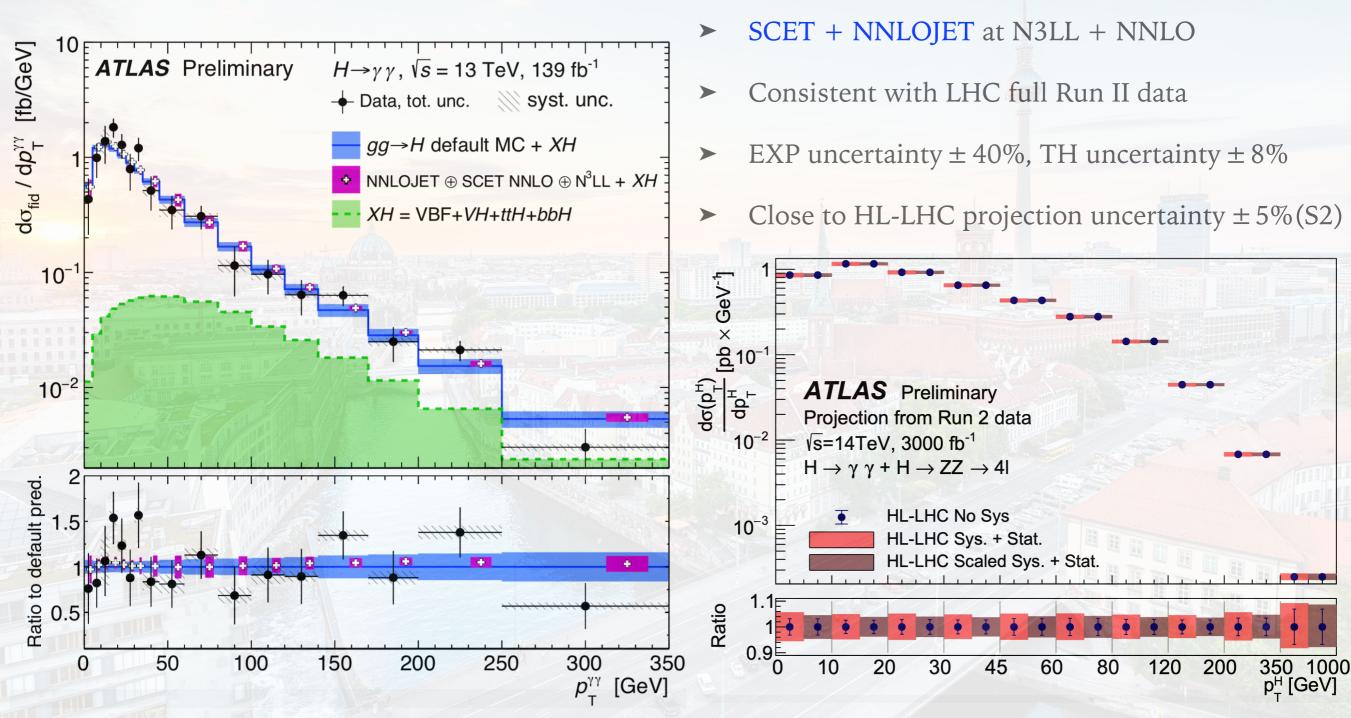

- Finite p_T^H region has no IR regulator \rightarrow fixed order predictions break down
- ► How to make reliable predictions of $d\sigma/dp_T^H$ at 1 GeV?
 - Use QCD factorisation to distinguish radiations from Born kinematics.


$$d\sigma = \sigma_{LO} \otimes H \otimes B \otimes B \otimes S \otimes J$$

- > Replace IR subtraction by IR renormalisation (IR poles removed).
- Find and solve RGE of factorised functions to include all order effects.

HIGGS TRANSVERSE MOMENTUM SPECTRUM (SMALL+MEDIUM)

- ➤ NNLO + N3LL Resummation with SCET and RadISH
 - ➤ RadISH + NNLOJET at N3LL + NNLO
 - ➤ Multiplicative matching to NNLO total X.S.
 - ➤ Substantial regulation from NNLO+N3LL at the peak of spectrum
 - ➤ Scale variation reduced by 60% from NLO+NNLL to NNLO+N3LL



- ➤ SCET + NNLOJET at N3LL + NNLO
- ➤ Additive matching using profile functions
- ➤ Conservative uncertainty estimation involving 11 scale variation choices times 6 profile functions
- ➤ Noticeable deviation between NNLO and NNLO+N3LL starting from 30 GeV
- Future extension to include m_t and m_b effect

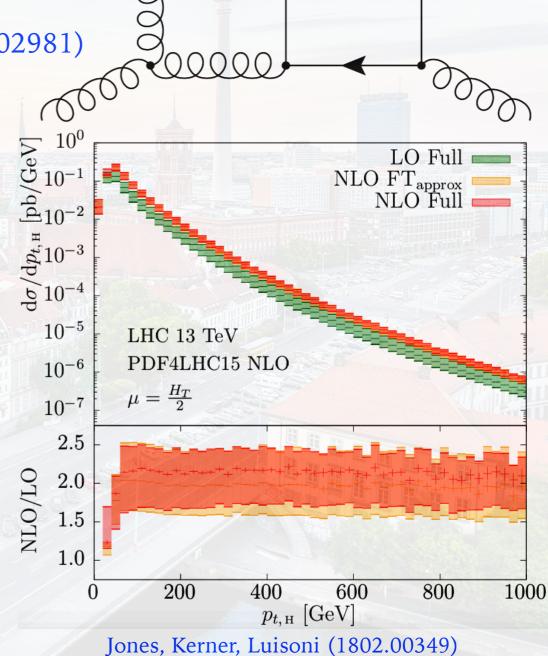
HIGGS TRANSVERSE MOMENTUM SPECTRUM (SMALL+MEDIUM)

Comparison with LHC data and HL-LHC projection

ATLAS-CONF-2019-029

WG2 report on HL-LHC 1902.00134

HIGGS TRANSVERSE MOMENTUM AT BOOSTED REGION


➤ Expect HTL approximation fail for pT > 200 GeV

➤ Two approaches to include top mass effects

Expansion valid for m_H^2 , $m_t^2 \ll |s| \sim |t| \sim |u|$ Lindert, Kudashkin, et al (1703.03886); Neumann (1802.02981)

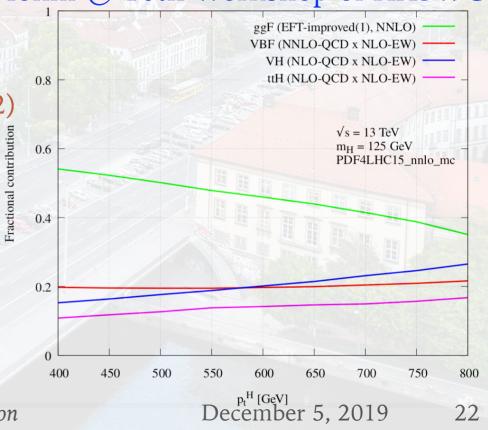
Exact results (numerical in SecDec)
Jones, Kerner, Luisoni (1802.00349)

- ➤ Joint effort in HH: exact numerical+expansion Davies, Heinrich, Jones, et al. (1907.06408)
- ➤ Large NLO/LO K-factor ~ 2
 - K-factor very similar to HTL
 - K-factor nearly flat at large pT
- > Several open questions.....
 - Combination with NNLO HTL
 - ➤ Top-quark mass scheme uncertainty OS/MSbar
 - Numerical stability of P.S. at large pT

21

HIGGS TRANSVERSE MOMENTUM AT BOOSTED REGION

 \triangleright Extension to NNLO HTL/NLO SM combined distributions in boosted region: Rescale NLO SM by K_{NNLO}^{HTL} with the assumption of similar SM/HTL K-factors



Coming soon in the

Pier Monni @ 16th Workshop of HXSWG

1.0 400 500 600 700 800 900 1000 $p_{t, \text{H}} [\text{GeV}]$ LHCHXSWG-2019-002 (v2)

- Considerable contribution from VH, VBF and ttH
- Need state-of-the-art precision from all channels
- Sensitive to BSM models ~ new generation of quark

High Precision Phenomenology of the Higgs Boson

Xuan Chen (UZH)

1.0

2.0

ratio

HIGGS PRODUCTION AT N3LO (APPROXIMATED)

Extend qT-subtraction method to N3LO (Cieri, XC et al. 1807.11501).

In qT (CSS) factorisation to Higgs production at N3LO:

$$\frac{d\sigma}{dp_T^2 dy} = \frac{m_H^2}{s} \sigma_{LO}^H \int_0^{+\infty} db \frac{b}{2} J_0(bp_T) S_g(m_H, b) \sum_{a_1, a_2} \int_{x_1}^1 \frac{dz_1}{z_1} \int_{x_2}^1 \frac{dz_2}{z_2} \left[HC_1 C_2 \right]_{gg:a_1 a_2} \prod_{i=1,2} f_{a_i/h_i}(x_i/z_i, b_0^2/b^2)$$

$$S_c(M,b) = \exp\left[-\int_{b_0^2/b^2}^{M^2} \frac{dq^2}{q^2} \left(A_c(\alpha_s(q^2)) \ln \frac{M^2}{q^2} + B_c(\alpha_s(q^2))\right)\right]$$

- \triangleright Apply q_T^{cut} to factorise full N3LO into two parts.
 - $d\sigma_{N^3EO}^H = \mathcal{H}_{N^3EO} \otimes d\sigma_{EO}^H \otimes d\sigma_{NNEO}^{H+jet} = d\sigma_{N^3EO}^H \otimes d\sigma_{P_T > q_T^{H+jet}}^H$
- Above q_T^{cut} , recycle H+jet at NNLO from NNLOJET with qT counter terms (CT) to regulate IR divergence.
- Below q_T^{cut} , factorise real radiations from hard coefficient functions at $\delta(p_T)$ in HN3LO package.
- Most of the factorised components of $\delta(p_T)$ contribution are known analytically at N3LO.
- We use a constant $C_{N3}\delta_{ga}\delta_{gb}(1-z)$ to approximate the unknown pieces.
- Numerically abstract the C_{N3} coefficient using exact N3LO total cross section (1802.00833, 1802.00827).

HIGGS PRODUCTION AT N3LO (APPROXIMATED)

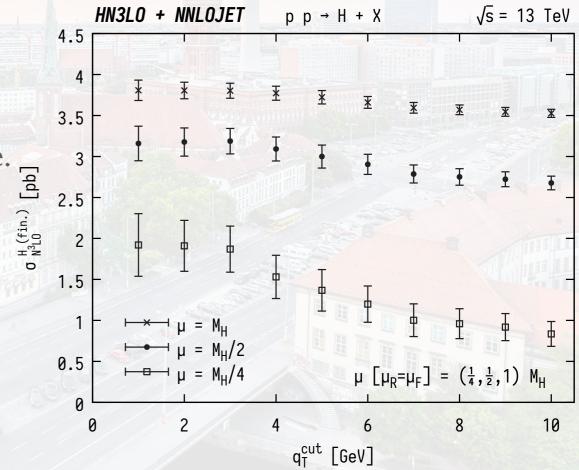
Extend qT-subtraction method to N3LO (Cieri, XC et al. 1807.11501).

In qT (CSS) factorisation to Higgs production at N3LO:

$$\frac{d\sigma}{dp_T^2 dy} = \frac{m_H^2}{s} \sigma_{LO}^H \int_0^{+\infty} db \frac{b}{2} J_0(bp_T) S_g(m_H, b) \sum_{a_1, a_2} \int_{x_1}^1 \frac{dz_1}{z_1} \int_{x_2}^1 \frac{dz_2}{z_2} \left[HC_1 C_2 \right]_{gg:a_1 a_2} \prod_{i=1,2} f_{a_i/h_i}(x_i/z_i, b_0^2/b^2)$$

$$= \frac{m_H^2}{s} \sigma_{LO}^H \int_0^{+\infty} db \frac{b}{2} J_0(bp_T) S_g(m_H, b) \sum_{a_1, a_2} \int_{x_1}^1 \frac{dz_1}{z_1} \int_{x_2}^1 \frac{dz_2}{z_2} \left[HC_1 C_2 \right]_{gg:a_1 a_2} \prod_{i=1,2} f_{a_i/h_i}(x_i/z_i, b_0^2/b^2)$$

$$S_c(M,b) = \exp\left[-\int_{b_0^2/b^2}^{M^2} \frac{dq^2}{q^2} \left(A_c(\alpha_s(q^2)) \ln \frac{M^2}{q^2} + B_c(\alpha_s(q^2))\right)\right]$$


ightharpoonup Apply q_T^{cut} to factorise full N3LO into two parts.

$$d\sigma_{N^3LO}^H = \mathcal{H}_{N^3LO}^H \otimes d\sigma_{LO}^H \Big|_{\delta(p_T)} + \left[d\sigma_{NNLO}^{H+jet} - d\sigma_{N^3LO}^{HCT} \right]_{p_T > q_T^{cut}}$$

- Above q_T^{cut} , recycle H+jet at NNLO from ININE.

 with qT counter terms (CT) to regulate IR divergence.

 The real radiations from hard $\frac{1}{2}$ \rightarrow Above q_T^{cut} , recycle H+jet at NNLO from NNLOJET
- \triangleright Below q_T^{cut} , factorise real radiations from hard coefficient functions at $\delta(p_T)$ in HN3LO package.
- \triangleright Most of the factorised components of $\delta(p_T)$ contribution are known analytically at N3LO.
- We use a constant $C_{N3}\delta_{ga}\delta_{gb}(1-z)$ to approximate the unknown pieces (related to N3LO beam function).

Numerically abstract the C_{N3} coefficient using exact N3LO total cross section (1802.00833, 1802.00827)

HIGGS PRODUCTION AT N3LO (APPROXIMATED)

Extend qT-subtraction method to N3LO (Cieri, XC et al. 1807.11501).

In qT (CSS) factorisation to Higgs production at N3LO:

$$\frac{d\sigma}{dp_T^2 dy} = \frac{m_H^2}{s} \sigma_{LO}^H \int_0^{+\infty} db \frac{b}{2} J_0(bp_T) S_g(m_H, b) \sum_{a_1, a_2} \int_{x_1}^1 \frac{dz_1}{z_1} \int_{x_2}^1 \frac{dz_2}{z_2} \left[HC_1 C_2 \right]_{gg:a_1 a_2} \prod_{i=1,2} f_{a_i/h_i}(x_i/z_i, b_0^2/b^2)$$

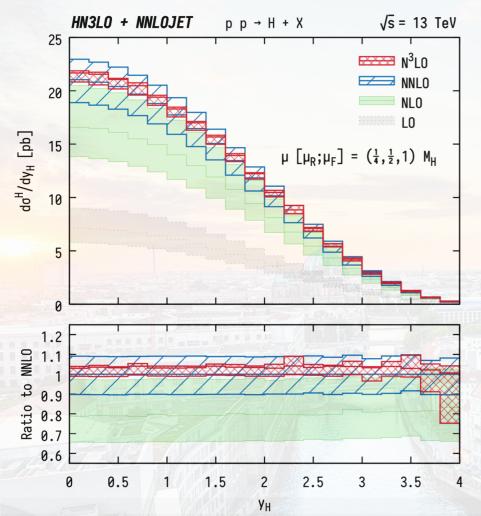
HN3LO + NNLOJET

$$S_c(M,b) = \exp\left[-\int_{b_0^2/b^2}^{M^2} \frac{dq^2}{q^2} \left(A_c(\alpha_s(q^2)) \ln \frac{M^2}{q^2} + B_c(\alpha_s(q^2))\right)\right]$$

ightharpoonup Apply q_T^{cut} to factorise full N3LO into two parts.

$$d\sigma_{N^3LO}^H = \mathcal{H}_{N^3LO}^H \otimes d\sigma_{LO}^H \Big|_{\delta(p_T)} + \left[d\sigma_{NNLO}^{H+jet} - d\sigma_{N^3LO}^{HCT} \right]_{p_T > q_T^{cut}}$$

- ightharpoonup Above q_T^{cut} , recycle H+jet at NNLO from NNLOJET
- coefficient functions at $\delta(p_T)$ in HN3LO package.
- \blacktriangleright Most of the factorised components of $\delta(p_T)$
- ► We use a constant $C_{N3}\delta_{ga}\delta_{gb}\delta(1-z)$ to approximate the unknown pieces (related to N3LO beam function).
- Above q_T^{cut} , recycle H+jet at NNLO from ININE.

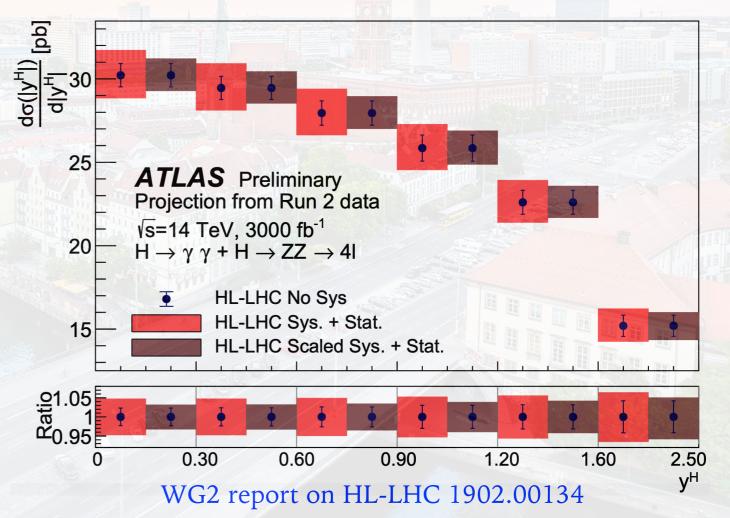

 with qT counter terms (CT) to regulate IR divergence.

 The real radiations from hard $\frac{1}{2}$ 2.5 \triangleright Below q_T^{cut} , factorise real radiations from hard contribution are known analytically at N3LO. 0.5 $\mu \left[\mu_{R} = \mu_{F} \right] = \left(\frac{1}{4}, \frac{1}{2}, 1 \right) M_{H}$

 \triangleright Numerically abstract the C_{N3} coefficient using exact N3LO total cross section (1802.00833, 1802.00827).

HIGGS RAPIDITY DISTRIBUTIONS AT N3LO (APPROXIMATED)

N3LO differential observables at the LHC from qT-subtraction and threshold expansion


Cieri, XC, Gehrmann, Glover, Huss 1807.11501

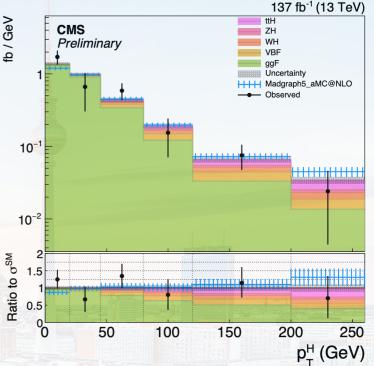
Dulat, Mistlberger, Pelloni 1810.09462

Xuan Chen (UZH)

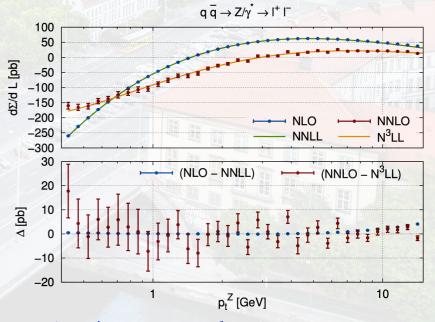
- Remarkably flat K-factor (as expected)
- ➤ QCD scale uncertainty reduced to $\frac{+1\%}{-3\%}$
- ➤ Comparable to (S2) HL-LHC projections ± 3%
- Future upgrade to reduce PDF and α_s uncertainties

FUTURE WORK

- Precision Higgs phenomenology
 - Compare and combine various production and decay channels
 - Top mass effects at large pT region (PbP, full SM at RR)
- High precision prediction in general
 - Provide NNLO grids for PDF fitting (APLLfast)
 - Make NNLOJET public (Yes it will happen)
 - > DY and W production at full differential N3LO
 - NNLO corrections of γ +JJ, $\gamma\gamma$ +J, JJJ productions


Experiment	Collision	Energy	Process	Calculation	Group	arxiv	tgz file direct link
H1	ер	300 GeV	incjets-appl	NNLOJET	APPLfast	0010054	applfast-h1-incjets-appl-arxiv-0010054
H1	ер	300 GeV	incjets-appl	NNLOJET	APPLfast	0706.3722	applfast-h1-incjets-appl-arxiv- 0706.3722
H1	ер	300 GeV	incjets-appl	NNLOJET	APPLfast	0911.5678	applfast-h1-incjets-appl-arxiv-0911.5678
н1	ер	319 GeV	incjets-appl	NNLOJET	APPLfast	1406.4709	applfast-h1-incjets-appl-arxiv- 1406.4709
Н1	ер	319 GeV	incjets-appl	NNLOJET	APPLfast	1611.03421	applfast-h1-incjets-appl-arxiv- 1611.03421
H1	ер	300 GeV	incjets-fnlo	NNLOJET	APPLfast	0010054	applfast-h1-incjets-fnlo-arxiv-0010054
H1	ер	300 GeV	incjets-fnlo	NNLOJET	APPLfast	0706.3722	applfast-h1-incjets-fnlo-arxiv-0706.3722
H1	ер	300 GeV	incjets-fnlo	NNLOJET	APPLfast	0911.5678	applfast-h1-incjets-fnlo-arxiv-0911.5678
H1	ер	319 GeV	incjets-fnlo	NNLOJET	APPLfast	1406.4709	applfast-h1-incjets-fnlo-arxiv-1406.4709
H1	ер	319 GeV	incjets-fnlo	NNLOJET	APPLfast	1611.03421	applfast-h1-incjets-fnlo-arxiv- 1611.03421
ZEUS	ер	300 GeV	incjets-appl	NNLOJET	APPLfast	0208037	applfast-zeus-incjets-appl-arxiv- 0208037
ZEUS	ер	300 GeV	incjets-appl	NNLOJET	APPLfast	0608048	applfast-zeus-incjets-appl-arxiv- 0608048
ZEUS	ер	300 GeV	incjets-fnlo	NNLOJET	APPLfast	0208037	applfast-zeus-incjets-fnlo-arxiv- 0208037
ZEUS	ер	300 GeV	incjets-fnlo	NNLOJET	APPLfast	0608048	applfast-zeus-incjets-fnlo-arxiv- 0608048

http://ploughshare.web.cern.ch

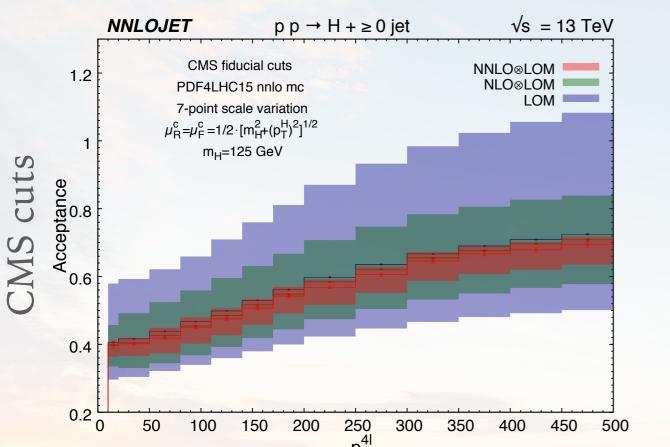

Xuan Chen (UZH)

Britzger et al. 1906.05303

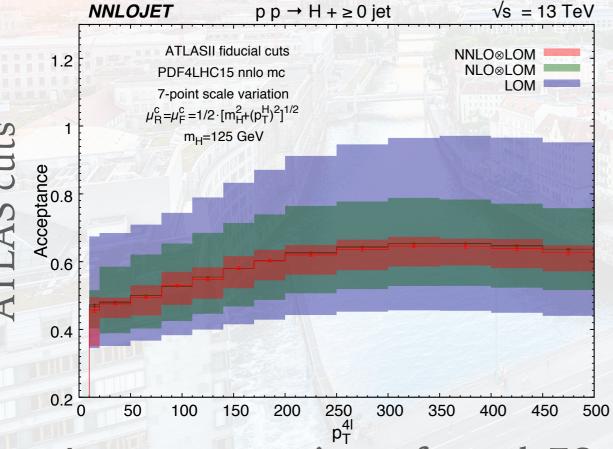
High Precision Phenomenology of the Higgs Boson

 $H \rightarrow 2l2\nu$ (HIG-19-002-pas)

Bizoń, XC, et al. 1805.05916


December 5, 2019

SUMMARY


- ➤ High Energy Physics is advancing to precision study at a steady speed and Higgs phenomenology will benefit from it. (Targets set for HL-LHC)
- Higgs boson precision measurements focus on differential observables and distinguishing production and decay channels
- Higgs boson precision predictions focus on reducing uncertainties from all sources. Major factor still from QCD
- NNLO QCD is the new standard for Higgs production channels, more consistent update to PDF and α_s will be available in the future
- ➤ NNLO+N3LL and N3LO predictions are available for limited observables. With realistic projection of theory progresses, we can expect promising precisions at HL-LHC accuracy.
- Many important studies are desired in the future: quark mass, parton shower beyond LO and LL, $\alpha\alpha_s$ mixing, interference contributions etc.

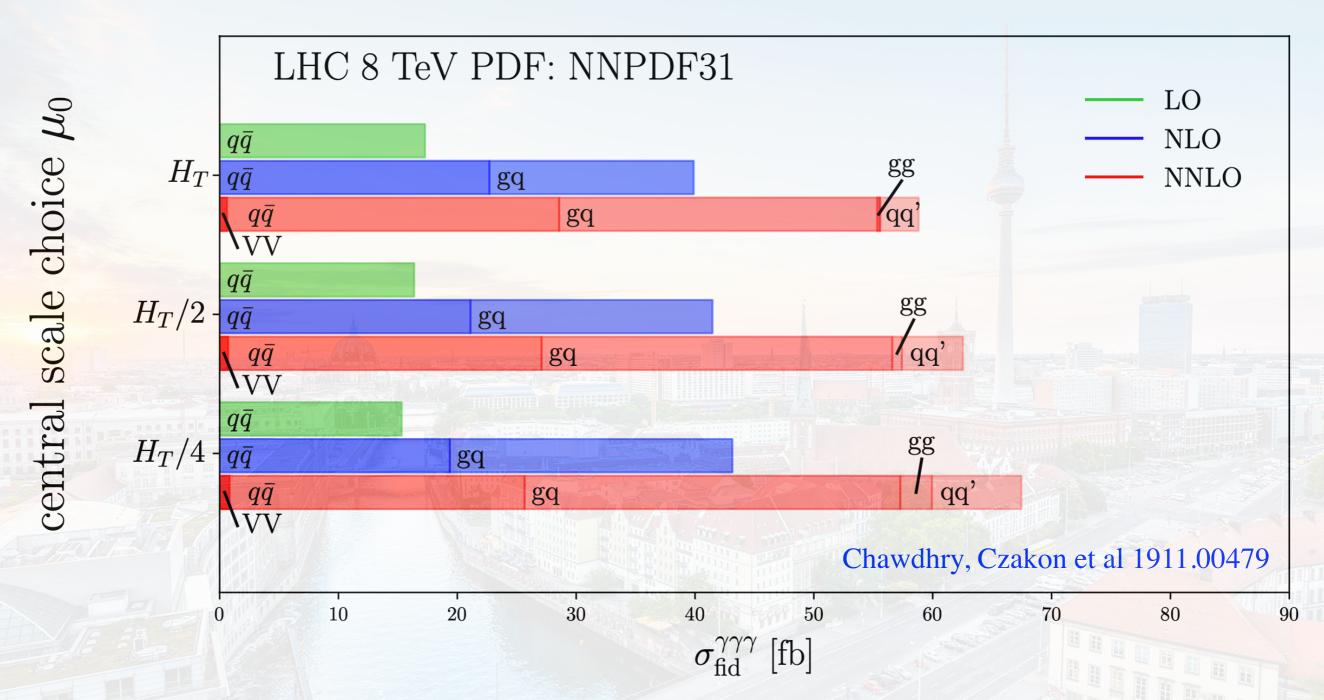
Total time (int. dimension Of the tree level)	LO	NLO	NNLO
Н	1 min (3)	30 min (6)	300h (9)
H—>di-photon	1 min (3)	40 min (6)	400h (9)
H—>4l (2e2mu, 4e, 4mu require at least two separate runs)	2~3 min (9)	2h (12)	1000h (15)
H+j	3 min (6)	1.5h (9)	70000h (12)
H—>di-photon + jet	4 min (6)	2h (9)	90000h (12)
H—>4l (2e2mu, 4e, 4mu require at least two separate runs)+jet	20 min (12)	10h (15)	600000h (18)
H_qT	20 min (6)	5h (9)	7000000h (12)

Acceptance deviate from each FO

ACCEPTANCE STUDY

 $H \rightarrow ZZ^* \rightarrow 4l$

➤ CMS (1706.09936) and ATLAS (1708.02810) use different lepton isolation algorithm in $ZZ^* \rightarrow 4l$


	I I	
Fiducial Cuts	CMS	ATLAS
Lepton Isolation		
Cone size R^l	0.3	_
$\sum p_T^i/p_T^l \ (i \in R^l)$	< 35%	
$\Delta R^{SF(DF)}(l_i, l_j)$	> 0.02	> 0.1(0.2)
Jet Definition (anti-	-kT with R=0.4)	
p_T^{jets} (GeV)	> 30	> 30
y jets	< 2.5	< 4.4
$\Delta R(jet, e(\mu))$		> 0.2(0.1)

➤ Fixed order study of acceptance reveals detailed structures

$$A_{FO}(\mathcal{O}) = \frac{d\sigma_{FO}^{H(\to ZZ^* \to 4l) + jet}/d\mathcal{O}}{d\sigma_{FO}^{H+jet}/d\mathcal{O} \times (BR_{2e2\mu} + BR_{4\mu} + BR_{4e})}$$

Acceptance consistent for each FO

APPROXIMATION IN $pp o \gamma\gamma\gamma$ @NNLO

- Anatomy of higher-order corrections to the three-photon fiducial cross-section
- ►VV is the scale-independent part of the two-loop finite remainder (CL without quark loop)
- The missing contributions are expected to be similar or less than current VV