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LHGE ST

£ a hadron machine QCD-based processes

¥ a high-energy machine complex processes

¥ entering a high-precision phase theory must follow
¥ searching new physics must control SM background

High precision computation in QCD needed

¢ PDFs, resumation, parton shower, hadronization and ...
¢ ... fixed order computations
Ambitious goal:

¢ Loop computations and ...
¢ ... cancellation of soft and collinear singularities this talk



Well established subtraction schemes at NLO

® Frixione-Kunst-Signer (FKS) subtraction Frixione, Kunszt, Signer
® Catani-Seymour (CS) Dipole subtraction Catani, Seymour
® Nagy-Soper subtraction Nagy, Soper

Many methods available at NNLO

® Antenna subtraction Gehrmann De Ridder, Gehrmann, Glover, Heinrich, et al.
® Sector-improved residue subtraction Czakon et al.; Melnikov et al.
® Colourful subtraction Del Duca, Duhr, Kardos, Somogyi, Troscanyi, et al.
® qT-slicing Catani, Grazzini, et al.
® N-jettiness slicing Boughezal, Petriello, et al.
® Projection to Born Cacciari, Salam, Zanderighi, et al.
® Sector decomposition Anastasiou, Binoth, et al.
® E-prescription Frixione, Grazzini
® Unsubtraction Rodrigo et al.

® Geometric Herzog



Why to look for a new method?

&€ NNLO methods are still not fully general:
@ are they really process-independent?
® can be automatized?
® are they efficient?
® are they local?

® how they scale with the number of legs?

€ More fundamental questions:

® |s there anything simpler?

® we have in defining subtraction?
® Can we learn something on subtraction systematically?

® Can we hope to manage extensions to higher orders?

® Can we get all-order insights on subtraction from IRC factorisation?



Rationale of our approach

< Understand the structure of real radiation amplitudes
from factorization principles
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Understand the structure of real radiation amplitudes
from factorization principles =% not in this talk

Search for a “minimal” subtraction procedure at NNLO:
* We have well established methods at NLO:
® Frixione-Kunst-Signer (FKS) subtraction Frixione, Kunszt, Signer 9512328
Frixione 9706545
® Catani-Seymour (CS) Dipole subtraction Catani, Seymour 9605323

Catani et al. 0201036

® Nagy-Soper subtraction Nagy, Soper, 0308127

* Understand their basic features
* Try to find a simpler subtraction at NLO, by merging them

* Then generalize to NNLO



Structure of subtraction at NLO

dUNLO P dULO

dX

= /d(I)nV5Xn +/d(1)n+1R5Xn+1 — ﬁnite.

X =|RC safe observable ox, =0(X — X))

X, = observable computed with m-body kinematics

V has explicit poles in €, R diverges in phase space integration



Structure of subtraction at NLO

dUNLO P dULO

dX

= /d(I)nV5Xn +/d(1)n+1R6Xn+1 — ﬁnite.

X =|RC safe observable ox, =0(X — X))

X, = observable computed with m-body kinematics

V has explicit poles in €, R diverges in phase space integration

* Introduce counterterms K and their integral |

/ d®,.1 K §x. = / AP, ISx.

dUNLo e dULo

V+l is finite in €, R-K converges in phase space integration



Some notations
Center of mass (CM) momentum: g = (+/s, 0)
Sqi = 2q-k; sij = (ki + k;)* = 2k; -k
siit = (ks + ki + ki)*
siitt = (ki + k; + ki + kp)*

e — —4* = rescaled energy of particle 2 in CM frame
S
S S 1 — cosb;;
.
Sqi Sqj

0;; = angle between ¢ and j in CM frame

<—-7 — —— ﬁf = = = — —




Primary IRC limits at NLO

* Soft limit:

=) (k,1 % )

ik 0 = £ -0 ©
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Sil

» finite (K, 1 # 1)

Limit on the real matrix element:
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Primary IRC limits at NLO

* Collinear limit: kH =k + kY a=17

Sudakov parametrization

% k2 i SR ’ 2k -k, ka
P = et — S " T — YA = g T — ( o 220) T
e — () 2%+ 25 =1 fuk— il k2 + K =0
k= 2 kM kM — . ];‘2" rt
7 3 24 2k 7
( S o o
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g S (k #1,5)
Limit on the real matrix element:
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Derived IRC limits at NLO

* Soft-collinear limit:

Sir Sir
2 = > 0 2y = ! !
Sir T+ Sjr S; Sir T+ Sjr S;
o e _uC A
SR 4 R | /4
% : 205, z; 5
v i e i

SikSil  Cij

Sl : 1 < g Skj X 1 < g
/4 4

SijSit Cii  Sij 2 SikSij Cii  Sij Zi

R C. R} = C; S RU{F) = N, 22
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FKS subtraction procedure

® Divide the phase space through sector functions

044 KE 1 e Sqj
©,J 71
* Basic properties: Z e
©,J 71
: — —
SiWij:Z ] ZSiWijzl
.7/¢Z w5/ J#Z
. O iy Wiy + Ciy Wi = 1
gz' r gj

S; Ci; Wi; = Cy; S; Wi; = 1
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® Divide the phase space through sector functions

® Each sector reparametrized differently

Sector Wr,;j

d®pi1({k}) = d®n({k} 4, k)dP1(s, C; € wij, &)

/dCI)l(S,C;&;,wij,gb) — 1 6/ d¢SlD_2€¢ dg /dww
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® Each sector reparametrized differently

® |dentify counterterms through parametrization

Sector Wz'j
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FKS subtraction procedure

® Divide the phase space through sector functions
® Each sector reparametrized differently
® |dentify counterterms through parametrization

® Integrate analytically after getting rid of sector functions

* The integration of some counterterms can be non trivial:

5 1 — cos ékl
d@ K(soft) ly /dﬂz Efl =
/ 1 Z kzz (1 — cos O )(1 — cosby;)

* Sector parametrlzation not always optimal

* (Can one do something simpler?
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CS subtraction procedure

® Counterterms mimic the IRC behaviour in all phase space
® Counterterms are sums of terms, each with its remapped momenta
K= 33 Ky

pairs 1 k#1,j

N : ;
— VIR By (kY g0 B 7) + VIR Bl ({50, F, )

Sij

W i p S i p
k™ =k, + k; k. R — ky
Sik + Sjk Sik T Sjk

* Vlilkand vIU* need to reproduce both soft and collinear limits:

=, el — 5jk S, Valk —
Sij T Sik i
17|k 17k I 1%



CS subtraction procedure

® Counterterms mimic the IRC behaviour in all phase space
® Counterterms are sums of terms, each with its remapped momenta

® Phase space reparametrized differently for each term of the sum

p? = (k; + k; + ki)* = (k+7)°

H- Sik T Sjk

/dq’l(pQ; y,2,0) =G (p2)1‘€/0ﬂd¢ Sin‘zecb/()ldy /Oldz [ 21 )R (=
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CS subtraction procedure

® Counterterms mimic the IRC behaviour in all phase space
® Counterterms are sums of terms, each with its remapped momenta
® Phase space reparametrized differently for each term of the sum

® Integrate analytically each term

* Integration can be non trivial if counterterms are complicated

* Can one introduce simpler counterterms?



FKS subtraction procedure

® Divide the phase space through sector functions
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FKS subtraction procedure

® Divide the phase space through sector functions

® Phase space reparametrized differently for each sector x
® |dentify counterterms through reparametrization x

® Integrate analytically after getting rid of sector functions

CS subtraction procedure

X

® Counterterms are sums of terms, each with its remapped momenta (g

® Counterterms mimic the IRC behaviour in all phase space

® Phase space reparametrized differently for each term of the sum g

® |Integrate analytically each term &
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® Divide the phase space through sector functions

® |dentify counterterms through IRC limits

Sector W@'j d S, and Cij commute H

(1 ez Sz)(l — CZ])R Wf,;j ——serhy W@j — K;; — finite

Candidate for the counterterm:

K;; = {1 = (1—S7;)(1—Cq;j)}RWij = {Si Cij(l—Si)}RWij

What is not satisfactory?

Momentain S; R, C;; R,S;C;; R do not satisfy
mass-shell condition and momenta conservation




A “minimal” subtraction procedure at NLO

® Divide the phase space through sector functions

® |dentify counterterms through IRC limits

Sector W@'j

Counterterm K —

What are S@R, C@JR and SZCZJR ?
The same as S; R, CZJR and S;C;; R, but .

Y W|thrmappedmonta|n the Born matrix element

They must satisfy: B = G C,;;C;,;R=CyR

such that: & RW_@i_ Kij — finite H
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A “minimal” subtraction procedure at NLO

® Divide the phase space through sector functions remapped
® |dentify counterterms through IRC limits mmnta

® Counterterms are sums of terms, each with its remapped , ta

e -~ . T —— e "7—? — _ —

| — S L -' |
" Sl — — N B (i )) | \
k#1, [#1 ‘»1' |

= N e g PO R
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17 |
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(_Jq;jR and S, R arethe sameas S; R and Gl

with momenta satisfying on-shell condition and momenta conservation
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® Divide the phase space through sector functions
® ldentify counterterms through IRC limits
® Counterterms are sums of terms, each with its remapped momenta

® Phase space reparametrized differently for each term of the sum

APy 1 ({k}) = d@y ({F})) dD1 (sanes v, 2, 0)

Sab = Y Sabc Sac — Z(l = y) Sabc Sbe = (1 = Z)(l =a y)Sabc

/d<1>1(p2; y,2,¢) =G (p2)1_6/;d¢ Sin2€¢/01dy/oldz y2(1-y)*(1-2)] (1-y)

SZR ‘ Bkl term| Cw(l—sz)R
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A “minimal” subtraction procedure at NLO

® Divide the phase space through sector functions

® ldentify counterterms through IRC limits

® Counterterms are sums of terms, each with its remapped momenta
® Phase space reparametrized differently for each term of the sum

® Integrate analytically each term after getting rid of the sector functions

J_Z/dcpls R+Z/d<1>1€w S Sj)}R

1,7 >1
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A “minimal” subtraction procedure at NLO

® Divide the phase space through sector functions

® ldentify counterterms through IRC limits

® Counterterms are sums of terms, each with its remapped momenta
® Phase space reparametrized differently for each term of the sum

® Integrate analytically each term after getting rid of the sector functions

m— = = —————— — S

' ¥ Generate universal local counterterms

| # Exploit the freedom in defining them

¥ The counterterms are basically “onl

Hope it can be extended beyond NLO !!



Structure of subtraction at NNLO
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Structure of subtraction at NNLO

dUNNLo s dUNLo

dX

= /d@nVV(SXn +/d<I>n+1RV s +/d<1>n+2 RRéx, .,
VV and VR have poles in €, VR and RR diverge in phase space

* Counterterms K1), K(12), K2); KRRV) and their integrals 1(1), [(12), |(2), |(RV)

/ i, [K(l) e (K<12> + K<2>) 5Xn} = / o G L / i, <I<12> L 1<2>) e

/ d®, 0 K BY) 55y = / d®, 1 TBV) 55

dUNNLO BT dUNLO L /dq)n (VV L ](2) it I(RV)) 5X
dX 5
i / d®, _<RV i 1<1>) S e (K<RV> = I<12>) 5Xn]

4 / i®,. . |RR Orcion — HG oo (K<2> E K(lz)) 5xn]

(V + 12) + [RV)) ( ) and ( ) are finite in €

(RR-K(M-K(12)-K(2)), ( ) and ( ) converge in phase space



Primary IRC limits at NNLO

* Single soft limit

* Single collinear limit

* Double soft limit:

S &

M = \E'H
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E.
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= S

’
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\ Sim  Skm Skm

Limit on the double real matrix element:

Catani, Grazzini 9908523
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Primary IRC limits at NNLO

* Double collinear limit:  k* = & + k" + k! a=1,4,k
2 ! % ; 2
]2# — kH k rH Za — Qka d k= kH — Zak“’ o 2k ka — 22, i il
2k-r 2k-r e k2 2k-r
2 2+ zj + 2 = kk=kr=0 K+ K+ k=0
3 3 [
S Ry . a_ .
oSS ca =

kﬂ A : ([ 8ij Sik Sk g (Im # i3, ik, ik

k:“ )\k’“ Wij, Wik, Wik — 0 Slm  Slm  Slm [ #m)
Ciji, < 7 R T o ¢ S Sk Sk, ghite

/«5 = Nl ool el el e g Ty Sjk Sik  Sij

Sy \ Wik Wik Wi Sil, Sﬂ7 %l _, indep. (I #i,75,k)

\ Sjl Skl Skl on [
Limit on the double real matrix element: Catani, Grazzini 9908523
NE
Cij RR({k}) = 5 | Puje BUR} 110 k) + Qi B ({k} 76, 0)|
zgk
) : s khky
ik = Z Qfgjll U rld=2) 2 ]
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A “minimal” subtraction procedure at NNLO

® Divide the phase space through sector functions
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A “minimal” subtraction procedure at NNLO

® Divide the phase space through sector functions

Wikt = il J: .Z.le 2 Vo
i k;z;i,jl;;zi,k S i
1 1
Oijkl =
Y (&) (wig)P (Ek + OkEi)

* Single soft and single collin

Si Wikl = (Siwquﬁ)) Wi
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]
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A “minimal” subtraction procedure at NNLO

® Divide the phase space through sector functions

i Oijkl o = Z Okl Z Wijkl =1
R i, iy £
k#1, 11,k k#i, l#5,k

— 1

ol

* Double soft and double collinear limits
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® Divide the phase space through sector functions

® |dentify counterterms through IRC limits

Sector V_\_/fijlk S, Cij, Sij, Cijk, SCyir commute i

f1-8)1-C(1-8)A-Cin)x | — finite
| All _,. ( = RR Wz'jjk — K.<1) r K,(z) s K_(12)

1jgk 1jgk 1jjk

where the candidates for counterterms are

j, K(l) = _Si B Cz'j(l = SZ)} RR Wfijjk
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A “minimal” subtraction procedure at NNLO

® Divide the phase space through sector functions

® |dentify counterterms through IRC limits

Sector V,\-}z’jik S, Cij, Sij, Cijk, SCyr commute i

f(1-8)1-Cy)(1-8;)(1—Cye) x | — Tinite
t B G R — RR Wi — K7~k

177k 177k 177k

| cancel in K2 + g(12)
where the candidates for counterterms are

K\ = _Sz' T (G Sz’)} RR Wijjk

K8 =[5+ Contt -5, {ETR0 506

K12 _ {[S @ (] s-)} [Sw i ka( &
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|
|
|
|
\
|




A “minimal” subtraction procedure at NNLO

® Divide the phase space through sector functions

® |dentify counterterms through IRC limits

Sector )/'\}7,757 | S;, Cij, Sl C@‘jk, SCijk, Cka commute ||

f(1—S:)(1—Ci;)(1 —Si)(1 — Cyjx) X 1 finite
X1 —SCin)(1 ~ CSyr)RR Wijss | = RR Wijes — Kiji; = K, — Kijig

| cancel in K2 + g(12)
where the candidates for counterterms are

j' e _Sz- - Gl = Sz)} RR Wijk;

Ki3% = |Sin + Cige(1 = Su) +{SCus + CSiyn) (1~ Su) (1] Ci)

B { [Si O Sz) [Sik & Gl = Szk)} |
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A “minimal” subtraction procedure at NNLO

® Divide the phase space through sector functions

® |dentify counterterms through IRC limits

Sector Wik Si, Cij. Sik, Cijri, SCik, CSijk Commutel

S ) -su)(1-Cy)x | — finite
\_____ X(1—-SCu)(1 — CSi) RR Wignt ) = RR Wijnt — Kijy = Kijoy = Kji

| cancel in K2 + g(12)
where the candidates for counterterms are

| Ki(jlzl = _Si 4= Gl = Si)} RR Wk

- z(y2 lzl & _Sik + Cijri(1 — Sik) ?? ~ ] _‘ '
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Momenta in Kfjl,zl, Kg,zl, Kéfl) do not satisfy mass-shell condition and
momenta conservation
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® Divide the phase space through sector functions
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momenta conservation
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A “minimal” subtraction procedure at NNLO

® Divide the phase space through sector functions

® |dentify counterterms through IRC limits

Momenta in qu].l,zl, K,fflzl, Kfjl,fl) do not satisfy mass-shell condition and
momenta conservation

(1) 55(2) 5>(12)

(1) 7-(2)  £-(12)
Kt Bijrn Bij T A 5

{ remapped momenta ]
{ in matrix elements and §
{ partially in IRC kernels |

They must satisfy:
—(1
Ly ngjl)el = Kz-(jlk)z Ly € {S;,Cy;}

—(2
L, Kim = K2, Ly € {Sir, Ciut, SCiri, CSiji}
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A “minimal” subtraction procedure at NNLO

® Divide the phase space through sector functions

® ldentify counterterms through IRC limits

® Counterterms are sums of terms, each with its remapped momenta

Examples of double remappings
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® Divide the phase space through sector functions
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A “minimal” subtraction procedure at NNLO

® Divide the phase space through sector functions

® ldentify counterterms through IRC limits

® Counterterms are sums of terms, each with its remapped momenta
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A “minimal” subtraction procedure at NNLO

® Divide the phase space through sector functions

® ldentify counterterms through IRC limits

® Counterterms are sums of terms, each with its remapped momenta
® Phase space reparametrized differently for each term of the sum

® Integrate analytically each term after getting rid of the sector functions
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¢ “Pure” double-unresolved part ¢ Basically products of

. . single unresolved integrals
¢ In all subtraction scheme the more J J

difficult part to be integrated ¢ Trivial integration




A “minimal” subtraction procedure at NNLO

® Divide the phase space through sector functions

® ldentify counterterms through IRC limits

® Counterterms are sums of terms, each with its remapped momenta
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A “minimal” subtraction procedure at NNLO

® Divide the phase space through sector functions

® ldentify counterterms through IRC limits

® Counterterms are sums of terms, each with its remapped momenta
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A “minimal” subtraction procedure at NNLO

® Divide the phase space through sector functions

® ldentify counterterms through IRC limits

® Counterterms are sums of terms, each with its remapped momenta
® Phase space reparametrized differently for each term of the sum

® Integrate analytically each term after getting rid of the sector functions

The procedure can be extended beyond NLO !!

- N I — - —___

' $ Generate universal local counterterms

| # Exploit the freedom in defining them

¢ The counterterms a(ebasically “only” the IRC IitS |




Proof of concept

® T'» C'r NNLO contribution to the total cross section for eTe~ — qQq

Just contributions from the radiation of a q/q_/pair

® Known exact NNLO results:  Hamberg, van Neerven, Matsuura 1991
Gehrmann De Ridder, Gehrmann, Glover 0403057

Ellis, Ross, Terrano 1980

11 e 353 15 26C 77 s % 7541
Mol s 1 fosl
18 54 Or =D 324

7 16 28 7 32
(57-3)+(Fa5" 3 8

2€
s \2 02 bV AT e R Ty 134 77 e
d® RR:B(—)TC AR s e el el e L bR -
/ 2 o RF(S> [ 363 02 T \T8T T o5e ) T o i



Proof of concept

® We integrate the known limits S;xRR and C;;xRR
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® And we get the 2-unresolved integrated counterterm:
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Proof of concept

® From the explicit expression of RV se get for Jlla)

ag 2T |
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® Analytical cancellation of poles in the subtracted VV.
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Leading Outlook

® Complete the implementation in a Monte Carlo generator

® Complete the integration of “pure” double-unresolved counterterms

Next-to-Leading Outlook

® Compute counterterms with initial state hadrons

— e —— = e —

}; ¢ BaS|ca[Iy mglement Catanl-Seyrl '
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Next-to-Next-to-Leading Outlook

® Consider the massive case

- e e —

R R :
¥ Less singularities, but ...
.4 ’

¢ ... more involved remappings, i.e. integration |

Still work in progress ...
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A “minimal” subtraction procedure at NNLO

® Divide the phase space through sector functions

® ldentify counterterms through IRC limits

® Counterterms are sums of terms, each with its remapped momenta
® Phase space reparametrized differently for each term of the sum

® Integrate analytically each term after getting rid of the sector functions

Ic(ilj) qq] easy Pijklaqd'q easy
| Ié;j)[gg] feasible Pijklqqq feasible [

Pijk[q(jg] feasible
Pijklagy] feasible
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