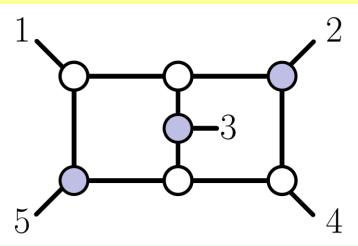
The Two-Loop Five-Point Amplitude in N=4 Super-Yang-Mills Theory and N=8 Supergravity



Lance Dixon (SLAC) S. Abreu, LD, E. Herrmann, B. Page and M. Zeng 1812.08941, 1901.nnnn DESY Zeuthen, 24 January 2019

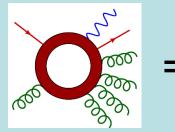
And Experiment at LHC. CERN Data resided Mon Oct 25 05 47 22 2010 CDT Run **Scattering Amplitudes** Ortet/Carossing: 136152948 / 1594

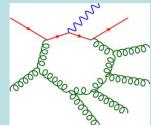
 Where QFT most dramatically meets experiment, especially at high-energy colliders like LHC

 Experimental precision approaching few percent demands theory to next-to-next-to-leading order (NNLO) in QCD for complex processes

QCD Loop Amplitude Bottleneck

• NLO: Have efficient, unitarity-based methods for computing one-loop amplitudes at high multiplicity, e.g. the 2 \rightarrow 6 process pp $\rightarrow W + 5$ jets

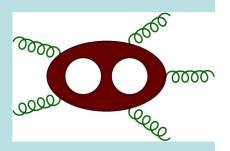




+ 256,264 more

Bern, LD, et al., 1304.1253

 NNLO: Two-loop QCD amplitudes unknown beyond 2 → 2 processes, except for one very recent 2 → 3 case (gg → ggg) in large N_c (planar) limit



Badger et al., 1712.02229; Abreu et al., 1712.03946, 1812.04586

Why is two loops so hard?

- Primarily because two-loop integrals are intricate, transcendental, multi-variate functions
- In contrast, at one loop all integrals are reducible to scalar box integrals + simpler
- \rightarrow combinations of dilogarithms

$$Li_2(x) = -\int_0^x \frac{dt}{t} \ln(1-t)$$

+ logarithms and rational terms

't Hooft, Veltman (1974)

A "toy" model

- Today, explore some of the complexity of multi-loop, multi-leg QCD amplitudes in a controlled setting: QCD's maximally supersymmetric cousin, N=4 super-Yang-Mills theory (SYM), gauge group SU(N_c), but NOT in the large N_c (planar) limit.
- First two-loop amplitude for 2 → 3 processes with full color dependence – albeit still at the level of the symbol
- We expect that the same space of functions we encounter here will also be relevant for two-loop 5-point amplitudes in full-color QCD.

$$\mathcal{A}_{5}^{(2)} = \left[\frac{N_{c}g^{2}e^{-\epsilon\gamma_{E}}}{(4\pi)^{2-\epsilon}}\right]^{2} \left\{\sum_{S_{5}/D_{5}} (\text{Tr}[12345] - \text{Tr}[54321])(A^{\text{ST}}[12345] + \frac{A^{\text{SLST}}[12345]}{N_{c}^{2}} + \sum_{S_{5}/(S_{3} \times Z_{2})} \frac{\text{Tr}[15](\text{Tr}[234] - \text{Tr}[432])}{N_{c}} A^{\text{DT}}[15|234]\right\}$$

$\mathsf{Tr}[\mathbf{12345}] \equiv \mathsf{Tr}[\mathsf{T}^{a_1}\mathsf{T}^{a_2}\mathsf{T}^{a_3}\mathsf{T}^{a_4}\mathsf{T}^{a_5}]$

- Leading color coefficient AST obeys ABDK/BDS ansatz, Anastasiou, Bern, LD, Kosower, hep-th/0309040, Bern, LD, Smirnov, hep-th/0505205,
- Verified numerically long ago Cachazo, Spradlin, Volovich, hep-th/0602228; Bern, Czakon, Kosower, Roiban, Smirnov, hep-th/0604074
- Given by exponential of one-loop amplitude (need O(²) terms) Bern, LD, Dunbar, Kosower, hep-th/9611127

L. Dixon 2 loop 5 point N=4 SYM

2

DESY Zeuthen - 2019.01.24

Color trace relations

Kleiss, Kuijf (1989); Bern, Kosower, (1991); Del Duca, LD, Maltoni, hep-ph/9910563; Edison, Naculich, 1111.3821

- Tree-level: A_n[1,...,n,...] given in terms of permutations of (n-2)! independent A_n[1,...,n] by Kleiss-Kuijf relations
- One loop: subleading-color A^{DT} completely determined by permutations of AST
- Both follow from applying Jacobi relations to all-adjoint color structures.
- Two loops: Same method → Edison-Naculich relations, which we solve as:

$$A^{\text{SLST}}[17345] = 5A^{\text{ST}}[13254] + \sum_{\text{cyclic}} \left[A^{\text{ST}}[12435] - 2A^{\text{ST}}[12453] + \frac{1}{2} \left(A^{\text{DT}}[12|345] + A^{\text{DT}}[13|245] \right) \right]$$

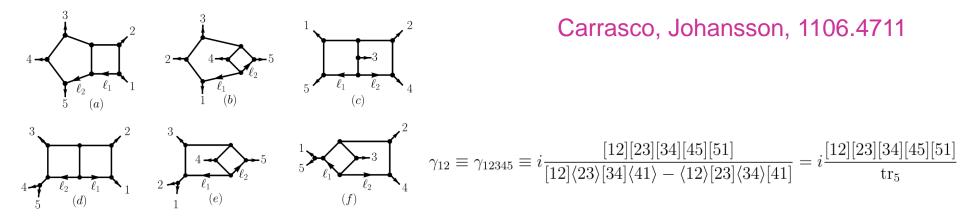
Integrands

- First obtained Carrasco, Johansson, 1106.4711
 in a "BCJ" form Bern, Carrasco, Johansson, 1004.0476
 which simultaneously gives the integrand for N=8
 supergravity as a "square" of the N=4 SYM integrand.
 This integrand is manifestly *D*-dimensional
- Integrand also given in a four-dimensional form Bern, Herrmann, Litsey, Stankowicz, Trnka, 1512.08591 which exposes the expected rational prefactors for pure transcendental functions g^{DT} as 6 "KK" independent Parke-Taylor factors,

$$\mathsf{PT}[\sigma_1 \sigma_2 \sigma_3 \sigma_4 \sigma_5] \equiv \frac{\delta^{\circ}(Q)}{\langle \sigma_1 \sigma_2 \rangle \langle \sigma_2 \sigma_3 \rangle \langle \sigma_3 \sigma_4 \rangle \langle \sigma_4 \sigma_5 \rangle \langle \sigma_5 \sigma_1 \rangle}$$

$$A^{\mathsf{DT}}[15|234] = \sum_{\sigma(234)\in S_3} \mathsf{PT}[1\sigma_2\sigma_3\sigma_45] g^{\mathsf{DT}}_{\sigma_2\sigma_3\sigma_4} - \mathsf{pure}$$

BCJ Integrand



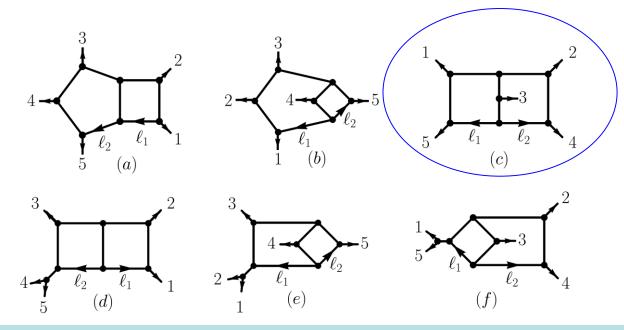
Linear in loop momentum for N=4 SYM, quadratic for N=8 SUBRA

$$\begin{split} N^{(a,b)} &= \frac{1}{4} \Big(\gamma_{12} \big(2s_{45} - s_{12} + \tau_{2\ell_1} - \tau_{1\ell_1} \big) + \gamma_{23} \big(s_{45} + 2s_{12} - \tau_{2\ell_1} + \tau_{3\ell_1} \big) \\ &\quad + 2\gamma_{45} \big(\tau_{5\ell_1} - \tau_{4\ell_1} \big) + \gamma_{13} \big(s_{12} + s_{45} - \tau_{1\ell_1} + \tau_{3\ell_1} \big) \Big) , \\ N^{(c)} &= \frac{1}{4} \Big(\gamma_{15} \big(\tau_{5\ell_1} - \tau_{1\ell_1} \big) + \gamma_{25} \big(s_{12} - \tau_{2\ell_1} + \tau_{5\ell_1} \big) + \gamma_{12} \big(s_{34} + \tau_{2\ell_1} - \tau_{1\ell_1} + 2 \big[s_{15} + \tau_{1\ell_2} - \tau_{2\ell_2} \big] \big) \\ &\quad + \gamma_{45} \big(\tau_{4\ell_2} - \tau_{5\ell_2} \big) - \gamma_{35} \big(s_{34} - \tau_{3\ell_2} + \tau_{5\ell_2} \big) + \gamma_{34} \big(s_{12} + \tau_{3\ell_2} - \tau_{4\ell_2} + 2 \big[s_{45} + \tau_{4\ell_1} - \tau_{3\ell_1} \big] \big) \Big) , \\ N^{(d-f)} &= \gamma_{12} s_{45} - \frac{1}{4} \Big(2\gamma_{12} + \gamma_{13} - \gamma_{23} \Big) s_{12} , \qquad s_{ij} = (k_i + k_j)^2 = 2k_i \cdot k_j \,, \quad \tau_{i\ell_j} = 2k_i \cdot \ell_j \end{split}$$

L. Dixon 2 loop 5 point N=4 SYM

DESY Zeuthen - 2019.01.24

Integrals



non-planar double pentagon the crux

Most topologies were known previously, e.g. planar (a) Papadopoulous, Tommasini, Wever, 1511.09404; Gehrmann, Henn, Lo Presti, 1511.05409, 1807.09812; hexabox (b) Chicherin, Henn, Mitev, 1712.09610 planar (d) Gehrmann, Remiddi, hep-ph/000827 nonplanar (e,f) Gehrmann, Remiddi, hep-ph/0101124

Integrals (cont.)

- Use IBP reduction method of Abreu, Page, Zeng, 1807.11522 building off earlier work based on generalized unitarity and computational algebraic geometry Gluza, Kajda, Kosower, 1009.0472; Ita, 1510.05626; Larsen, Zhang, 1511.01071; Abreu, Febres Cordero, Ita, Page, Zeng, 1712.03946
- Reduction performed numerically, at numerous rational phase space points, over a prime field to avoid intermediate expression swell
- Quite sufficient for full analytic reconstruction when structure of the rational function prefactors is so heavily constrained, as in N=4 SYM
- Even works for planar QCD Abreu, Dormans, Febres Cordero, Ita, Page, 1812.04586
- Subsequently, our results were reproduced by Chicherin, Gehrmann, Henn, Wasser, Zhang, Zoia, 1812.11057, 1812.11160

Iterated integrals

Chen; Goncharov; Brown

- Generalized polylogarithms, or n-fold iterated integrals, or weight n pure transcendental functions f.
- Define by derivatives: $d\,f = \sum_{s_k \in \mathcal{S}} f^{s_k}\,d\ln s_k$
- S = finite set of rational expressions, "symbol letters", and

 $f^{s_k} \equiv \{n-1,1\}$ component of a "coproduct" Δ f^{s_k} are also pure functions, weight n-1

- Iterate: $df^{s_k} \Rightarrow f^{s_j, s_k} \equiv \{n-2, 1, 1\}$ component
- Symbol = {1,1,...,1} component (maximally iterated)
 Goncharov, Spradlin, Vergu, Volovich, 1006.5703

Example: Harmonic Polylogarithms of one variable (HPLs {0,1})

Remiddi, Vermaseren, hep-ph/9905237

- Generalization of classical polylogs: $Li_n(u) = \int_0^u \frac{dt}{t} Li_{n-1}(t), \quad Li_1(t) = -\ln(1-t)$
- Define HPLs by iterated integration:

$$H_{0,\vec{w}}(u) = \int_0^u \frac{dt}{t} H_{\vec{w}}(t), \quad H_{1,\vec{w}}(u) = \int_0^u \frac{dt}{1-t} H_{\vec{w}}(t)$$

• Or by derivatives

 $dH_{0,\vec{w}}(u) = H_{\vec{w}}(u) \ d\ln u \quad dH_{1,\vec{w}}(u) = -H_{\vec{w}}(u)d\ln(1-u)$

- Just two symbol letters: $S = \{u, 1 u\}$
- Weight n =length of binary string \vec{w}

$$\mathcal{S}[\mathsf{Li}_n(u)] = -(1-u) \otimes \underbrace{u \otimes u \otimes \cdots \otimes u}_{n-1}$$

Symbol alphabet for planar 5-point

Gehrmann, Henn, Lo Presti, 1511.05409

 $S = \{s_{i,i+1}, s_{i-1,i} + s_{i,i+1}, s_{i,i+1} - s_{i+2,i+3}, s_{i+3,i+4} - s_{i,i+1} - s_{i+1,i+2}, o_i, \Delta\}$

$$s_{i,i+1} \equiv (k_i + k_{i+1})^2 \qquad o_1 = \frac{[12]\langle 23\rangle[34]\langle 41\rangle}{\langle 12\rangle[23]\langle 34\rangle[41]}$$

 $\Delta = \operatorname{tr}[\gamma_5 1234] = [12]\langle 23\rangle[34]\langle 41\rangle - \langle 12\rangle[23]\langle 34\rangle[41]$

Closed under dihedral permutations, D_{5} , subset of S_5

 O_i are odd under parity, $\langle ab \rangle \Leftrightarrow [ab]$

- Most letters seen already in one-mass four-point integrals
- But not O_i or Δ

L. Dixon 2 loop 5 point N=4 SYM

 $5 \times 5 + 1 = 26$ letters

Symbol alphabet for nonplanar 5-point

Chicherin, Henn, Mitev, 1712.09610

$$\mathcal{S} = \{s_{i,j}, s_{i,j} - s_{k,l}, o_i, \Delta\}$$

 $o_{1} = \frac{[12]\langle 23\rangle[34]\langle 41\rangle}{\langle 12\rangle[23]\langle 34\rangle[41]}$

 $\Delta = tr[\gamma_5 1234] = [12]\langle 23\rangle[34]\langle 41\rangle - \langle 12\rangle[23]\langle 34\rangle[41]$

- Obtained by applying full S₅ to planar alphabet; only generates 5 new letters
- However, function space is much bigger because branch-cut condition now allows 10 first entries, $s_{i,j} \equiv (k_i + k_j)^2$
- In planar case there were only 5,

10 + 15 + 5 + 1 = 31 letters

DESY Zeuthen - 2019.01.24

 $s_{i,i+1} \equiv (k_i + k_{i+1})^2$

Nonplanar 5-point function space

Chicherin, Henn, Mitev, 1712.09610

- Also empirical constraint on first 2 entries of the symbol.
- Imposing this and integrability, dimension of even | odd part of function space is:

Weight	1	2	3	4
# of integrable symbols for $\mathbb{A}_{\mathcal{P}}$	5 0	25 0	125 1	635 16
after 2nd entry condition	5 0	20 0	80 1	335 11
# of integrable symbols for \mathbb{A}_{NP}	10 0	100 9	1000 180	9946 2730
after 2nd entry condition	10 0	70 9	505 111	3736 1191

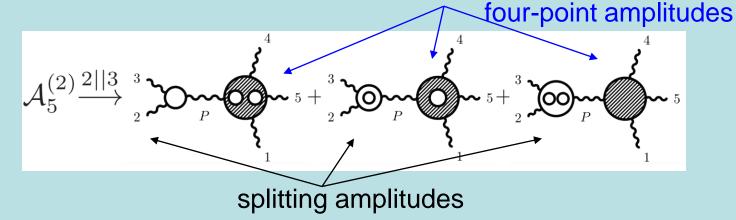
• The SYM and SUGRA amplitudes both lie in this space

Numerical reduction and assembly

- Given decomposition into 6 PT factors, suffices to perform reduction to master integrals at 6 numerical kinematic points
- Use mod *p* arithmetic with *p* a 10-digit prime; reconstruct rational numbers using Wang's algorithm Wang (1981); von Manteuffel, Schabinger, 1406.4513; Peraro, 1608.01902
- Inserting symbols of all master integrals, we obtain symbols of all the pure functions
- Basic result is for g_{234}^{DT} , but also recover M^{BDS} , where $A^{ST}[12345] = PT[12345] M^{BDS}$
- Also computed A^{SLST} [12345], so color algebra could be checked via Edison-Naculich relations

Validation

- Five-point gauge theory amplitudes have a stringent set of limiting behavior as a gluon becomes soft or two partons become collinear.
- E.g. as legs 2 and 3 become collinear:



 We checked the collinear limit, as well as the soft limit, and the IR poles in *ε* which are predicted by Catani, hep-ph/9802439; Bern, LD, Kosower, hep-ph/0404293

Structure

- Symbols are large: M^{BDS} (planar) has "only" 2,365 terms, while g^{DT}₂₃₄ (nonplanar) has 24,653 terms.
- How many functions are there in the full amplitude?
- Take linear span of all 120 permutations of g_{234}^{DT} and M^{BDS}
- At order e⁰, there are 52 weight 4 functions.
 Naively there should be 72 = 12 (planar) + 6 · 10 (nonplanar)
- So there are 20 relations among the permutations, e.g. g[12345] + g[12453] + g[12534] + g[21345] + g[21453] + g[21534]-g[12435] - g[12543] - g[12354] - g[21435] - g[21543] - g[21354] = 0
- The 20 relations are also obeyed by the lower-weight 1/ε pole terms.
- What do they mean? Do they reflect a nonplanar version of dual conformal invariance or integrated BCJ relations?

Structure (cont.)

- Take first derivatives, i.e. {3,1} coproducts.
- How many functions are there?
- Weight 3 even: 362 (out of a possible 505).
- But only 40 of them have (two) odd letters. Rest simple.
- Weight 3 odd is even more restricted: only 12 (out of a possible 111)
- They are just the 12 S₅/D₅ permutations of the D=6 one-loop pentagon integral!!
- Weight 2 is not restricted at all; the {2,1,1} coproducts include all 70 even and 9 odd functions obeying the second entry condition.

Structure (cont.)

 Simplicity of weight 3 odd space lets us present the odd part of the derivative of the odd part of the basic double trace function:

$$\frac{\partial}{\partial x_i} \left[g_{234}^{\text{DT,odd}} \right] \Big|_{\text{odd}} = \sum_{j=1}^{12} \mathcal{I}_5^{d=6}(\Sigma_j) \sum_{\gamma} m_{j\gamma} \frac{\partial \log W_{\gamma}}{\partial x_i}$$

- $\gamma \in \{1, ..., 5, 16, ..., 20, 31\} = \{s_{ij}, \Delta\}$ only, $\Sigma_j \in S_5/D_5$
- {3,1} coproduct matrix $m_{j\gamma}$ on next page

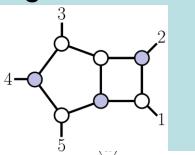
{3,1} coproduct matrix $m_{j\gamma}$

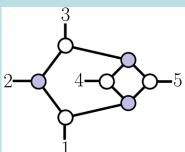
rank 8 \rightarrow only 8 independent linear combinations of final entries appear, not 11

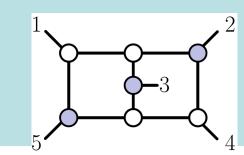
N=8 supergravity

Chicherin, Gehrmann, Henn, Wasser, Zhang, Zoia, 1901.05932; Abreu, LD, Herrmann, Page, Zeng, 1901.nnnn

- Same integration methods can be applied to the doublecopy N=8 supergravity integrand Carrasco, Johansson, 1106.4711
- Loop-momentum numerator is quadratic instead of linear in the loop momentum
- Richer set of rational function prefactors.
- 40 can be inferred from four-dimensional leading singularities computed from on-shell diagrams, e.g.







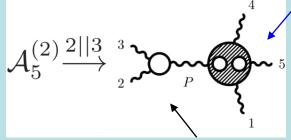
L. Dixon 2 loop 5 point N=4 SYM

N=8 supergravity (cont.)

- After reductions for > 45 phase space points, discover 5 additional rational structures (*D*-dim'l leading sing's)
- Result has uniform transcendentality
- Because there is no color, there are exactly 45 pure function components to the amplitude
- 5 of the 45 are removed by a natural IR subtraction.
- We can compare the 45 functions to the 52 for N=4 SYM: They overlap a lot; their span has dimension 62
- The weight 3 odd part of the {3,1} coproduct space has dimension 11, not 12, because the S_5 symmetric pentagon sum $\sum_{j=1}^{12} \mathcal{I}_5^{d=6}(\Sigma_j) \quad \text{drops out}$

Validation

- Five-point gravity amplitudes have a stringent set of limiting behavior as a graviton becomes soft Weinberg (1965); Berends, Giele, Kuijf (1988); Bern, LD, Perelstein, Rozowsky, hep-th/9811140
 or two gravitons become collinear Bern, LD, Perelstein, Rozowsky, hep-th/9811140
- E.g. as legs 2 and 3 become collinear:



four-point two-loop amplitude only

tree splitting amplitude only

 We checked the collinear limit, as well as the soft limit, and the IR poles in *ɛ* which are predicted by Weinberg (1965); Naculich, Nastase, Schnitzer, 0805.2347

L. Dixon 2 loop 5 point N=4 SYM

Structure

 Give same odd, odd {3,1} coproduct matrix as in N=4 SYM, but now for a component of the N=8 finite remainder:

$$m_{j\alpha_1} = \frac{1}{12} \begin{pmatrix} -3 & -2 & 2 & 2 & -2 & 1 & 0 & 1 & 0 & 1 & 0 \\ 3 & 1 & -1 & -3 & 0 & 1 & 0 & -1 & 0 & 0 & 0 \\ -3 & -2 & 0 & 0 & -2 & 1 & 0 & 5 & 0 & 1 & 0 \\ 3 & 0 & -3 & -1 & 1 & 0 & 0 & -1 & 0 & 1 & 0 \\ 3 & 0 & 0 & -2 & 4 & -3 & 0 & -3 & 0 & 1 & 0 \\ -3 & -1 & 1 & 3 & 0 & -1 & 0 & 1 & 0 & 0 & 0 \\ -3 & 2 & -1 & 3 & -3 & 2 & 0 & 3 & 0 & -3 & 0 \\ 3 & 4 & -2 & 0 & 0 & 1 & 0 & -3 & 0 & -3 & 0 \\ 3 & 4 & -2 & 0 & 0 & 1 & 0 & -3 & 0 & -3 & 0 \\ 3 & 4 & -2 & 0 & 0 & 1 & 0 & -3 & 0 & -3 & 0 \\ -3 & 0 & 3 & 1 & -1 & 0 & 0 & 1 & 0 & -1 & 0 \\ -3 & -3 & 3 & -1 & 2 & -3 & 0 & 3 & 0 & 2 & 0 \\ 3 & 2 & -2 & -2 & 2 & -1 & 0 & -1 & 0 & -1 & 0 \end{pmatrix}$$

rank 5 \rightarrow only 5 independent linear combinations of final entries!

Conclusions

- Two-loop five-point nonplanar amplitudes now available at symbol level in maximally supersymmetric theories
- Also, all required master integrals needed for QCD have now been computed at symbol level
- Results expressed in terms of a symbol alphabet with 26 parity even and 5 parity odd letters Chicherin, Henn, Mitev, 1712.09610
- Still more to explore about how the amplitudes' pure functions sit inside this function space.
- Also, need to promote symbols \rightarrow functions
- Opens the door to full-color 2 → 3 massless QCD amplitudes for e.g. NNLO 3 jet production at hadron colliders