Higher order corrections to spin correlations in top quark pair production at the LHC

Arnd Behring, Michal Czakon, Alexander Mitov, Andrew S. Papanastasiou, Rene Poncelet

Institut für Theoretische Teilchenphysik (TTP)
Karlsruher Institut für Technologie,
Institut für Theoretische Teilchenphysik und Kosmologie
RWTH Aachen

May 16th, 2019 – Theorieseminar – Zeuthen
Outline

Introduction

Technical aspects

Results

Conclusions
The top quark

- Heaviest known elementary particle
- Discovered in 1995 at the Tevatron
- Abundantly produced at the LHC
- Very active field of research (theory & experiment)
- Interesting in its own right, but also as a probe of BSM physics
- Both aspects require precise understanding of its properties (mass, width, spin, couplings, ...)

[ATLлас+CMS Preliminary m_{top} summary, \(\sqrt{s} = 7-13 \text{ TeV} \), November 2018

\[m_{top} \text{ [GeV]} \]

\[\begin{array}{cccc}
\text{7 TeV} & 165 & 170 & 175 \\
\text{ATLAS, l+jets} & 172.2 \pm 1.7 & 173.3 \pm 1.7 & 174.4 \pm 1.7 \\
\text{CMS, dilepton} & 172.4 \pm 0.9 & 173.4 \pm 1.0 & 174.5 \pm 1.1 \\
\text{CMS, all jets} & 170.8 \pm 1.6 & 171.8 \pm 1.6 & 172.8 \pm 1.6 \\
\text{CMS, single top} & 168.8 \pm 1.6 & 170.8 \pm 1.6 & 172.8 \pm 1.6 \\
\text{CMS, l+jets} & 173.3 \pm 1.7 & 174.4 \pm 1.7 & 175.5 \pm 1.7 \\
\text{CMS, dilepton} & 172.4 \pm 0.9 & 173.4 \pm 1.0 & 174.5 \pm 1.1 \\
\text{CMS, all jets} & 170.8 \pm 1.6 & 171.8 \pm 1.6 & 172.8 \pm 1.6 \\
\text{CMS, single top} & 168.8 \pm 1.6 & 170.8 \pm 1.6 & 172.8 \pm 1.6 \\
\text{CMS, l+jets} & 173.3 \pm 1.7 & 174.4 \pm 1.7 & 175.5 \pm 1.7 \\
\text{CMS, dilepton} & 172.4 \pm 0.9 & 173.4 \pm 1.0 & 174.5 \pm 1.1 \\
\text{CMS, all jets} & 170.8 \pm 1.6 & 171.8 \pm 1.6 & 172.8 \pm 1.6 \\
\end{array} \]

\[\text{13 TeV} & 180 & 185 \\
\text{ATLAS, l+jets} & 173.3 \pm 1.7 & 174.4 \pm 1.7 & 175.5 \pm 1.7 \\
\text{CMS, dilepton} & 172.4 \pm 0.9 & 173.4 \pm 1.0 & 174.5 \pm 1.1 \\
\text{CMS, all jets} & 170.8 \pm 1.6 & 171.8 \pm 1.6 & 172.8 \pm 1.6 \\
\text{CMS, single top} & 168.8 \pm 1.6 & 170.8 \pm 1.6 & 172.8 \pm 1.6 \\
\text{CMS, l+jets} & 173.3 \pm 1.7 & 174.4 \pm 1.7 & 175.5 \pm 1.7 \\
\text{CMS, dilepton} & 172.4 \pm 0.9 & 173.4 \pm 1.0 & 174.5 \pm 1.1 \\
\text{CMS, all jets} & 170.8 \pm 1.6 & 171.8 \pm 1.6 & 172.8 \pm 1.6 \\
\text{CMS, single top} & 168.8 \pm 1.6 & 170.8 \pm 1.6 & 172.8 \pm 1.6 \\
\text{CMS, l+jets} & 173.3 \pm 1.7 & 174.4 \pm 1.7 & 175.5 \pm 1.7 \\
\text{CMS, dilepton} & 172.4 \pm 0.9 & 173.4 \pm 1.0 & 174.5 \pm 1.1 \\
\text{CMS, all jets} & 170.8 \pm 1.6 & 171.8 \pm 1.6 & 172.8 \pm 1.6 \\
\end{array} \]

\[\text{LHCtopWG '18] CC-BY 4.0} \]
Top pair production

- $t\bar{t}$ production at hadron colliders: mostly QCD
 - Tevatron: $q\bar{q}$ dominates
 - LHC: gg dominates

- Known to NNLO QCD, NLO EW and with NNLL resummation for stable top quarks

- SM predictions for differential distribution agree well with data
Top quarks decay almost exclusively via $t \rightarrow Wb$, i.e. $pp \rightarrow t\bar{t} \rightarrow W^+W^-b\bar{b}$

- Classify reactions according to W decays
 - all jets: $t\bar{t} \rightarrow b\bar{b} + 4j$
 - lepton+jets: $t\bar{t} \rightarrow bb + \ell\nu + 2j$
 - dilepton: $t\bar{t} \rightarrow bb + \ell\nu + \ell'\nu'$

- This talk: dilepton channel with $e^\pm\mu^\mp$
 - Cleanest signature, but also smallest rate
 - Incomplete kinematic information due to invisible neutrinos
 - e^+e^- and $\mu^+\mu^-$ have larger Drell-Yan backgrounds
Top quark spin

Spin properties of top quarks

- Top quark is a fermion \Rightarrow Couplings are spin-dependent
- Direct measurement of top quark spin not possible \Rightarrow measurement through decay products
- Unique situation: Top quarks decay before decorrelation

Spin-dependence of top pair production

- Individual top quarks from $pp \rightarrow t\bar{t}$ are not polarised
- But: Spin correlation between t and \bar{t}
- Can be measured in differential distributions
Spin correlations: Strategies and observables

Dilepton channel is very well suited for measuring spin correlations:

- Very clean signal
- Lepton momenta can be measured well

Direct measurement

- Decompose cross section into basis in spin space
- Use lepton momenta to probe coefficients

\[
\frac{1}{\sigma} \frac{d\sigma}{d \cos \theta_1^i \, d \cos \theta_2^i} = \frac{1}{4} \left(1 + B_1^i \cos \theta_1^i + B_2^i \cos \theta_2^i - C_{ij} \cos \theta_1^i \cos \theta_2^j \right)
\]

where \(\theta_{1(2)}^{i(j)} \) are lepton angles of \(t(\bar{t}) \) wrt. axis \(i(j) \) in \(t(\bar{t}) \) rest frames

- Measure differential distributions in angles and extract coefficients
- Pro: Full spin information
- Contra: Requires reconstruction of \(t \) & \(\bar{t} \) rest frames
- Has actually been pursued, e.g., by CMS [CMS-PAS-TOP-18-006]
Spin correlations: Strategies and observables

Dilepton channel is very well suited for measuring spin correlations:

- Very clean signal
- Lepton momenta can be measured well

Indirect measurement

- Measure differential distributions of lepton geometry in *lab frame*
 - Lepton azimuthal opening angle $\Delta \phi(\ell, \bar{\ell})$
 - Lepton rapidity difference $|\Delta \eta(\ell, \bar{\ell})|$

- Boost of top quarks enhances anti-parallel leptons
- Spin correlations counteract and enhance parallel leptons
Spin correlations: Experimental situation

- Compare measurement to predictions with and without spin correlations
- Bin-wise linear fit
 \[x_i = f_{SM} x_{\text{spin},i} + (1 - f_{SM}) x_{\text{nospin},i} \]
- SM expectation: \(f_{SM} = 1 \)
- At ICHEP2018 ATLAS reported measurement of \(\Delta \phi(\ell, \bar{\ell}) \) distributions and
 \[f_{SM} = 1.25 \pm 0.08 \]
 \(\Rightarrow \) 3.2\(\sigma \) deviation from SM

Largest deviation from the SM in the top sector at that time

Question: Could this be due to missing NNLO corrections?
Ingredients of a NNLO fixed-order calculation

Matrix elements

- 2-loop
- 1-loop + 1 real
- tree-level + 2 real

Collinear factorisation

UV renormalisation

PDFs & parameters

Scheme to deal with IR divergences
Narrow width approximation

\[pp \rightarrow t\bar{t} \rightarrow b\bar{b}\ell^+\ell'^-\nu\bar{\nu}' \] at NNLO

- In general needs 2-loop 8-point amplitudes \(\Rightarrow \) too difficult
- However: \(\Gamma_t \ll m_t \Rightarrow \) Use narrow width approximation

Narrow width approximation (NWA)

\[\frac{1}{(p^2 - m_t^2)^2 + m_t^2 \Gamma_t^2} \xrightarrow{\Gamma_t/m_t \to 0} \frac{\pi \delta(p^2 - m_t^2)}{m_t \Gamma_t} \]

- On-shell tops \(\Rightarrow \) Revert spin sum for propagator numerators
 \[p + m_t = \sum_\lambda u_\lambda(p) \bar{u}_\lambda(p) \]
- Factorizes production and decay
- Requires polarised matrix elements for production and decay
Matrix elements

$pp \rightarrow t\bar{t}$ with polarised top quarks

[Chen, Czakon, Poncelet '17]

- Projection onto spin- and colour structures
- IBP reduction onto master integrals
 - 422 master integrals
 - Involve also elliptic structures
 - Not yet completely known analytically
- Numerical calculation of master integrals
 - Solve differential equations numerically from boundary conditions in high-energy limit
 - New: Partially canonicalised DEQ system \rightarrow CANONICA [Meyer '18]
Infrared divergences

- Real and virtual corrections contain IR divergences
- IR safe observables: Divergences cancel between real and virtual contributions
- Dimensional regularisation \((d = 4 - 2\epsilon)\):
 Real and virtual contain poles in \(1/\epsilon\)
- Arise from integration over massless degrees of freedom
 \[
 \frac{1}{(p + k)^2} = \frac{1}{2p \cdot k} = \frac{1}{2E_p E_k (1 - \cos \theta)}
 \]
 - Requires performing the loop and phase space integrals first
 - Phase space integrals are usually done numerically
 - Can’t naively expand integrand in \(\epsilon\) before integration
- Devise scheme to extract and cancel divergences
 - Slicing methods
 - Subtraction methods
Sector-improved residue subtraction scheme

Problem: Many singular limits; overlapping singularities

Idea:

- Subdivide phase space into sectors (similar to FKS scheme)
- Use sector decomposition to extract the singularities
 - Parametrise phasespace such that soft and collinear singularities are mapped to integration boundary of just one variable
 - Use plus distributions to generate subtraction terms
 - Express subtraction terms through QCD factorisation formulae
- Regulated terms can be expanded in ϵ at integrand level
- Integrate coefficients of truncated Laurent series numerically
Sector-improved residue subtraction scheme

Problem: Many singular limits; overlapping singularities

Idea:

• Subdivide phase space into sectors (similar to FKS scheme)

\[1 = \sum_{i,j} \left[\sum_{k} S_{ij,k} + \sum_{k,l} S_{i,k;j,l} \right] \]

• Use sector decomposition to extract the singularities
 • Parametrise phasespace such that soft and collinear singularities are mapped to integration boundary of just one variable
 • Use plus distributions to generate subtraction terms
 • Express subtraction terms through QCD factorisation formulae

• Regulated terms can be expanded in \(\epsilon \) at integrand level
• Integrate coefficients of truncated Laurent series numerically
Sector-improved residue subtraction scheme

Problem: Many singular limits; overlapping singularities

Idea:
- Subdivide phase space into sectors (similar to FKS scheme)
- Use sector decomposition to extract the singularities
 - Parametrise phasespace such that soft and collinear singularities are mapped to integration boundary of just one variable
 \[
 \hat{\eta}_1 = \eta_1 \quad \hat{\eta}_2 = \eta_1 \left(1 - \frac{\eta_2}{2}\right)
 \]
- Use plus distributions to generate subtraction terms
- Express subtraction terms through QCD factorisation formulae
- Regulated terms can be expanded in ϵ at integrand level
- Integrate coefficients of truncated Laurent series numerically
Sector-improved residue subtraction scheme

Problem: Many singular limits; overlapping singularities

Idea:

- Subdivide phase space into sectors (similar to FKS scheme)
- Use sector decomposition to extract the singularities
 - Parametrise phasespace such that soft and collinear singularities are mapped to integration boundary of just one variable
 - Use plus distributions to generate subtraction terms

\[
\int_0^1 dx \frac{f(x)}{x^{1+b\epsilon}} = -\frac{f(0)}{b\epsilon} + \int_0^1 dx \frac{f(x) - f(0)}{x^{1+b\epsilon}}
\]

- Express subtraction terms through QCD factorisation formulae
- Regulated terms can be expanded in ϵ at integrand level
- Integrate coefficients of truncated Laurent series numerically
Sector-improved residue subtraction scheme

Problem: Many singular limits; overlapping singularities

Idea:

• Subdivide phase space into sectors (similar to FKS scheme)
• Use sector decomposition to extract the singularities
 • Parametrise phasespace such that soft and collinear singularities are mapped to integration boundary of just one variable
 • Use plus distributions to generate subtraction terms
 • Express subtraction terms through QCD factorisation formulae

\[
\langle M_{n+1}^{(0)} | M_{n+1}^{(0)} \rangle \rightarrow 0 \approx -g_s^2 \sum_{i,j} S_{ij}(q) \langle M_n^{(0)} | T_i \cdot T_j | M_n^{(0)} \rangle
\]

• Regulated terms can be expanded in \(\epsilon \) at integrand level
• Integrate coefficients of truncated Laurent series numerically
Sector-improved residue subtraction: New developments

- New phasespace construction
 - Minimises the number of resolved kinematics for subtraction terms
 - Reduces the problem of mis-binning
 - Improved stability of invariant mass distribution
- Rederivation of the four-dimensional formulation of the scheme
 - Treat resolved momenta and spins as four-dimensional
 - Non-trivial since poles are calculated numerically
 - Crucial for high-multiplicity final states
 - New phasespace construction works in lab frame
 ⇒ rederivation of four-dimensional formulation necessary
 - Allows to check numerical pole cancellation for individual phase space points
Subtraction for top pair production and decay

- Extended implementation of subtraction scheme to include decays
- NNLO \(\times\) LO and LO \(\times\) NNLO done with sector-improved residue subtraction
- NLO \(\times\) NLO used Catani-Seymour for NLO decays
Setup of the calculation

ATLAS published data for two selection cuts, which we try to reproduce: Fiducial and inclusive

Fiducial setup

- Exactly 2 opposite sign leptons with $p_T > 27\,(25)$ GeV for the harder (softer) lepton and $|\eta| < 2.5$
- At least 2 jets with $p_T > 25$ GeV and $|\eta| < 2.5$ at least one of them b-flavoured
- Jets defined with anti-k_T algorithm with $R = 0.4$

Inclusive setup

- No selection cuts
- ATLAS extrapolates via Monte Carlo simulation
Agreement between data and theory improves at NNLO

NNLO corrections are larger in fiducial than in inclusive phase space

Inclusive: NNLO predictions still somewhat disagree with data

⇒ Issue with extrapolation due to NLO Monte Carlo?
Differential distributions for $\Delta \phi_{\ell\bar{\ell}}$ at NNLO

- Agreement between data and theory improves at NNLO
- NNLO corrections are larger in fiducial than in inclusive phasespace
- Inclusive: NNLO predictions still somewhat disagree with data
 ⇒ Issue with extrapolation due to NLO Monte Carlo?
Differential distributions for $\Delta \eta_{\ell\bar{\ell}}$ at NNLO

- NNLO corrections improve agreement with data
- Slightly larger corrections in inclusive case
- Overall good agreement with available data
Differential distributions for $\Delta\eta_{\ell\bar{\ell}}$ at NNLO

- NNLO corrections improve agreement with data
- Slightly larger corrections in inclusive case
- Overall good agreement with available data
Anatomy of the higher-order $\Delta \phi_{\ell \bar{\ell}}$ corrections

Size of the NNLO correction

- **Fiducial:** For $\mu_{F,R} = H_T/4$ NNLO corrections are at most $\sim 5%$
 - Consistent with NLO scale uncertainty
 - NLO/LO K-factor up to $\sim 15%$
- **Inclusive:** Smaller K-factor and less scale variation
- Consistent with good perturbative convergence
- NNLO corrections are important
 - Reduce scale uncertainty by more than factor 2
 - Modify shape of distribution in same direction as spin correlations
 - Improve agreement with data
Anatomy of the higher-order $\Delta \phi_{\ell\bar{\ell}}$ corrections

Scale choices

- We tried three scale choices: $\mu_{F,R} = H_T/4$, $m_t/2$ and m_t
 with $H_T = \sqrt{m_t^2 + p_{T,t}^2} + \sqrt{m_t^2 + p_{T,\bar{t}}^2}$
- $H_T/4$ and $m_t/2$ show similar behaviour
- m_t shows slower perturbative convergence
 \rightarrow non-negligible corrections beyond NNLO?
Anatomy of the higher-order $\Delta \phi_{\ell\bar{\ell}}$ corrections

Quantifying spin correlations

- Compare correlated and uncorrelated results at each order
- Correlations are an important effect (up to $\sim 25\%$)
- Change little at higher orders
Anatomy of the higher-order $\Delta \phi_{\ell\bar{\ell}}$ corrections

Quantifying spin correlations

- Disentangle kinematics and spin effects
- Higher order corrections are mostly a kinematic effect
Conclusions

Summary

• Calculated NNLO QCD corrections to top pair production with decays at the LHC in the NWA
• Allows for consistent treatment of production and decay
• Fiducial cross sections become available at NNLO
• Reduced scale uncertainty
• NNLO corrections to $\Delta \phi(\ell, \bar{\ell})$ and $\Delta \eta(\ell, \bar{\ell})$ distributions improve agreement with data from ATLAS collaboration

Outlook

• m_t dependence of differential distributions
 \Rightarrow extraction of m_t from fiducial cross sections
• Predictions for lepton charge asymmetry