Precision in EFT studies for top and Higgs physics

Eleni Vryonidou CERN TH

European Commission

Outline

- Introduction to the EFT
- EFT in top quark physics
 - Precision calculations in the EFT
 - Towards global fits in the top sector
- EFT in the top-Higgs sector
 - Top loops in the EFT

LHC: the story so far

E.Vryonidou

How to look for new physics?

Model-dependent

SUSY, 2HDM...

New particles

Model-Independent

simplified models, EFT

New Interactions of SM particles

anomalous couplings, EFT

Deviations in tails

E.Vryonidou

SMEFT basics

New Interactions of SM particles

$$\mathcal{L}_{\text{Eff}} = \mathcal{L}_{\text{SM}} + \sum_{i} \frac{C_i^{(6)} O_i^{(6)}}{\Lambda^2} + \mathcal{O}(\Lambda^{-4})$$

Buchmuller, Wyler Nucl.Phys. B268 (1986) 621-653 Grzadkowski et al arXiv:1008.4884

	X^3		φ^6 and $\varphi^4 D^2$		$\psi^2 arphi^3$
Q_G	$f^{ABC}G^{A\nu}_{\mu}G^{B\rho}_{\nu}G^{C\mu}_{\rho}$	Q_{arphi}	$(\varphi^{\dagger}\varphi)^{3}$	$Q_{e\varphi}$	$(\varphi^{\dagger}\varphi)(\bar{l}_{p}e_{r}\varphi)$
$Q_{\widetilde{G}}$	$f^{ABC} \widetilde{G}^{A u}_{\mu} G^{B ho}_{ u} G^{C\mu}_{ ho}$	$Q_{\varphi \Box}$	$(\varphi^{\dagger}\varphi)\Box(\varphi^{\dagger}\varphi)$	$Q_{u\varphi}$	$(arphi^{\dagger}arphi)(ar{q}_{p}u_{r}\widetilde{arphi})$
Q_W	$\varepsilon^{IJK}W^{I\nu}_{\mu}W^{J\rho}_{\nu}W^{K\mu}_{\rho}$	$Q_{\varphi D}$	$\left(\varphi^{\dagger}D^{\mu}\varphi\right)^{\star}\left(\varphi^{\dagger}D_{\mu}\varphi\right)$	$Q_{d\varphi}$	$(arphi^{\dagger}arphi)(ar{q}_p d_r arphi)$
$Q_{\widetilde{W}}$	$\varepsilon^{IJK}\widetilde{W}^{I\nu}_{\mu}W^{J\rho}_{\nu}W^{K\mu}_{\rho}$				
$X^2 \varphi^2$		$\psi^2 X \varphi$		$\psi^2 \varphi^2 D$	
$Q_{\varphi G}$	$\varphi^{\dagger}\varphi G^{A}_{\mu\nu}G^{A\mu\nu}$	Q_{eW}	$(\bar{l}_p \sigma^{\mu\nu} e_r) \tau^I \varphi W^I_{\mu\nu}$	$Q^{(1)}_{\varphi l}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{l}_{p}\gamma^{\mu}l_{r})$
$Q_{arphi \widetilde{G}}$	$\varphi^{\dagger}\varphi\widetilde{G}^{A}_{\mu\nu}G^{A\mu\nu}$	Q_{eB}	$(\bar{l}_p \sigma^{\mu\nu} e_r) \varphi B_{\mu\nu}$	$Q^{(3)}_{arphi l}$	$(\varphi^{\dagger}i\overleftrightarrow{D}^{I}_{\mu}\varphi)(\bar{l}_{p}\tau^{I}\gamma^{\mu}l_{r})$
$Q_{\varphi W}$	$\varphi^{\dagger}\varphi W^{I}_{\mu u}W^{I\mu u}$	Q_{uG}	$(\bar{q}_p \sigma^{\mu\nu} T^A u_r) \widetilde{\varphi} G^A_{\mu\nu}$	$Q_{\varphi e}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{e}_{p}\gamma^{\mu}e_{r})$
$Q_{\varphi \widetilde{W}}$	$\varphi^{\dagger} \varphi \widetilde{W}^{I}_{\mu \nu} W^{I \mu \nu}$	Q_{uW}	$(\bar{q}_p \sigma^{\mu\nu} u_r) \tau^I \widetilde{\varphi} W^I_{\mu\nu}$	$Q^{(1)}_{\varphi q}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{q}_{p}\gamma^{\mu}q_{r})$
$Q_{\varphi B}$	$\varphi^{\dagger}\varphi B_{\mu\nu}B^{\mu\nu}$	Q_{uB}	$(\bar{q}_p \sigma^{\mu\nu} u_r) \widetilde{\varphi} B_{\mu\nu}$	$Q^{(3)}_{arphi q}$	$(\varphi^{\dagger}i\overleftrightarrow{D}^{I}_{\mu}\varphi)(\bar{q}_{p}\tau^{I}\gamma^{\mu}q_{r})$
$Q_{arphi \widetilde{B}}$	$\varphi^{\dagger}\varphi\widetilde{B}_{\mu\nu}B^{\mu\nu}$	Q_{dG}	$(\bar{q}_p \sigma^{\mu\nu} T^A d_r) \varphi G^A_{\mu\nu}$	$Q_{\varphi u}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{u}_{p}\gamma^{\mu}u_{r})$
$Q_{\varphi WB}$	$\varphi^{\dagger}\tau^{I}\varphiW^{I}_{\mu\nu}B^{\mu\nu}$	Q_{dW}	$(\bar{q}_p \sigma^{\mu\nu} d_r) \tau^I \varphi W^I_{\mu\nu}$	$Q_{\varphi d}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{d}_{p}\gamma^{\mu}d_{r})$
$Q_{\varphi \widetilde{W}B}$	$\varphi^\dagger \tau^I \varphi \widetilde{W}^I_{\mu\nu} B^{\mu\nu}$	Q_{dB}	$(\bar{q}_p \sigma^{\mu\nu} d_r) \varphi B_{\mu\nu}$	$Q_{\varphi ud}$	$i(\widetilde{\varphi}^{\dagger}D_{\mu}\varphi)(\bar{u}_{p}\gamma^{\mu}d_{r})$

	$(\bar{L}L)(\bar{L}L)$	(RR)(RR)		$(\bar{L}L)(\bar{R}R)$	
Q_{ll}	$(\bar{l}_p \gamma_\mu l_r) (\bar{l}_s \gamma^\mu l_t)$	Q_{ee}	$(\bar{e}_p \gamma_\mu e_r) (\bar{e}_s \gamma^\mu e_t)$	Q_{le}	$(\bar{l}_p \gamma_\mu l_r) (\bar{e}_s \gamma^\mu e_t)$
$Q_{qq}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r) (\bar{q}_s \gamma^\mu q_t)$	Q_{uu}	$(\bar{u}_p \gamma_\mu u_r)(\bar{u}_s \gamma^\mu u_t)$	Q_{lu}	$(\bar{l}_p \gamma_\mu l_r)(\bar{u}_s \gamma^\mu u_t)$
$Q_{qq}^{(3)}$	$(\bar{q}_p \gamma_\mu \tau^I q_r) (\bar{q}_s \gamma^\mu \tau^I q_t)$	Q_{dd}	$(\bar{d}_p \gamma_\mu d_r) (\bar{d}_s \gamma^\mu d_t)$	Q_{ld}	$(\bar{l}_p \gamma_\mu l_r) (\bar{d}_s \gamma^\mu d_t)$
$Q_{lq}^{(1)}$	$(\bar{l}_p \gamma_\mu l_r) (\bar{q}_s \gamma^\mu q_t)$	Q_{eu}	$(\bar{e}_p \gamma_\mu e_r)(\bar{u}_s \gamma^\mu u_t)$	Q_{qe}	$(\bar{q}_p \gamma_\mu q_r) (\bar{e}_s \gamma^\mu e_t)$
$Q_{lq}^{(3)}$	$(\bar{l}_p \gamma_\mu \tau^I l_r) (\bar{q}_s \gamma^\mu \tau^I q_t)$	Q_{ed}	$(\bar{e}_p \gamma_\mu e_r) (\bar{d}_s \gamma^\mu d_t)$	$Q_{qu}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r) (\bar{u}_s \gamma^\mu u_t)$
		$Q_{ud}^{(1)}$	$(\bar{u}_p \gamma_\mu u_r) (\bar{d}_s \gamma^\mu d_t)$	$Q_{qu}^{(8)}$	$(\bar{q}_p \gamma_\mu T^A q_r) (\bar{u}_s \gamma^\mu T^A u_t)$
		$Q_{ud}^{(8)}$	$(\bar{u}_p \gamma_\mu T^A u_r) (\bar{d}_s \gamma^\mu T^A d_t)$	$Q_{qd}^{(1)}$	$(ar q_p \gamma_\mu q_r) (ar d_s \gamma^\mu d_t)$
				$Q_{qd}^{(8)}$	$(\bar{q}_p \gamma_\mu T^A q_r) (\bar{d}_s \gamma^\mu T^A d_t)$
$(\bar{L}R)$	$(\bar{R}L)$ and $(\bar{L}R)(\bar{L}R)$	B-violating			
Q_{ledq}	$(ar{l}_p^j e_r)(ar{d}_s q_t^j)$	Q_{duq}	$\varepsilon^{lphaeta\gamma}\varepsilon_{jk}\left[\left(d_{p}^{lpha} ight) ight.$	$^{T}Cu_{r}^{\beta}$	$\left[(q_s^{\gamma j})^T C l_t^k\right]$
$Q_{quqd}^{(1)}$	$(\bar{q}_p^j u_r) \varepsilon_{jk} (\bar{q}_s^k d_t)$	Q_{qqu}	$arepsilon^{lphaeta\gamma}arepsilon_{jk}\left[(q_p^{lpha j})^T C q_r^{eta k} ight]\left[(u_s^{\gamma})^T C e_t ight]$		
$Q_{quqd}^{(8)}$	$(\bar{q}_p^j T^A u_r) \varepsilon_{jk} (\bar{q}_s^k T^A d_t)$	$Q_{qqq}^{(1)}$	$\varepsilon^{\alpha\beta\gamma}\varepsilon_{jk}\varepsilon_{mn}\left[(q_p^{\alpha j})^T C q_r^{\beta k}\right]\left[(q_s^{\gamma m})^T C l_t^n\right]$		
$Q_{lequ}^{(1)}$	$(\bar{l}_p^j e_r) \varepsilon_{jk} (\bar{q}_s^k u_t)$	$Q_{qqq}^{(3)}$	$\varepsilon^{\alpha\beta\gamma}(\tau^{I}\varepsilon)_{jk}(\tau^{I}\varepsilon)_{mn}\left[(q_{p}^{\alpha j})^{T}Cq_{r}^{\beta k}\right]\left[(q_{s}^{\gamma m})^{T}Cl_{t}^{n}\right]$		
$Q_{lequ}^{(3)}$	$(\bar{l}_{p}^{j}\sigma_{\mu\nu}e_{r})\varepsilon_{jk}(\bar{q}_{s}^{k}\sigma^{\mu\nu}u_{t})$	Q_{duu}	$\varepsilon^{lphaeta\gamma}\left[(d_p^lpha)^T ight]$	Cu_r^{β}	$\left[(u_s^{\gamma})^T C e_t\right]$

E.Vryonidou

Outline

Introduction to the EFT

- EFT in top quark physics
 - Precision calculations in the EFT
 - Towards global fits in the top sector
- EFT in the top-Higgs sector
 - Top loops in the EFT

EFT for top quark interactions

SMEFT

VS

$$O_{\varphi Q}^{(3)} = i \frac{1}{2} y_t^2 \left(\varphi^{\dagger} \overleftrightarrow{D}_{\mu}^{I} \varphi \right) (\bar{Q} \gamma^{\mu} \tau^{I} Q)$$

$$O_{\varphi Q}^{(1)} = i \frac{1}{2} y_t^2 \left(\varphi^{\dagger} \overleftrightarrow{D}_{\mu} \varphi \right) (\bar{Q} \gamma^{\mu} Q)$$

$$O_{\varphi t} = i \frac{1}{2} y_t^2 \left(\varphi^{\dagger} \overleftrightarrow{D}_{\mu} \varphi \right) (\bar{t} \gamma^{\mu} t)$$

$$O_{tW} = y_t g_w (\bar{Q} \sigma^{\mu\nu} \tau^{I} t) \tilde{\varphi} W_{\mu\nu}^{I}$$

$$O_{tB} = y_t g_Y (\bar{Q} \sigma^{\mu\nu} t) \tilde{\varphi} B_{\mu\nu}$$

Anomalous couplings

$$\mathcal{L}_{ttZ} = e\bar{u}(p_t) \left[\gamma^{\mu} \left(C_{1,V}^Z + \gamma_5 C_{1,A}^Z \right) + \frac{i\sigma^{\mu\nu}q_{\nu}}{m_Z} \left(C_{2,V}^Z + i\gamma_5 C_{2,A}^Z \right) \right] v(p_{\bar{t}}) Z_{\mu}$$

- SMEFT:
 - Gauge invariant
 - Higher-order corrections: renormalisable order by order in 1/Λ

$$\mathcal{O}(\alpha_s) + \mathcal{O}\left(\frac{1}{\Lambda^2}\right) + \mathcal{O}\left(\frac{\alpha_s}{\Lambda^2}\right) + \cdots$$

- Complete description-respecting SM symmetries \checkmark
- Model Independent

SMEFT in processes with tops

$$\begin{split} O_{\varphi Q}^{(3)} &= i \frac{1}{2} y_t^2 \left(\varphi^{\dagger} \overleftrightarrow{D}_{\mu}^{I} \varphi \right) (\bar{Q} \gamma^{\mu} \tau^{I} Q \\ O_{\varphi Q}^{(1)} &= i \frac{1}{2} y_t^2 \left(\varphi^{\dagger} \overleftrightarrow{D}_{\mu} \varphi \right) (\bar{Q} \gamma^{\mu} Q) \\ O_{\varphi t} &= i \frac{1}{2} y_t^2 \left(\varphi^{\dagger} \overleftrightarrow{D}_{\mu} \varphi \right) (\bar{t} \gamma^{\mu} t) \\ O_{tW} &= y_t g_w (\bar{Q} \sigma^{\mu\nu} \tau^{I} t) \tilde{\varphi} W_{\mu\nu}^{I} \\ O_{tB} &= y_t g_Y (\bar{Q} \sigma^{\mu\nu} t) \tilde{\varphi} B_{\mu\nu} \\ O_{tG} &= y_t g_s (\bar{Q} \sigma^{\mu\nu} T^A t) \tilde{\varphi} G_{\mu\nu}^{A} , \\ O_{t\phi} &= y_t^3 \left(\phi^{\dagger} \phi \right) (\bar{Q} t) \tilde{\phi} \end{split}$$

see for example: Aguilar-Saavedra (arXiv:0811.3842) Zhang and Willenbrock (arXiv:1008.3869) +four-fermion operators +non-top operators (mixing)

$$O_{\varphi Q}^{(3)} = i \frac{1}{2} y_t^2 \left(\varphi^{\dagger} \overleftrightarrow{D}_{\mu}^{I} \varphi\right) (\bar{Q} \gamma^{\mu} \tau^{I} Q)$$

$$O_{\varphi Q}^{(1)} = i \frac{1}{2} y_t^2 \left(\varphi^{\dagger} \overleftrightarrow{D}_{\mu} \varphi\right) (\bar{Q} \gamma^{\mu} Q)$$

$$O_{\varphi t} = i \frac{1}{2} y_t^2 \left(\varphi^{\dagger} \overleftrightarrow{D}_{\mu} \varphi\right) (\bar{t} \gamma^{\mu} t)$$

$$O_{tW} = y_t g_w (\bar{Q} \sigma^{\mu\nu} \tau^{I} t) \tilde{\varphi} W_{\mu\nu}^{I}$$

$$O_{tB} = y_t g_Y (\bar{Q} \sigma^{\mu\nu} t) \tilde{\varphi} B_{\mu\nu}$$

$$O_{tG} = y_t g_s (\bar{Q} \sigma^{\mu\nu} T^A t) \tilde{\varphi} G_{\mu\nu}^{A},$$

$$O_{t\phi} = y_t^3 \left(\phi^{\dagger} \phi\right) (\bar{Q} t) \tilde{\phi}$$

see for example: Aguilar-Saavedra (arXiv:0811.3842) Zhang and Willenbrock (arXiv:1008.3869) +four-fermion operators +non-top operators (mixing)

0000

00000

0000

E.Vryonidou

$$\begin{split} O_{\varphi Q}^{(3)} &= i \frac{1}{2} y_t^2 \left(\varphi^{\dagger} \overleftrightarrow{D}_{\mu}^{I} \varphi \right) (\bar{Q} \gamma^{\mu} \tau^{I} Q) \\ O_{\varphi Q}^{(1)} &= i \frac{1}{2} y_t^2 \left(\varphi^{\dagger} \overleftrightarrow{D}_{\mu} \varphi \right) (\bar{Q} \gamma^{\mu} Q) \\ O_{\varphi t} &= i \frac{1}{2} y_t^2 \left(\varphi^{\dagger} \overleftrightarrow{D}_{\mu} \varphi \right) (\bar{t} \gamma^{\mu} t) \\ O_{tW} &= y_t g_w (\bar{Q} \sigma^{\mu\nu} \tau^{I} t) \tilde{\varphi} W_{\mu\nu}^{I} \\ O_{tB} &= y_t g_Y (\bar{Q} \sigma^{\mu\nu} t) \tilde{\varphi} B_{\mu\nu} \\ O_{tG} &= y_t g_s (\bar{Q} \sigma^{\mu\nu} T^A t) \tilde{\varphi} G_{\mu\nu}^{A} , \\ O_{t\phi} &= y_t^3 \left(\phi^{\dagger} \phi \right) (\bar{Q} t) \tilde{\phi} \end{split}$$

see for example: Aguilar-Saavedra (arXiv:0811.3842) Zhang and Willenbrock (arXiv:1008.3869) +four-fermion operators +non-top operators (mixing)

$$O_{\varphi Q}^{(3)} = i \frac{1}{2} y_t^2 \left(\varphi^{\dagger} \overleftarrow{D}_{\mu} \varphi\right) (\bar{Q} \gamma^{\mu} \tau^I Q)$$

$$O_{\varphi Q}^{(1)} = i \frac{1}{2} y_t^2 \left(\varphi^{\dagger} \overleftarrow{D}_{\mu} \varphi\right) (\bar{Q} \gamma^{\mu} Q)$$

$$O_{\varphi t} = i \frac{1}{2} y_t^2 \left(\varphi^{\dagger} \overleftarrow{D}_{\mu} \varphi\right) (\bar{t} \gamma^{\mu} t)$$

$$O_{tW} = y_t g_w (\bar{Q} \sigma^{\mu\nu} \tau^I t) \tilde{\varphi} W_{\mu\nu}^I$$

$$O_{tB} = y_t g_Y (\bar{Q} \sigma^{\mu\nu} t) \tilde{\varphi} B_{\mu\nu}$$

$$O_{tG} = y_t g_s (\bar{Q} \sigma^{\mu\nu} T^A t) \tilde{\varphi} G_{\mu\nu}^A,$$

$$O_{t\phi} = y_t^3 \left(\phi^{\dagger} \phi\right) (\bar{Q} t) \tilde{\phi}$$

see for example: Aguilar-Saavedra (arXiv:0811.3842) Zhang and Willenbrock (arXiv:1008.3869) +four-fermion operators +non-top operators (mixing)

E.Vryonidou

$$\begin{split} O_{\varphi Q}^{(3)} &= i \frac{1}{2} y_t^2 \left(\varphi^{\dagger} \overleftrightarrow{D}_{\mu}^{I} \varphi \right) (\bar{Q} \gamma^{\mu} \tau^{I} Q) \\ O_{\varphi Q}^{(1)} &= i \frac{1}{2} y_t^2 \left(\varphi^{\dagger} \overleftrightarrow{D}_{\mu} \varphi \right) (\bar{Q} \gamma^{\mu} Q) \\ O_{\varphi t} &= i \frac{1}{2} y_t^2 \left(\varphi^{\dagger} \overleftrightarrow{D}_{\mu} \varphi \right) (\bar{t} \gamma^{\mu} t) \\ O_{tW} &= y_t g_w (\bar{Q} \sigma^{\mu\nu} \tau^{I} t) \tilde{\varphi} W_{\mu\nu}^{I} \\ O_{tB} &= y_t g_Y (\bar{Q} \sigma^{\mu\nu} t) \tilde{\varphi} B_{\mu\nu} \\ O_{tG} &= y_t g_s (\bar{Q} \sigma^{\mu\nu} T^A t) \tilde{\varphi} G_{\mu\nu}^A , \\ O_{t\phi} &= y_t^3 \left(\phi^{\dagger} \phi \right) (\bar{Q} t) \tilde{\phi} \end{split}$$

see for example: Aguilar-Saavedra (arXiv:0811.3842) Zhang and Willenbrock (arXiv:1008.3869) +four-fermion operators +non-top operators (mixing)

$$\begin{split} O_{\varphi Q}^{(3)} &= i \frac{1}{2} y_t^2 \left(\varphi^{\dagger} \overleftarrow{D}_{\mu}^{I} \varphi \right) (\bar{Q} \gamma^{\mu} \tau^{I} Q) \\ O_{\varphi Q}^{(1)} &= i \frac{1}{2} y_t^2 \left(\varphi^{\dagger} \overleftarrow{D}_{\mu} \varphi \right) (\bar{Q} \gamma^{\mu} Q) \\ O_{\varphi t} &= i \frac{1}{2} y_t^2 \left(\varphi^{\dagger} \overleftarrow{D}_{\mu} \varphi \right) (\bar{t} \gamma^{\mu} t) \\ O_{tW} &= y_t g_w (\bar{Q} \sigma^{\mu\nu} \tau^{I} t) \tilde{\varphi} W_{\mu\nu}^{I} \\ O_{tB} &= y_t g_Y (\bar{Q} \sigma^{\mu\nu} T^A t) \tilde{\varphi} B_{\mu\nu} \\ O_{tG} &= y_t g_s (\bar{Q} \sigma^{\mu\nu} T^A t) \tilde{\varphi} G_{\mu\nu}^{A} , \\ O_{t\phi} &= y_t^3 \left(\phi^{\dagger} \phi \right) (\bar{Q} t) \tilde{\phi} \end{split}$$

see for example: Aguilar-Saavedra (arXiv:0811.3842) Zhang and Willenbrock (arXiv:1008.3869) +four-fermion operators +non-top operators (mixing)

E.Vryonidou

$$\begin{split} O_{\varphi Q}^{(3)} &= i \frac{1}{2} y_t^2 \left(\varphi^{\dagger} \overleftrightarrow{D}_{\mu}^{I} \varphi \right) (\bar{Q} \gamma^{\mu} \tau^{I} Q) \\ O_{\varphi Q}^{(1)} &= i \frac{1}{2} y_t^2 \left(\varphi^{\dagger} \overleftrightarrow{D}_{\mu} \varphi \right) (\bar{Q} \gamma^{\mu} Q) \\ O_{\varphi t} &= i \frac{1}{2} y_t^2 \left(\varphi^{\dagger} \overleftrightarrow{D}_{\mu} \varphi \right) (\bar{t} \gamma^{\mu} t) \\ O_{tW} &= y_t g_w (\bar{Q} \sigma^{\mu\nu} \tau^{I} t) \tilde{\varphi} W_{\mu\nu}^{I} \\ O_{tB} &= y_t g_Y (\bar{Q} \sigma^{\mu\nu} t) \tilde{\varphi} B_{\mu\nu} \\ O_{tG} &= y_t g_s (\bar{Q} \sigma^{\mu\nu} T^A t) \tilde{\varphi} G_{\mu\nu}^A , \\ O_{t\phi} &= y_t^3 \left(\phi^{\dagger} \phi \right) (\bar{Q} t) \tilde{\phi} \\ \text{see for example: Aguilar-Saavedra (arXiv:0811.3842)} \\ \text{zhang and Willenbrock (arXiv:1008.3869)} \\ + \text{four-fermion operators} \\ + \text{non-top operators (mixing)} \end{split}$$

+

+

$$\begin{array}{l} O^{(3)}_{\varphi Q} = i \frac{1}{2} y_t^2 \left(\varphi^{\dagger} \overleftrightarrow{D}_{\mu}^{I} \varphi \right) (\bar{Q} \gamma^{\mu} \tau^{I} Q) \\ O^{(1)}_{\varphi Q} = i \frac{1}{2} y_t^2 \left(\varphi^{\dagger} \overleftrightarrow{D}_{\mu} \varphi \right) (\bar{Q} \gamma^{\mu} Q) \\ O_{\varphi t} = i \frac{1}{2} y_t^2 \left(\varphi^{\dagger} \overleftrightarrow{D}_{\mu} \varphi \right) (\bar{t} \gamma^{\mu} t) \\ O_{t W} = y_t g_w (\bar{Q} \sigma^{\mu\nu} \tau^{I} t) \tilde{\varphi} W_{\mu\nu}^{I} \\ O_{t B} = y_t g_Y (\bar{Q} \sigma^{\mu\nu} t) \tilde{\varphi} B_{\mu\nu} \\ O_{t G} = y_t g_s (\bar{Q} \sigma^{\mu\nu} T^A t) \tilde{\varphi} G^A_{\mu\nu} , \\ O_{t \phi} = y_t^3 \left(\phi^{\dagger} \phi \right) (\bar{Q} t) \tilde{\phi} \end{array}$$
see for example: Aguilar-Saavedra (arXiv:0811.3842)
 Zhang and Willenbrock (arXiv:1008.3869) + four-fermion operators (mixing)

$$\begin{split} O^{(3)}_{\varphi Q} &= i \frac{1}{2} y_t^2 \left(\varphi^{\dagger} \overleftrightarrow{D}_{\mu}^{I} \varphi \right) (\bar{Q} \gamma^{\mu} \tau^{I} Q) \\ O^{(1)}_{\varphi Q} &= i \frac{1}{2} y_t^2 \left(\varphi^{\dagger} \overleftrightarrow{D}_{\mu} \varphi \right) (\bar{Q} \gamma^{\mu} Q) \\ O_{\varphi t} &= i \frac{1}{2} y_t^2 \left(\varphi^{\dagger} \overleftrightarrow{D}_{\mu} \varphi \right) (\bar{t} \gamma^{\mu} t) \\ O_{t W} &= y_t g_w (\bar{Q} \sigma^{\mu\nu} \tau^{I} t) \tilde{\varphi} W_{\mu\nu}^{I} \\ O_{t B} &= y_t g_Y (\bar{Q} \sigma^{\mu\nu} t) \tilde{\varphi} B_{\mu\nu} \\ O_{t G} &= y_t g_s (\bar{Q} \sigma^{\mu\nu} T^A t) \tilde{\varphi} G^A_{\mu\nu}, \\ O_{t \phi} &= y_t^3 \left(\phi^{\dagger} \phi \right) (\bar{Q} t) \tilde{\phi} \\ \text{see for example: Aguilar-Saavedra (arXiv:0811.3842)} \\ \text{zhang and Willenbrock (arXiv:1008.3869)} \\ + \text{four-fermion operators (mixing)} \end{split}$$

Operators entering various processes: Global approach needed

Use SMEFT to parametrise and look for deviations from SM predictions

Use SMEFT to parametrise and look for deviations from SM predictions

Use as many experimental measurements as possible Cross-sections+differential distributions

Use SMEFT to parametrise and look for deviations from SM predictions

Use as many experimental measurements as possible Cross-sections+differential distributions

> Use the best SM predictions QCD/EW corrections

Use SMEFT to parametrise and look for deviations from SM predictions

Use as many experimental measurements as possible Cross-sections+differential distributions

Need for precision also in SMEFT

Use the best SM predictions QCD/EW corrections

Use SMEFT to parametrise and look for deviations from SM predictions

Use as many experimental measurements as possible Cross-sections+differential distributions

Need for precision calculations Automated tools for the EFT

Need for precision also in SMEFT

Use the best SM predictions QCD/EW corrections

How can we improve EFT predictions?

• SMEFT@NLO

- Mixing between operators: anomalous dimension matrix: Jenkins et al arXiv:1308.2627,1310.4838, Alonso et al. 1312.2014
- Additional operators at NLO: e.g. chromomagnetic dipole in single top production

Recent progress in top physics:

- top pair Franzosi and Zhang (arxiv:1503.08841)
- single top Zhang (arxiv:1601.06163), de Beurs, Laenen, Vreeswijk, EV (arXiv:1807.03576)
- ttZ/γ Bylund, Maltoni, Tsinikos, EV, Zhang (arXiv:1601.08193), Schulze and Rontsch (arXiv:1404.1005)
- ttH Maltoni, EV, Zhang (arXiv:1607.05330)
- tZ/Hj Degrande, Maltoni, Mimasu, EV, Zhang (arXiv:1804.0773)

In practice

UFO model with UV+R2 counterterms Import to MG5_aMC@NLO Proceed as in SM case

MG5_aMC>import model TEFT
MG5_aMC>generate p p > t t~ z EFT=1 [QCD]
MG5_aMC>output
MG5_aMC>launch

Results:Implementation gives:Fixed order NLO $\sigma = \sigma_{SM} + \sum_i \frac{1 \text{TeV}^2}{\Lambda^2} C_i \sigma_i + \sum_{i \leq j} \frac{1 \text{TeV}^4}{\Lambda^4} C_i C_j \sigma_{ij}$ NLO+PS with MC@NLO $\sigma = \sigma_{SM} + \sum_i \frac{1 \text{TeV}^2}{\Lambda^2} C_i \sigma_i + \sum_{i \leq j} \frac{1 \text{TeV}^4}{\Lambda^4} C_i C_j \sigma_{ij}$ interferenceinterferencewith SMinterference between
operators, squared
contributionsE.VryonidouHU Berlin, 20/06/19

In practice

Behind the scenes

.∕Q+ ,o-K

E.Vryonidou

In practice

UFO model with UV+R2 counterterms Import to MG5_aMC@NLO Proceed as in SM case

MG5_aMC>import model TEFT
MG5_aMC>generate p p > t t~ z EFT=1 [QCD]
MG5_aMC>output
MG5_aMC>launch

Results:Implementation gives:Fixed order NLO $\sigma = \sigma_{SM} + \sum_i \frac{1 \text{TeV}^2}{\Lambda^2} C_i \sigma_i + \sum_{i \leq j} \frac{1 \text{TeV}^4}{\Lambda^4} C_i C_j \sigma_{ij}$ NLO+PS with MC@NLO $\sigma = \sigma_{SM} + \sum_i \frac{1 \text{TeV}^2}{\Lambda^2} C_i \sigma_i + \sum_{i \leq j} \frac{1 \text{TeV}^4}{\Lambda^4} C_i C_j \sigma_{ij}$ interferenceinterferencewith SMinterference between
operators, squared
contributionsE.VryonidouHU Berlin, 20/06/19

Top production in association with a Z

$$\begin{array}{c}
 g \\
 g$$

E.Vryonidou

 $C_{2,A}^{Z} = 0$

Differential distributions for tt+V

Large contribution at $O(1/\Lambda^4)$

Using SM k-factors is not enough

Bylund et al arXiv:1601.08193

Single top production and decay

- The same EFT couplings enter both the production and decay
- The width of the top enters in the total cross-section calculation

For large values of the coupling allowing two insertions and computing the width of the top consistently is needed to match the Wbj and tj cross-sections

de Beurs, Laenen, Vreeswijk, EV arXiv:1807.03576

Single top production and decay

Going beyond the narrow width approximation for single top:

 Wbj production with off-shell and interference effects

- Resonant-aware matching to the Parton Shower (arXiv: 1603.01178)
- W decay in MadSpin
- Up to two EFT operator insertions allowed (one in production one in decay)

de Beurs, Laenen, Vreeswijk, EV arXiv:1807.03576

E.Vryonidou

ttH in the EFT

E.Vryonidou

ttH@NLO in the EFT

	13 TeV	σ NLO	К
-	σ_{SM}	$0.507_{-0.048-0.000-0.008}^{+0.030+0.000+0.007}$	1.09
Γ	$\sigma_{t\phi}$	$-0.062\substack{+0.006+0.001+0.001\\-0.004-0.001-0.001}$	1.13
	$\sigma_{\phi G}$	$0.872_{-0.123-0.035-0.016}^{+0.131+0.037+0.013}$	1.39
	σ_{tG}	$0.503^{+0.025+0.001+0.007}_{-0.046-0.003-0.008}$	1.07
┢	$\sigma_{t\phi,t\phi}$	$0.0019\substack{+0.0001+0.0001+0.0000\\-0.0002-0.0000-0.0000}$	1.17
	$\sigma_{\phi G,\phi G}$	$1.021_{-0.178-0.085-0.029}^{+0.204+0.096+0.024}$	1.58
	$\sigma_{tG,tG}$	$0.674\substack{+0.036+0.004+0.016\\-0.067-0.007-0.019}$	1.04
	$\sigma_{t\phi,\phi G}$	$-0.053\substack{+0.008+0.003+0.001\\-0.008-0.004-0.001}$	1.42
	$\sigma_{t\phi,tG}$	$-0.031\substack{+0.003+0.000+0.000\\-0.002-0.000-0.000}$	1.10
	$\sigma_{\phi G,tG}$	$0.859^{+0.127+0.021+0.017}_{-0.126-0.020-0.022}$	1.37

3) C/ Λ^2 expansion

First systematic study of uncertainties:

- 1) Scale and PDF uncertainties: Similar to SM
- Reduced scale and PDF uncertainties in the ratio over the SM
- 2) EFT scale uncertainties

 $\sigma_i(\mu_0;\mu) = \Gamma_{ji}(\mu,\mu_0)\sigma_j(\mu) \,.$

 $\sigma_{ij}(\mu_0;\mu) = \Gamma_{ki}(\mu,\mu_0)\Gamma_{lj}(\mu,\mu_0)\sigma_{kl}(\mu)$

$$\Gamma_{ij}(\mu,\mu_0) = \exp\left(\frac{-2}{\beta_0}\log\frac{\alpha_s(\mu)}{\alpha_s(\mu_0)}\gamma_{ij}\right)$$

Cross-sections evaluated at a different scale ($\mu_0/2$, $2\mu_0$) taking into account operator mixing and running

20

HU Berlin, 20/06/19

E.Vryonidou

A study of RG effects

Comparison of exact NLO with LO improved by 1-loop RG running

Maltoni, EV, Zhang arXiv:1607.05330

E.Vryonidou

Differential distributions for ttH

NLO: smaller uncertainties, non-flat K-factors Different shapes for different operators

Maltoni, EV, Zhang arXiv:1607.05330

Rare processes: tZj/tHj associated production

	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} t \\ W \\ H/Z \\ q' \\ \end{array} \begin{array}{c} b \\ W \\ H/Z \\ q \\ q' \\ \end{array} \begin{array}{c} t \\ W \\ H/Z \\ q' \\ \end{array}$	 Gauge-Higgs Top couplings TGC
-tHj $\mathcal{O}_{t\phi}$	$egin{array}{lll} tj & & \ & \mathcal{O}_{Qq}^{(3,1)} & \mathcal{O}_{Qq}^{(3,8)} \left(\mathcal{O}_{tG} ight) \ & \mathcal{O}_{\phi Q}^{(3)} & \mathcal{O}_{tW} & \mathcal{O}_{\phi tb} \end{array}$	tZj - $\mathcal{O}_{\phi t}$ \mathcal{O}_{tB} $\mathcal{O}_{\phi Q}^{(1)}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\mathcal{O}_{\phi W}$	\mathcal{O}_{HW}	$\mathcal{O}_{HB} \mathcal{O}_{W}^{VV}$	$\begin{array}{lll} \mathcal{O}_{i\varphi} & \left(\varphi^{i}\varphi - \frac{i}{2}\right)Q^{i}\psi + \text{h.c.} & \mathcal{O}_{\varphi q}^{i\varphi q} & i\left(\varphi^{i}D_{\mu}\tau_{I}\varphi\right)\left(q_{i}\gamma^{\mu}\tau^{\tau}q_{i}\right) + \text{h.c.} \\ \mathcal{O}_{iW} & i\left(\bar{Q}\sigma^{\mu\nu}\tau_{I}t\right)\bar{\varphi}W_{\mu\nu}^{I} + \text{h.c.} & \mathcal{O}_{\varphi u} & i\left(\varphi^{\dagger}\overset{\leftrightarrow}{D}_{\mu}\varphi\right)\left(\bar{u}_{i}\gamma^{\mu}u_{i}\right) + \text{h.c.} \\ \mathcal{O}_{iB} & i\left(\bar{Q}\sigma^{\mu\nu}t\right)\bar{\varphi}B_{\mu\nu} + \text{h.c.} & \mathcal{O}_{Qq}^{(3,1)} & \left(\bar{q}_{i}\gamma_{\mu}\tau_{I}q_{i}\right)\left(\bar{Q}\gamma^{\mu}\tau^{I}Q\right) \\ \mathcal{O}_{iG} & i\left(\bar{Q}\sigma^{\mu\nu}T_{A}t\right)\bar{\varphi}G_{\mu\nu}^{A} + \text{h.c.} & \mathcal{O}_{Qq}^{(3,8)} & \left(\bar{q}_{i}\gamma_{\mu}\tau_{I}T_{A}q_{i}\right)\left(\bar{Q}\gamma^{\mu}\tau^{I}T^{A}Q\right) \end{array}$

Unique interplay

Pure gauge operators (4): $\mathcal{O}_{\varphi W}, \mathcal{O}_W, \mathcal{O}_{HW}, \mathcal{O}_{HB},$ Two-fermion top-quark operators (8): $\mathcal{O}_{\varphi Q}^{(3)}, \mathcal{O}_{\varphi Q}^{(1)}, \mathcal{O}_{\varphi t}, \mathcal{O}_{tW}, \mathcal{O}_{tB}, \mathcal{O}_{tG}, \mathcal{O}_{\varphi tb}, \mathcal{O}_{t\varphi}$ Four-fermion top-quark operators (2): $\mathcal{O}_{Qq}^{(3,1)}, \mathcal{O}_{Qq}^{(3,8)}.$

E.Vryonidou

Helicity amplitudes for subprocesses

bW →	tH							
$\lambda_b, \lambda_W, \lambda_t$	SM	$\mathcal{O}_{t arphi}$	${\cal O}^{(3)}_{arphi Q}$	$\mathcal{O}_{arphi W}$	\mathcal{O}_{tW}	\mathcal{O}_{HW}	$W \left\{ \begin{array}{c} h \\ h \end{array} \right\}$	h
-,0,-	s^0	s^0	$\sqrt{s(s+t)}$	s^0	s^0	$\sqrt{s(s+t)}$	$q W \leq q'$	q - q'
-,0,+	$\frac{1}{\sqrt{s}}$	$m_t \sqrt{-t}$	$m_t \sqrt{-t}$	$\frac{1}{\sqrt{s}}$	$\frac{m_W s}{\sqrt{-t}}$	$\frac{1}{\sqrt{s}}$	t	
_, _, _	$\frac{1}{\sqrt{s}}$	$\frac{1}{\sqrt{s}}$	$m_W \sqrt{-t}$	$\frac{m_W s}{\sqrt{-t}}$	$m_t \sqrt{-t}$	$\frac{m_W(s+t)}{\sqrt{-t}}$	$b_W \leq h$	
-, -, +	$\frac{1}{s}$	s^0	s^0	_	$\sqrt{s(s+t)}$	$\frac{1}{s}$	w {	$W \begin{cases} h \\ a' \end{cases}$
-,+,-	$\frac{1}{\sqrt{s}}$	_	$\frac{1}{\sqrt{s}}$	$rac{m_W(s+t)}{\sqrt{-t}}$	$\frac{1}{\sqrt{s}}$	$\frac{m_W(s+t)}{\sqrt{-t}}$	q q	y y
-,+,+	s^0	_	s^0	s^0	s^0	$\frac{1}{s}$		$bW \rightarrow t$

Amplitudes growing with energy as SM cancellations get spoiled

Large deviations Differential distributions

$\lambda_b, \lambda_W, \lambda_t, \lambda_Z$	SM	$\mathcal{O}_{\varphi Q}^{(3)}$	$\mathcal{O}_{\varphi Q}^{(1)}$	$\mathcal{O}_{\varphi t}$	$\mathcal{O}_{\iota B}$	\mathcal{O}_{tW}	\mathcal{O}_{W}	\mathcal{O}_{HW}	\mathcal{O}_{HB}
-, 0, -, 0	<i>s</i> ⁰	$\sqrt{s(s+t)}$	-	_	_	s^0	s^0	$\sqrt{s(s+t)}$	s^0
-, 0, +, 0	$\frac{1}{\sqrt{s}}$	$m_t \sqrt{-t}$	$m_t \sqrt{-t}$	$m_t \sqrt{-t}$	$m_Z \sqrt{-t}$	$\frac{m_W(2s+3t)}{\sqrt{-t}}$	_	$m_t \sqrt{-t}$	$m_t \sqrt{-t}$
-, -, -, 0	$\frac{1}{\sqrt{8}}$	$m_W \sqrt{-t}$	_	_	_		$\frac{m_W(s+2t)}{\sqrt{-t}}$	$m_W \sqrt{-t}$	$\frac{1}{\sqrt{s}}$
-,-,+,0	1/8	<i>s</i> ⁰	s^0	s^0	s^0	$\sqrt{s(s+t)}$	s^0	s ⁰	$\frac{1}{\sqrt{s}}$
-,0,-,-	$\frac{1}{\sqrt{s}}$	$m_W \sqrt{-t}$	-	-	$m_t \sqrt{-t}$	$m_t\sqrt{-t}$	$\frac{m_W(s+2t)}{\sqrt{-t}}$	$\frac{m_W(ss_W^2+2t)}{\sqrt{-t}}$	$\frac{m_W s}{\sqrt{-t}}$
-,0,-,+	$\frac{1}{\sqrt{s}}$	-	_	_	_	_	$\frac{m_W(s+t)}{\sqrt{-t}}$	$\frac{m_W(s+t)}{\sqrt{-t}}$	$\frac{m_W(s+t)}{\sqrt{-t}}$
-, 0, +, -	s ⁰	s ⁰	s ⁰	_	_	s ⁰	s ⁰	s ⁰	s ⁰
-, 0, +, +	<u>1</u> 8	s^0	s^0	s^0	$\sqrt{s(s+t)}$	$\sqrt{s(s+t)}$	_	s ⁰	s^0
-, +, -, 0	$\frac{1}{\sqrt{s}}$	-	_	_	-		$\frac{m_W(s+t)}{\sqrt{-t}}$	$\frac{1}{\sqrt{s}}$	$\frac{1}{\sqrt{s}}$
-,+,+,0	s	s ⁰	_	_	_	s^0	_	s ⁰	1/8
-,-,-,-	<i>s</i> ⁰	s ⁰	s^0	_	s^0	s^0	s^0	s^0	s^0
-,-,+	$\frac{1}{s}$	_	_	_	_	_	$\sqrt{s(s+t)}$	s^0	s^0
-,-,+,-	$\frac{1}{\sqrt{8}}$	_	_	_	-	$\frac{m_Z(s_W^2 t - 3c_W^2(2s+t))}{\sqrt{-t}}$	_	$\frac{1}{\sqrt{s}}$	$\frac{1}{\sqrt{s}}$
-, -, +, +	_	-	_	_	$m_W \sqrt{-t}$	$m_Z \sqrt{-t}$	$m_t \sqrt{-t}$	$m_t \sqrt{-t}$	$m_t \sqrt{-t}$
-,+,-,-	<u>1</u> 8	-	_	_	_	-	$\sqrt{s(s+t)}$	s ⁰	s^0
-,+,-,+	s^0	s ⁰	s^0	_	_	-		s ⁰	s^0
-, +, +, -	$\frac{1}{\sqrt{8}}$	-	-	-	_	-	$m_t \sqrt{-t}$	$m_t \sqrt{-t}$	$m_t \sqrt{-t}$
-, +, +, +	$\frac{1}{\sqrt{8}}$	-	_	_	_	$\frac{m_W(s+t)}{\sqrt{-t}}$	-	$\frac{1}{\sqrt{8}}$	1

Differential results

Large deviations in the tails, as expected from helicity amplitudes

Comparison with single top

		tj	tj	tZj	tZj	tHj
			$(p_T^t>350~{\rm GeV})$		$(p_T^t>250~{\rm GeV})$	
	σ_{SM}	224 pb	$880~{\rm fb}$	839 fb	$69 { m ~fb}$	75.9 fb
	r_{tW}	0.0275	0.024	0.016	0.010	0.292
	$r_{tW,tW}$	0.0162	0.35	0.095	0.67	0.940
	$r_{\varphi Q^{(3)}}$	0.121	0.121	0.192	0.172	-0.132
	$r_{\varphi Q^{(3)},\varphi Q^{(3)}}$	0.0037	0.0037	0.029	0.114	0.21
C	$r_{\varphi tb,\varphi tb}$	0.00090	0.0008	0.0050	0.027	0.050
	r_{tG}	0.0003	-0.01	0.00053	-0.0048	-0.0055
	$r_{tG,tG}$	0.00062	0.045	0.0027	0.022	0.025
	$r_{Qq^{(3,1)}}$	-0.353	-4.4	-0.59	-2.22	-0.39
	$r_{Qq^{(3,1)},Qq^{(3,1)}}$	0.126	11.5	0.65	5.1	1.21
	$r_{Qq^{(3,8)},Qq^{(3,8)}}$	0.0308	2.73	0.133	1.01	1.08

- Increased sensitivity for dipoles and right-handed current (as expected from helicity analysis)
- 4-fermion operators sensitivity due to higher thresholds can be outperformed by high-pT single top measurements

Current and future sensitivity

Op.	TF (I)	TF (M)	RHCC (I) tree/loop	$\sigma_{t\bar{t}H}$ [10]	SFitter (I)	PEWM ²
\mathcal{O}_W					[-0.18, 0.18]	
\mathcal{O}_{HW}					[-0.64, 3.25]	
O_{HB}					[-2.11, 1.57]	
$\mathcal{O}_{\varphi W}$					[-0.39, 0.33]	
$O_{\varphi tb}$			[-5.28, 5.28]/[-0.046, 0.040]			
$\mathcal{O}^{(3)}_{\varphi Q}$	[-2.59, 1.50]	[-4.19, 2.00]				-1.0 ± 2.7 ³
$\mathcal{O}_{\varphi Q}^{(1)}$	[-3.10, 3.10]					1.0 ± 2.7
$\mathcal{O}_{\varphi t}$	[-9.78,8.18]					1.8 ± 3.8
\mathcal{O}_{tW}	[-2.49, 2.49]	[-3.99, 3.40]				-0.4 ± 2.4
$O_{\iota B}$	[-7.09, 4.68]					4.8 ± 10.6
$\mathcal{O}_{\iota G}$	[-0.24, 0.53]	[-1.07, 0.99]				
$\mathcal{O}_{\iota\varphi}$				[-6.5, 1.3]	[-18.2, 6.30]	
$O_{Qq}^{(3,1)}$	[-0.40, 0.60]	[0.66, 1.24]				
$O_{Qq}^{(3,8)}$	[-4.90,3.70]	[6.06, 6.73]				

TopFitter: Buckley et al. arXiv:1512.03360 SFitter: Butter et al. arXiv:1604.03105 PEWM: Zhang et al. arXiv:1201.6670 ttH: Maltoni et al. arXiv:1607.05330 RHCC: Alioli et al. arXiv:1703.04751

tZj measurements:

CMS; PLB 779 (2018) 358-384: 0.75 ± 0.27 ATLAS; CERN-EP-2017-188: 1.31 ± 0.47

Promising for weak dipoles, RHCC and SU(2) current in particular for HL-LHC where high pT data can potentially be used

Rare processes can play a role in a global fit

Towards a complete implementation@NLO

Aim to obtain a complete Monte Carlo implementation based on:

- Warsaw basis
- Degrees of freedom for top operators as in arXiv:1802.07237 (LHCTopWG)

Current status:

- 73 degrees of freedom (top, Higgs, gauge):
 - CP-conserving
 - Flavour assumption: $U(2)Q \times U(2)U \times U(3)d \times U(3)L \times U(3)e$
- Successful validation at LO with dim6top (in turn validated with SMEFTsim)
- 0/2F@NLO operators validated (with previous partial NLO implementations)
 http://feynrules.irmp.ucl.ac.be/wiki/SMEFTatNLO
- 4F@NLO operators validation: on-going

Future plans

- Full NLO model release (4F@NLO)
- Other flavour assumptions
- CP-violating effects

Work in progress with:

C. Degrande, G. Durieux, F. Maltoni, K. Mimasu, C. Zhang

A first application: A global top fit@NLO

Class	Notation	Degree of Freedom	Operator Definition			
	0001	c_{OO}^1	$2C_{qq}^{1(3333)} - \frac{2}{3}C_{qq}^{3(3333)}$			
	oqqs	coo	$8C_{qq}^{3(3333)}$	Top quark pair	tW	tZ
	OQt1	c_{Ot}^1	$C_{qu}^{1(3333)}$	iop quark pair		u d
	0Qt8	con	$C_{qu}^{8(3333)}$		Wol	
QQQQ	0QЪ1	c_{Ob}^1	$C_{ad}^{1(3333)}$			$>_W$
	0QЪ8	c ⁸ _{Ob}	C ⁸⁽³³³³⁾	\$ 00000 ×		\geq t
	Ott1	c_{tt}^1	C ⁽³³³³⁾	A K		b C
	Otb1	c_{tb}^1	$C_{ud}^{1(3333)}$	\overline{t}	9	LZ
	Otb8	c_{tb}^8	$C_{ud}^{8(3333)}$	Single top (t.channel)	Single top (s-channel)	
	OQtQb1	c_{OtOb}^1	$C_{quad}^{1(3333)}$			
	OQtQb8	couch	$C_{quqd}^{8(3333)}$	q' q'		b
	08100	c ^{1,8}	C ^{1(t33t)} + 2C ^{3(t33t)}		\overline{b}	Ā VOVā
	01100	^C Qq c ^{1,1}	$C_{qq}^{1(ti33)} + \frac{1}{4}C_{1(ti34)}^{1(ti334)} + \frac{1}{4}C_{2(ti334)}^{3(ti334)}$	2	W W	
	08300	~Qq _3.8	$C_{4q}^{1(t33t)} = C_{2}^{3(t33t)}$	<		8)0000
	01300	CQq (3,1	$C_{qq}^{3(t33)} + \frac{1}{4}(C_{qq}^{1(t33t)} - C_{qq}^{3(t33t)})$	\leq		$\sqrt{2}$
	08at	Qq	C ⁸ (1133)		> q'	9
	Olat		$C^{1(1133)}$			
	08ut	C ^B	2C ⁽¹³³¹⁾			
QQqq	Oiut		$C_{uu}^{(ii33)} + \frac{1}{2}C_{uu}^{(i33i)}$	ttW	ttZ	ttH
	08au	C8.	C ⁸⁽³³¹¹⁾			
	01m	-Qu chu	C ¹⁽³³⁾	T T	a t	$\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \frown \frown t$
	08dt	Qu C ⁸ .	C ⁸⁽³³¹¹⁾			k
	01dt		$C_{1(3311)}^{1(3311)}$	d	Simon C-	$\rightarrow - H$
	08gd	cod a	C ⁸ (3311)	Ē	Decese K	T T
	01od	C ¹	$C_{-4}^{1(3344)}$		\mathcal{P} \tilde{t}	
	0+0	çu	94 D=((2(33))			
	Utg	9 <i>G</i>	$\operatorname{Re}\{C_{uG}^{(3)}\}$ $\operatorname{Re}(C^{(33)})$			
	UCW ODW	CtW	$\operatorname{Re}\{C_{uW}\}$ $\operatorname{Re}\{C^{(33)}\}$			
	0+7	C6W	$Re[C_{dW}]$			
$00 \pm VG \omega$	062	QZ	$Re[-s_W O_{uB} + c_W O_{uW}]$ $Re[C^{(33)}]$	Rich r	Shenomen	
φφ + ν ,α,φ	Of a2	Cyth a3	C ³⁽³³⁾		5110110111011	ology
	0rd2	$c_{\varphi Q}$	$C^{1(33)} = C^{3(33)}$			
	Opt .	$^{c}\varphi Q$	$C_{\varphi q}^{(33)}$			
	0tr	C _{QE}	$\operatorname{Re}\left(C^{(33)}\right)$			
	0°P	~ιφ	the Comb 1			
	\cap					
	<u> </u>	4 U.O.T.				

Hartland, Maltoni, Nocera, Rojo, Slade, EV and Zhang, arXiv:1901.05965

E.Vryonidou

CP-conserving

Some considerations

- Validity of the EFT expansion: $E < \Lambda$
 - Ensure results are not dominated by high energy regions
 - report limits as a function of the max scale probed Contino et al arXiv: 1604.06444
- Range of Wilson coefficients:
 - The theory: perturbativity, unitarity, linear or non-linear EFT, UV completion
 - The experimental limits: Think about and use as many processes as possible to extract allowed range
- $1/\Lambda^2$ vs $1/\Lambda^4$ contributions
 - $1/\Lambda^2$ suppressed due to helicity Azatov et al arXiv:1607.05236
 - 1/A⁴ can be large for loosely constrained operator coefficients/strongly coupled theories

$$C_i^2 \frac{E^4}{\Lambda^4} > C_i \frac{E^2}{\Lambda^2} > 1 > \frac{E^2}{\Lambda^2}$$

E< Λ satisfied but O(1/ Λ^4) large for large operator coefficients

$1/\Lambda^2$ vs $1/\Lambda^4$ contributions some examples

 $1/\Lambda^2$ is not positive definite

 $1/\Lambda^2$ is not suppressed PS point by PS point $1/\Lambda^2$ is suppressed only when integrating over the PS

3) ttZ production

 $1/\Lambda^2$ is suppressed compared to $1/\Lambda^4$ $1/\Lambda^4$ from dimension-6 much larger than interference of SM with dim-8

E.Vryonidou

Global fit Setup

E.Vryonidou

Observables and theory predictions

Top-pair production W-helicities

4 tops, ttbb, toppair associated production

> Single top t-channel, schannel, tW, tZ

Dataset	$n_{\rm dat}$
ATLAS_tt_8TeV_1jets [$m_{t\bar{t}}$]	7
$CMS_tt_8TeV_1jets [y_t]$	10
$\texttt{CMS_tt2D_8TeV_dilep} ~ [~ (m_{t\bar{t}}, y_t) ~]$	16
CMS_tt_13TeV_1jets2 [y_{tf}]	8
CMS_tt_13TeV_dilep [$y_{t\bar{t}}$]	6
$CMS_tt_13TeV_1jets_2016 [y_t]$	11
ATLAS_WhelF_8TeV	3
CMS_WhelF_8TeV	3
CMS_ttbb_13TeV	1
CMS_tttt_13TeV	1
ATLAS_tth_13TeV	1
CMS_tth_13TeV	1
ATLAS_ttZ_8TeV	1
ATLAS_ttZ_13TeV	1
CMS_ttZ_8TeV	1
CMS_ttZ_13TeV	1
ATLAS_ttW_8TeV	1
ATLAS_ttW_13TeV	1
CMS_ttW_8TeV	1
CMS_ttW_13TeV	1
CMS_t_tch_8TeV_dif	6
ATLAS_t_tch_8TeV [yt]	4
$ATLAS_t_tch_8TeV [y_i]$	4
ATLAS_t_sch_8TeV	1
$CMS_t_th_13TeV_dif[y_t]$	4
CMS_t_sch_8TeV	1
ATLAS_tW_inc_8TeV	1
CMS_tW_inc_8TeV	1
ATLAS_tW_inc_13TeV	1
CMS_tW_inc_13TeV	1
ATLAS_tZ_inc_13TeV	1
CMS_tZ_inc_13TeV	1
Total	102

One distribution from each dataset, to avoid double counting

Theoretical predictions

Process	SM	SMEFT
tł	NNLO QCD	NLO QCD
single-t (t-ch)	NNLO QCD	NLO QCD
single-t (s-ch)	NLO QCD	NLO QCD
tW	NLO QCD	NLO QCD
tZ	NLO QCD	LO QCD + NLO SM K-factors
$t\bar{t}W(Z)$	NLO QCD	LO QCD + NLO SM K-factors
tīh	NLO QCD	LO QCD + NLO SM K-factors
tītī	NLO QCD	LO QCD + NLO SM K-factors
tībb	NLO QCD	LO QCD + NLO SM K-factors

Baseline fit includes:

- Best available SM predictions
- NLO EFT predictions
- O(1/\(\Lambda\)⁴) terms

Global top EFT fit@NLO

First limits reported for some operators Improvement for some operators: e.g. O_{tG} , O^{83}_{qq} , O_{bW} Individual limits more stringent than marginalised ones

Hartland, Maltoni, Nocera, Rojo, Slade, EV and Zhang, arXiv:1901.05965

Correlations between EFT coefficients

Strong (anti-)correlations between different operators (ignored by individual constraints)

E.Vryonidou

Impact of higher-order terms

Fit allows to check the impact of NLO QCD corrections and of including the O(1/ Λ^4) terms

Non-trivial impact of the two effects, can be different operatorby-operator

Hartland, Maltoni, Nocera, Rojo, Slade, EV and Zhang, arXiv:1901.05965

E.Vryonidou

Outline

Introduction to the EFT

- EFT in top quark physics
 - Precision calculations in the EFT
 - Towards global fits in the top sector
- EFT in the top-Higgs sector
 - Top loops in the EFT

The top-Higgs interface

$$\begin{aligned} O_{t\phi} &= y_t^3 \left(\phi^{\dagger} \phi \right) \left(\bar{Q}t \right) \tilde{\phi} \,, \\ O_{\phi G} &= y_t^2 \left(\phi^{\dagger} \phi \right) G^A_{\mu\nu} G^{A\mu\nu} \,, \\ O_{tG} &= y_t g_s (\bar{Q} \sigma^{\mu\nu} T^A t) \tilde{\phi} G^A_{\mu\nu} \,, \end{aligned}$$

See also Degrande et al. arXiv:1205.1065 Grojean et al. arXiv:1312.3317 Azatov et al arXiv:1608.00977

Use with 1) ttH and 2) H, H+j to break degeneracy between operators and extract maximal information on these operators

Maltoni, EV, Zhang: arXiv:1607.05330

SMEFT in single Higgs production

E.Vryonidou

SMEFT in Higgs production

SMEFT in Higgs production

Deutschmann, Duhr, Maltoni, EV arXiv:1708.00460

Grazzini et al 1612.00283

Constraints using two-operator fits

41

Double Higgs production

HH in the EFT

top Yukawa, ggh(h) coupling, topgluon interaction, Higgs self-coupling

E.Vryonidou

HH in the EFT

$$\begin{split} O_{t\phi} &= y_t^3 \left(\phi^{\dagger} \phi \right) \left(\bar{Q}t \right) \tilde{\phi} \,, \\ O_{\phi G} &= y_t^2 \left(\phi^{\dagger} \phi \right) G_{\mu\nu}^A G^{A\mu\nu} \,, \\ O_{tG} &= y_t g_s (\bar{Q} \sigma^{\mu\nu} T^A t) \tilde{\phi} G_{\mu\nu}^A \,, \\ O_6 &= -\lambda (\phi^{\dagger} \phi)^3 \,, \\ O_H &= \frac{1}{2} (\partial_{\mu} (\phi^{\dagger} \phi))^2 \,, \end{split}$$

top Yukawa, ggh(h) coupling, topgluon interaction, Higgs self-coupling

The present

Given the current constraints on σ (HH), σ (H) and the fresh ttH measurement, the Higgs self-coupling can be currently constrained "ignoring" other couplings

E.Vryonidou

HH in the EFT

The present

Given the current constraints on $\sigma(HH)$, $\sigma(H)$ and the fresh ttH measurement, the Higgs self-coupling can be currently constrained "ignoring" other couplings

$$\begin{split} O_{t\phi} &= y_t^3 \left(\phi^{\dagger} \phi \right) \left(\bar{Q}t \right) \tilde{\phi} \,, \\ O_{\phi G} &= y_t^2 \left(\phi^{\dagger} \phi \right) G_{\mu\nu}^A G^{A\mu\nu} \,, \\ O_{tG} &= y_t g_s (\bar{Q} \sigma^{\mu\nu} T^A t) \tilde{\phi} G_{\mu\nu}^A \,, \\ O_6 &= -\lambda (\phi^{\dagger} \phi)^3 \,, \\ O_H &= \frac{1}{2} (\partial_{\mu} (\phi^{\dagger} \phi))^2 \,, \end{split}$$

top Yukawa, ggh(h) coupling, topgluon interaction, Higgs self-coupling

The future

Precise knowledge of other Wilson coefficients will be needed to bound λ as the bound gets closer to SM

Differential distributions will also be necessary

E.Vryonidou

Going beyond QCD corrections in the EFT

Are we measuring

NLO EW in SMEFT may not be small:

 $\mathcal{O}(lpha_{EW}/\pi\cdot C_t/C_H)$ instead of $\mathcal{O}(lpha_{EW}/\pi)$

Weak corrections can be important for unconstrained operators

Towards weak loops in the EFT

$$\begin{aligned} O_{t\varphi} &= \bar{Q}t\tilde{\varphi}\left(\varphi^{\dagger}\varphi\right) + h.c.,\\ O_{\varphi Q}^{(3)} &= (\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}^{I}\varphi)(\bar{Q}\gamma^{\mu}\tau^{I}Q),\\ O_{\varphi tb} &= (\tilde{\varphi}^{\dagger}iD_{\mu}\varphi)(\bar{t}\gamma^{\mu}b) + h.c.,\\ O_{tB} &= (\bar{Q}\sigma^{\mu\nu}t)\,\tilde{\varphi}B_{\mu\nu} + h.c.,\\ O_{\varphi t} &= (\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{t}\gamma^{\mu}t),\\ O_{\varphi Q}^{(1)} &= (\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{Q}\gamma^{\mu}Q),\\ O_{tW} &= (\bar{Q}\sigma^{\mu\nu}\tau^{I}t)\,\tilde{\varphi}W_{\mu\nu}^{I} + h.c., \end{aligned}$$

Current constraints

Operator	Top Fitter	RHCC	$\sigma_{t\bar{t}H}$ [28]
$C_{\varphi tb}$		[-5.28, 5.28]	
$C_{\varphi Q}^{(3)}$	[-2.59, 1.50]		
$C^{(1)}_{\varphi Q}$	[-3.10, 3.10]		
$C_{arphi t}$	[-9.78, 8.18]		
C_{tW}	[-2.49, 2.49]		
C_{tB}	[-7.09, 4.68]		
$C_{t\varphi}$			[-6.5, 1.3]

Poor knowledge of top couplings leads to uncertainties on Higgs measurements at the LHC:

	$\gamma\gamma$	$\gamma \mathrm{Z}$	bb	WW*	ZZ^*	au au	$\mu\mu$
gg	(-100%, 1980%)	(-88%,200%)	(-40%, 48%)	(-40%, 47%)	(-40%,46%)	(-40%,48%)	(-40%,48%)
VBF	(-100%, 1880%)	(-88%,170%)	(-6.1%, 5.3%)	(-6.8%,6.7%)	(-8.8%, 9.2%)	(-6.2%, 5.9%)	(-6.2%, 5.9%)
WH	(-100%, 1880%)	(-88%,170%)	(-5.5%, 4.2%)	(-6.1%,5.6%)	(-7.8%, 7.9%)	(-5.8%, 5.1%)	(-5.8%, 5.1%)
ZH	(-100%, 1880%)	(-87%,170%)	(-6.5%, 5.9%)	(-7.1%,7.1%)	(-9.4%,9.9%)	(-6.8%, 6.7%)	(-6.8%,6.7%)
'	loop-ind	duced			tree-level	EV, Zhang ar	∕Xiv:1804.09766
	nidau				40		

TU DUNN, ZU/U0/19

Weak loops in the EFT: Future colliders

Circular Electron Positron Collider & HL-LHC: Top + Higgs Global Fit

E.Vryonidou

Outlook

- SMEFT is a consistent way to look for new interactions
- Higher-order corrections needed to match SM precision and experimental accuracy
- Progress in top-quark processes: single top, t(t)+V, t(t)+H as well as in the Monte Carlo automation of these corrections
- QCD corrections important both for total cross-sections and distributions: SM k-factors are not enough
- First global fits results already available: important to include NLO predictions where available and to combine as many processes as possible to extract maximal information
- Electroweak loop corrections can be important, progress towards computing them and assessing their impact

Thank you for your attention