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Motivation t channel

—
Vv The High-energy limit is a rich source of P4 D3

experimentally-accessible physical phenomena, e.g.

e total cross section;

* jets at high rapidities; D1 D9
* high gluon densities

s channel

v/ QCD dynamics simplifies, allowing systematic theoretical study
using Wilson lines and evolution equations

v Unique access to all-order properties of scattering amplitudes — complementing
the study of IR divergences and summation of perturbation theory
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The High-Energy Limit of 2 to 2 Partonic Scattering Amplitudes

Abstract

Recently, there has been significant progress in computing scattering
amplitudes in the high-energy limit using rapidity evolution equations. |
describe the state-of-the-art and demonstrate the interplay between
exponentiation of high-energy logarithms and that of infrared singularities.
The focus in this talk is the imaginary part of 2-to-2 partonic amplitudes,
which can be determined by solving the BFKL equation. | demonstrate that
the wavefunction is infrared finite, and that its evolution closes in the soft
approximation. Within this approximation | derive a closed-form solution for
the amplitude in dimensional regularization, which fixes the soft anomalous
dimension to all orders at NLL accuracy.

| then turn to finite contributions of the amplitude and show that the
remaining hard’ contributions can be determined algorithmically, by
iteratively solving the BFKL equation in exactly two dimensions within the
class of single-valued harmonic polylogarithms.

To conclude | present numerical results and analyse the large-order
behaviour of the amplitude.




The High-Energy Limit of 2 to 2 Scattering Amplitudes

Qutline

e Signature and reality properties
e Colour in the high-energy limit
* Gluon Reggization and the odd amplitude (Regge pole)
e Multiple Reggeon exchange (Regge cuts)
e The even amplitude
e BFKL equation in dimensional regularization
e Attempting an iterative solution
e The soft approximation
* The soft anomalous dimensions to all orders
e Two-dimensional solution in the space of SVHPLs
 Numerical results and asymptotic behaviour
e Conclusions



The High-Energy Limit in 2-to-2 Scattering

From the dispersion representation of the amplitude

1 [~ ds 1 [ dil
£ == D.Ga )+~ [ - _ Dy (Gt
M(s, 1) 7'('/0 §—s—10 (5 )_|_7T/0 i+ s+t —10 (1)

with the reality property of the discontinuities, it follows:

Amplitudes of a given signature M ¥ (s, t) = %(/\/l(s, t) £ M(—s —t, t))
are, respectively:

MF) (s, 1) real

M) (s, ¢) imaginary

when expressed in terms of the signature-even logarithm:
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The High-Energy Limit in 2-to-2 Scattering: colour and signature

The high-energy limit is dominated by t-channel exchange, helicity-conserving configuration.

The leading-order amplitude is a t-channel gluon exchange, corresponding to an
antisymmetric octet representation. It has odd signature:

odd under s «—u

i helicity is conserved
ree ree ( ) 28 * P4, Q4 P3, A3
MZ;—WJJ M’g;—m}y gs 4 (Tb)a1a4(Tb)a2a35>\1>\45>\2>\3
tree (+)
M§]_>27 =0 time T
At higher orders (and beyond LL accuracy) it’s useful Do,

to decompose the amplitude using a t-channel

colour basis: %‘W{ %>m( ﬁ::( )@?ﬁ(
M(s,t) = Z el MUl (s, 1)

qq’ qg SCatterlng Odd° M[Sa] ] even: M : M[Ss]
99 scattering; odd: Ml pMIOHTOL - oyen: MU p8) A1127] pq00



The High-Energy Limit in 2-to-2 Scattering: colour and signature

Here, instead of using a particular colour-flow basis,
we use colour operators, acting as generators on a given parton:

t channel

Ts=T;+Ty=-T3-Ty ps —> D3
T, =T{+T3=-T,—-T4
T:=T1+T1Ty=-Ty T3

D1 ﬁ D2

Using the colour conservation: (T1+ Te+ Ts+T4) M =0 s channel
4
One obtains T2 + T2 + T; = » ~ C; = sum over the quadratic Casimirs
1=1
This leaves just two independent quadratic operators: T% is even,

T2_T2 .
T2 s _—u j3 odd

S—U 2

The signature-even amplitude is characterised by
the odd colour operator, acting on the tree amplitude:

1 a
MRLL = im | === + O (a2L) | T2 M)
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The High-energy limit: A Reggeized gluon

Leading logs of (-t/s) are summed through gluon Reggeization:

1 1 S ()

N

t t \ —t1
fully consistent with the dipole formula for IR singularities:
1 —t I)\2 Korchemsky (1993)
Oz(t) = ZT% / vfy\K(OzS()\z, 6)) Korchemskaya and Korchemsky (1996)
0

Del Duca, Duhr, EG, Magnea & White (2011)

For the Real part of the amplitude, this “Regge pole” factorization can be
improved to NLL by introducing impact factors and corrections to the trajectory.
— but beyond this the exchange of multiple Reggeized gluons kick in!

Del Duca, Glover (2001), Del Duca, Falcioni, Magnea, Vernazza (2013)



High-energy limit: exchange of multiple Reggeized gluons

Recent progress: we now know to use JIMWLK/BFKL rapidity evolution to compute
multiple Reggeized gluon contributions to 2-to-2 amplitudes.

Signature odd (Real) part of the amplitude

LL, NLL NNLL |

Caron-Huot, EG, Vernazza - JHEP 06 (2017) 016 — checked against Henn & Mistlberger (2017)

Signature even (Imaginary) amplitude Caron-Huot JHEP 05 (2015) 093

Caron-Huot, EG, Reichel, Vernazza - JHEP 1803 (2018) 098
(and on-going work)

NLL




IR Singularities for amplitudes with
massless legs

Exponentiation of IR singularities In fixed-angle scattering:

; 1 [H dA? ;
M (%,O&S,€> :PeXp — 5/0 VF ()\,Oés()\Q,E)) H <%,Oés>

The Dipole Formula:

1 \2 -
Poip. (A 0) = 77k (0) D m( ) Ti T+ > (o)
Val (i,7) '
Catani (1998)

Lightlike Cusp anomalous dimension Dixon, Mert-Aybat and Sterman (2006)
Becher & Neubert, EG & Magnea (2009)

There are two types of corrections to the dipole formula:

1. Corrections induced by higher Casimir contributions
to the cusp anomalous dimension — starting at 4 loops.
2. Functions of conformally-invariant cross ratios — starting at 3-loops:

(pi - ;) (K - D1)
I' = PDip. + A(pZJkl) Pight = (gz Z]jk)(iy il)




The three-loop correction

to the soft anomalous dimension

@. Almelid, C. Duhr, EG
Phys. Rev. Lett. 117, 172002

AB® (2, 5) =16 (Ef fabefcde{ 3 [ TOTOTSTE (F (1—1/2) — F (1/2))

1<i<g<k<i<n
+ TngTngl (F(1 —2) = F(2))

+ T{T Ty (F (1/(1—2) = F(1—1/(1 - Z)))}

Yy (T T <<5+2<2c3)}

1=1 1<5<k<n
J,k#F#i

P1234 = 22
p1az2 = (1 — 2)(1 — %)

L10..(2) are the single-valued harmonic polylogarithms (SVHPLs) introduced
by Francis Brown in 2009. They are single-valued in the region where z = 2™

The result was recently re-derived it by boostrap!
. Almelid, C. Duhr, EG, A. McLeod, C.D. White, JHEP 09 (2017) 073



The Soft Anomalous dimension in the High-energy limit (NLL)

Results (based on rapidity evolution — see below):

g
T (a,) = ?L T? + I'ni (o, L) + T, (g, L) + .

In the high-energy limit the soft anomalous dimension for 2-to-2 scattering
iIs now known to all orders at NLL accuracy:

Odd Amplitude (Real part)

2 (2) 2 (1)
g (A vy g (A y —t
1“1<\I+L>L:( ( )> -5 LT§+( ( )) > (—g Cilog 15 +2%.(1)>

7I8 T :
1=1

Even Amplitude (Imaginary part)
Caron-Huot, EG, Reichel, Vernazza - JHEP 1803 (2018) 098
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The Soft Anomalous Dimension in the
High-energy limit (beyond NLL)

aS
Results beyond NLL accuracy: T (@s) = —L T + i (@s, L) + T (@, L) + -

Based on rapidity evolution Fl(\T+N)LL — (’)(O/Sl) Caron-Huot, EG, Vernazza - JHEP 06 (2017) 016

— consistent with the Soft Anomalous Dimension 3-loop result.

The absence of ag’Lk for K > 1 inthe Real partand for k > 2
in the Imaginary part, is a non-trivial prediction from rapidity evolution,
which underpins the structure of corrections to the dipole formula.

Based on the Soft Anomalous Dimension 3-loop result we also know:

D = im | 2(Ca — T2 (%) L+ 0| T2,

_ 11 s\°
P = i | S Ca - T () *0@?)] T I = 0(ad)

s

4 T N3LL



State-of-the-art knowledge of the soft
anomalous dimension in the high-energy limit

In the high-energy limit the soft anomalous dimension are be arranged
In towers of logarithms:

g
I (Ozs) — ?L T% + I'nr (OzS,L) + I'nNLL (CYS,L) 4+ ....

4
1 c e S . CO _t t
TP ({pih, A, as(A?)) ~eese, WK(ZOK ) [L T? +in T2, + —=log —] + Z%(as) + 0 (—) :

2 A2 — s
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S I 1 T
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Leading-logarithmic gluon Reggeization in dimensional regularization

Reggeization can be seen to be a consequence of an evolution equation:

At leading logarithmic accuracy, in dimensional regularization:

d (- _ () _
d_LMLL = at) My, L =In(s/(—t))

with a<_p2>:asTg( e ) / (dHe’“ P
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From now on we consider the reduced amplitude  M;;;; = e~ ¢ LMy



The BFKL equation in dimensional regularization —
an iterative solution

The BFKL equation for the even amplitude take the form:

d (XSB()(E)
—Q(p, k) =

HQ(p, k)

The Hamiltonian is non-trivial, and we do not know to directly diagonalise it,
but we can always use an iterative (perturbative) solution:

Substituting: 0 o, ¢ pe-1 )
2.0 =30 (L8) 75 2o
(=1

It follows that the wavefunction is defined by iterating the Hamiltonian:
O (p, k) = HQY) (p, k)

The initial condition: 00) — 1



The BFKL equation in dimensional regularization

The even amplitude is determined by the exchange of a pair of Reggized gluons.

Applying the Hamiltonian is equivalent to adding a rang in the ladder:

QY (p, k) = HO?) (p, k)

A
apply apply
Hamiltonian Hamiltonian
NN

0-loop wavef. 1-loop wavefunction 2-loop wavefunction

v v

Y%
A A A A A A
NI

1-loop amp. 2-loop amplitude 3-loop amplitude
12 2
. . N (_|_,g) o ] BO p /—1 2 tree
At each order the amplitude is My} = —ix TS, /[Dk] eI Wm )(p, k)T?_, Mtree)

Dk| = i 'LLZ ATk S (+) S }OO: as\* o1 4 (+,4)
[ ] - BO Ame—"VE (27"')2_26 MNLL ¢ — ( T ) L MNLL
/=
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The BFKL equation in more detall

k K
<« -«
A
A A
p—k p— kK
< <
NN
LO BFKL Q=2 (p, k')
QU= (p, k)
- (+.0)
Ml(\ILL

Let us look at the dimensionally-regularised BFKL equation in more detail:

QD (p, k) = HQ D (p,k),  H = (204 —T2) H + (Ca — T?) Hy

! !

H; ¥ (p, k) = / DK f(p, k. K) | (0, K') = W (p, )] Integrate Multiply

Hy U(p, k) = J(p, k) ¥(p, k)

T = 5 + [ DK 1ok

k2 (p— k)? p?

Fo b B) = =y * kR T R R el (B) - (5 5) |




BFKL iteration through two loops

PR Pl
S L e = [IDK) ek ) [80.K) - b
AAL AA AR Hi U (p, k) = J(p, k) U(p, k)

\LO ]%rFKLJ ) QW—?)V(p, k') i

\ QD (p, k) /
\ WD J Integrate Multiply

! !

Q" V(p k)= HA "D (pk),  H=(2C1—T?) Hi + (Ca—T7) Hy

00 (p, k) =1
QW (p, k) = (Ca—T7)J (p, k)

QP (p, k) = (Ca — T7)2J%(p, k) + (Ca — 2T7)(Ca — T}) / DKV f (p, k, k') [T (p, k') — T (p, k)]

At higher orders this yields increasingly difficult integrals...



The soft approximation

We observe: the wavefunction, at any loop order, is finite!

Ar AaAr A A (.k) = [IDK) £,k ) [0, K) — W, ),
A A Ho U(p, k) = J(p, k) U(p, k)
p—k p—K
< <
AAY
LO BFKL Q“—?)V(p, k')
Q1) (p,
le\}ﬁﬁ) k‘2 2 2
p—k p
f(p,k,k’)E /2 no T (/2 ) N2 1.2 1\2
k2(k—k)?  (p—K)*(k—Fk)> Kk*(p—F)
Taking the soft limit £ < p: : P’ P 3
) S o (p— k)2E?  E2(p—K)2 ’
, k2 1 1 2(k-F)
Fo bk lhever = g T W R T R R

Indeed, for small k the integral over k" is dominated by k' ~ k

Conclusion: The soft limit closes under BFKL evolution! The soft limit
corresponds to the entire rail, one of the two Reggeons, being soft.




Iterative solution within the soft approximation

k /
< LA
A
Let us solve for the wavefunction order-by-order
within the soft approximation: 0 bk I 0
<« <«
NN
Js(p, k) = 1 1 — i 6 \LO ];rFKLJ \ Q@—?)V(p k) J
T 2¢€ k2 - g ’ )
Q=1 (p, k)
My

QD (p, k) = H, Q2 (p, k)

ﬁS\IJ(p, k)= (2C4 —T) /[Dk’] 2(k - k)

k’2(k _ k’)2

U(p, k) = (p, k)| + (Ca = T) Jo(p, k) U(p, k)
By the action of the Hamiltonian, powers of ¢ = (p?/k*)" transform into such powers:

/[Dk/] k’22((: ;k];)/)z (5/22)”6 — —Q%Z';EE; (Zi)mﬂ)e

(1 —¢€) T'(1+e+ne)l'(1 —e— ne)
['(1 + ne) ['(1 — 2€ — ne) '

with B, (e) = e

Conclusion: the soft wavefunction is a polynomial in § = (p2//-€2)€




All orders solution for the soft approximation

UL
A\78
Solving for the wavefunction
In the soft approximation: 1 p—k p—K |
D S—— D S——
AAY
1 P*\ 2 /1.2 € o neer -2)( ’
Js(p, k) = o 1 — %3 ¢ = (p°/k°) (LO BFKL Q2 (p, k) )
Q=1 (p, k)
MG
Q(¢) =1, B.(6
— : €) = — ni¢ = 63 64 C e
QM (¢) :(CA2€ T,) (1 B 5)) Bp(e) =1 Bo(©) 2n(2 + n)Cze” + 3n(2 + n)ue” +
_ 2 R _
R e FE L N IR TCEL N Y
_ 3 R _

R 204 — T A 204 — T
— ¢ [1 — By (e) Cj— Ttt] [1 — Bs(e€) Cj— T:] }

An all-order ansatz:




The amplitude in the soft approximation

k K/
< <
. . AN
Having solved for the wave function we can
compute the amplitude. A bk bk
<« <«
AN
. o Ix)ngL Q@—ﬁ}%y
Summing over the two soft limits, we get (at N g (2. k)
any given order): QU= (p, k)
M

2

(0 . (BO)K /Dk’ p Q(f—l) L T2 (tree)
MNLL o Zﬂ_(f— 1)' [ ] kg(p_ k)2 (p7 ) s—uM

All divergences can be resumed into a closed form expression:

: —1
() _ T o CA BO(E) % o —1 T2 (tree) 0
Myt T LCa =T (1 R(e) O T%) [exp{ 5 L(Cy—Ty) e u M + O(€”).

31—l +¢)
B_1(e) B ['(1 — 2¢)
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The Soft Anomalous dimension in the
high-energy limit (NLL)
Results (based on rapidity evolution):
I (OAS) = %L T% + I'nL (Oés, L) + I'nNLL (Oés, L) + ...

In the High-Energy Limit the Soft Anomalous Dimension for 2 to 2 scattering
iIs now known to all orders at NLL accuracy:

Odd Amplitude (Real part)

OO\ 2 A2 OO < A L
T = (O‘( )> %LTij (O‘( )>Z %C’ilogﬁnLQ%(l)

7I8 s )
1=1

Even Amplitude (Imaginary part)
Caron-Huot, EG, Reichel, Vernazza - JHEP 1803 (2018) 098

(=) _ . s (o N1 o
[y = im— G (L) 5(T2 - T2)
1 (Cq — T?) = Ca !
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The Soft Anomalous dimension in the
High-energy limit (NLL)

g
I (048) = — L T? + I'nr, (Ozs, L) + I'nNLL (OéS,L) +....

T

(—) _ . O
FNLL = ZW?

o(20) yert-mo

G(x) is an entire function! Its inverse Borel transform

has a finite radius of convergence ———+—+———++——+—++—+—+——+——

Pl(\I_IJ’ﬁ) — 717-(- TS—’U, 1()—2 B X x X y

—.,2 X
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128 y
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The Soft Anomalous dimension in the
High-energy limit (NLL)

. e as oy 1
P = im—> G (L) 5(T? - T2)

s T

G (x) is an entire function! Its inverse Borel transform
has a finite radius of convergence.

Partial sums vs. numerical evaluation

The inverse Borel transform
provides a practical way to
evaluate G(x) numerically.

The calculation is valid
even for aslog(s/(—t)) > 1




The BFKL equation in two dimensions

Taking the two-dimensional limit we can work with a pair of complex—conjugat/ed variables:

k
k=k, +iky, K =k +iki, and p=p, +ip, NI
. k! k! A
kx—l—z.ky: & and x—ij: - p—Fk p—K
Pz + 1Py z—1 Dz T 1Dy w — 1 - -
NN
QY (2, 2) = B2 (2, 2 LO BFKL Q=2 (p, k)
2d ) 2d ’ .
i i : QD (p, k)
Haq)(2,2) = C1Haa,i¥(2, 2) + CaHag, mt (2, 2) N -—
N 1 ~(4,¢)
Integrate Hoq it0(2,2) = py /deK(w,w,z,z) [ (w,w) —Y(z, 2)] MyiL
Multiply A,y (2, 2) = j(z, 2)0(2, 2)
With the kernel:  K(w, @, 2,5 = — ~otws 1 2 Lo !

ww(z —w)(z—w) wz—w) (z—w)(Z—w) w(Z—w)

o 1 z z 1 3 B
J(Z,Z)—§10g (1_Z)2 (1_2)2 —§£0(Z,Z)+£1(Z,Z)

We observe:

- Two symmetries: z+— 1/z and 2z+4+—7Z2

* The 2d wavefunction (at any order) can be expressed in terms of pure Single-Valued
Harmonic Polylogarithms (SVHPLSs) of uniform weight.



Iterating the BFKL Hamiltonian in two dimensions

The 2d wavefunction computed in terms of pure Single-Valued Harmonic Polylogarithms (SVHPLSs)

k k'
<« <«
A
A A
p—k p— K
{—1 _ 2 £—2 _ <« -
di >(z,z) = Hgdﬂéd )(z,z) AAY
LO BFKL Q=2 (p, k')
—1)
(1) 1 Qf )(p7 k)
) = 502 (Lo +2L4) ~ ~~ d
1 1 M
Q%) — 5022 (EO,O +2Lo1 +2L10 + 4£1,1) + 10102 (—50,1 — L1, — 251,1)

1
Q(QZ) = 101022 (—2Lo01—3Lo1,0—TLo11—2L100—TL101—TL110

3
—14L4 11 +2¢3) + ZCS (Lo,0,0+2Lo,01+2Lo1,0+4Lo1,1+2L10,0

1
+4L1 01 +4L110+8L11,1) + EClQC? (Lo01+2Lo10+4Lo1a

+Lyo00+4L101+4L110+8L111)

 An algorithm is set up to iteratively determine the wavefunction to any loop order.

* A closed-form expression is yet unknown.



The full amplitude: combining the soft and 2d calculations

The soft wavefunction generates all IR singularities in the amplitude.

We can therefore
split the full wavefunction into soft and hard:  Q(p, k) = Qnara(p, k) + Qsors(p, k)

' . 2d
and use dim. reg. only for the soft: 0 (2, z) = 1 Qv = 0D (2, 7) - 0P (2, 2)

The full amplitude is therefore recovered by summing two integrals:
2
(4+,NLL) . p (2d) (tree)
Mzg—)z] (-t) =~ [/[Dk] k2(p — ]{) soft pa / Qhard ] MZ]—>’L]

In principle the algorithm can be run to any oder. In practice we stopped at 12 loops.
The first few orders are:

1

(1) . (tree)
M’L]—>Z] _Zﬂ-2 MU—MJ
(2) : 1 C(Z) (tree)
Mzg—)zj MTCQ [862 o 8 M’L]—)Z]
(3) : 2 1 6(2) 29 (tree)
Mzg—ny ’L7T02 [4863 o @ o @C( ) MZ]—)’L]
[ 3 3 3 2
(4) —j C12 o CQC(Q) o 7 3 - 1 - 2 4 02 CAC(4) T2 (tree)
Mijis = 138464 T 10262 28802<( )+ 192020%‘C 3] 128 s—uMijsi;
GO [ O Ck@) [ T0KE)  CGIO®)) 1, a0k ciea 1
Wt | 3840¢€° 1536¢€3 2304 1920 €2 4096 1280 €
356(2)C(3) 2936(5) 253C( ) 1 (tree)
4 _ L 22
T ( 4608 1280 + 020 768C(2)<( ) 920 100 | TouMijns;

To this order (five loops) all integrals have also been computed directly in dim. reg.



The BFKL equation in two dimensions - radius of convergence

Considering the exchange of specific colour representations
in the t-channel, we get the following numerical coefficients:

ML or = _Tm (0.8225952 — 11.622° + 1.0372* — 86.762° + 142.82° — 880.3z"+
+ 2555.2° — 10536.2° + 35577.2' — 133005.2'" + 467988.;1:12)T§_u M (= tree)
—T

MEEr singlet = — ( — 0.616922 — 6.5362° — 0.83712* — 8.4832° — 1.52925 — 12.6727+

+1.6092° — 20.622° + 16.48z'% — 35.98z"'" + 46.07x12)T§_uM<—>tree>

Applying Padé Approximants on these partial sums we extract the
position of the nearest singularity:

singularity at Lag/m=x (Ca —T?asL/m=(Cy — T?)x
Representation 27 singlet 27 singlet
soft amplitude —0.2 0.333 1 1
hard amplitude ~ —0.19 0.333 ~ 0.95 1
full amplitude —0.237 0.666 1.185 —2
The soft amplitude: : _ (e ) B (1_p G
NLL, soft — LCQ B()(E) —1 02
- Confirms Padé analysis ) e D= Can) I3 (1+3) | Lp e
» Singularity at .z =1 cancels PA+Cor) -8 (1 _cyry ) |7

in the full amplitude C1 =204 -T2 Cy=Cy4—T



Conclusions

Rapidity evolution equations can be efficiently used to compute partonic

scattering amplitudes to high loop orders.

The high-energy limit and infrared factorization are complementary avenues

in studying these amplitudes.

Number-theory findings:

- Soft amplitude can be resummed using Gamma functions.

- Hard amplitude is expressed in terms of SV Zeta values (e.g. no even
Zetas; first multi-Zeta occurs at 11 loops). It cannot be resummed into
Gamma functions.

Large order behaviour aspects:

- The soft anomalous dimension (at NLL in the Regge limit) is an entire
function. Its calculation extends to «;log(s/(—t)) > 1

- The finite part of the NLL amplitude has a finite radius of convergence,

with asymptotically sign-oscillating coefficients.



