High Energy Jets

Andreas Maier

The High Energy Limit

Multi-Regge Kinematics

 $y_1 < y_2 < \cdots < y_{n-1} < y_n$

High energy limit:

- All rapidity gaps large, all transverse momenta similar
- All outgoing invariant masses >> all t-channel momenta

Example: Higgs Boson Production With Jets

• Known at NNLO, $\sim 5\%$ correction

[Cacciari, Dreyer, Karlberg, Salam, Zanderighi 2015; Cruz-Martinez, Gehrmann, Glover, Huss 2018]

- Probes couplings to W, Z bosons
- Widely separated jets, WBF cuts:

 $y_{j_1j_2} > 2.8$, $m_{j_1j_2} > 400 \,\mathrm{GeV}$

Example: Higgs Boson Production With Jets

- Known at LO for H+2,3 jets, $m_t
 ightarrow \infty$ is off by $\sim 2\%$ [Greiner, Höche, Luisoni, Schönherr, Winter 2016]
- H + 2, 3 jets known at NLO for $m_t \rightarrow \infty$.

[Cullen et al. 2013]

The High Energy Limit

FKL configurations [Fadin, Kuraev, Lipatov 1975–1977]:

- Maximum possible t-channel gluon exchanges
- Dominant contribution in high-energy limit

Non-FKL configurations:

- Less possible t-channel gluon exchanges
- Exponentially suppressed at large rapidities

The High Energy Limit

Scaling Behaviour

[Andersen, Hapola, Maier, Smillie 2017]

High Energy Jets (HEJ) resummation

FKL Matrix element [Andersen, Del Duca, Smillie, White 2008–2010]

$$\begin{split} \overline{\left|\mathcal{M}_{f_{1}f_{2} \to f_{1}\cdot g \cdot H \cdot g \cdot f_{2}}^{\mathsf{HEJ}}\right|^{2}} &= \\ \frac{1}{4(N_{C}^{2}-1)} \left\|j_{\mu} V_{H}^{\mu\nu} j_{\nu}\right\|^{2} \cdot \left(\frac{1}{t_{j}t_{j+1}}\right) \\ \cdot \left(g_{s}^{2} K_{f_{1}}(p_{1}^{-}, p_{s}^{-})\frac{1}{t_{1}}\right) \\ \cdot \left(g_{s}^{2} K_{f_{2}}(p_{n}^{+}, p_{b}^{+})\frac{1}{t_{n}}\right) \\ \cdot \prod_{\substack{1 \leq k < j \\ j+1 \leq k < n}} \frac{-g_{s}^{2} C_{A}}{t_{k}t_{k+1}} V_{L}(q_{k}, q_{k+1})^{2} \\ \cdot \prod_{\substack{i=1 \\ i=1}} \exp\left[\omega^{0}(q_{i\perp})(y_{i+1}-y_{i})\right]. \end{split}$$

High Energy Jets (HEJ) resummation

Unordered Emissions

Forward or backward gluon emission:

[Andersen, Hapola, Maier, Smillie 2017]

Forward or backward Higgs boson emission:

High Energy Jets (HEJ) approximation

Comparison to fixed order

High Energy Jets (HEJ) resummation

Matching to leading order

Fixed-order FKL event MadGraph, Sherpa, ... $\sim |\mathcal{M}_{LO}|^2$

Resummation events Keep Higgs + jet rapidities, shift jet $p_{\perp} \sim |\mathcal{M}_{\text{HEJ}}|^2$

Final resummation event weight $\sim \frac{|\mathcal{M}_{LO}|^2|\mathcal{M}_{HEJ}|^2}{|\mathcal{M}_{HEJ,\,LO}|^2}$

[Andersen, Hapola, Heil, Maier, Smillie 2018]

High Energy Jets (HEJ) resummation

Matching to parton shower [Andersen, Brooks, Lönnblad 2018] Add extra soft and collinear radiation

using subtracted splitting function

Results for Higgs+jets

[Andersen, Hapola, Heil, Maier, Smillie 2017-2018]

Invariant mass distribution

 $\sigma_{\rm HEJ}$ rescaled to $\sigma_{\rm NLO}$

Jet multiplicity

Higgs transverse momentum distribution

Higgs transverse momentum distribution

Quark mass effects

Jet veto efficiency

[Rainwater, Szalapski, Zeppenfeld 1996]

Angular separation

Angular correlation \Rightarrow CP properties of ggH coupling

Conclusion

- High Energy Jets (HEJ) provides all-order resummation for large rapidity spans
- Relevant for Higgs + jets in gluon fusion: Predictions differ significantly from NLO
- Other processes: $W, Z/\gamma$ + jets

[Andersen, Hapola, Smillie 2012; Andersen, Medley, Smillie 2016]

Work in progress:

- Quark mass effects in Higgs + jets
- Fixed-order matching at and beyond LO
- Subleading corrections
- Combination with parton showers
- Further processes

Backup

Comparison for *W* **+ jets**

[arXiv:1703.04362]

