AUTOMATING CALCULATIONS IN SOFT-COLLINEAR EFFECTIVE THEORY

[GUIDO BELL]

based on: GB, R. Rahn, J. Talbert, 1512.06100, 1801.04877, 1805.12414 + work in progress GB, A. Hornig, C. Lee, J. Talbert, work in progress GB, B. Dehnadi, T. Mohrmann, R. Rahn, work in progress

SOFT-COLLINEAR EFFECTIVE THEORY

SCALES, MODES, SCET-1 AND SCET-2

AUTOMATED CALCULATION OF SOFT FUNCTIONS

DIJET SOFT FUNCTIONS

SOFT SERVE

N-JET OBSERVABLES

ANGULARITIES

SCET-1 VS SCET-2

NNLL' RESUMMATION

SOFT-COLLINEAR EFFECTIVE THEORY

SCALES, MODES, SCET-1 AND SCET-2

AUTOMATED CALCULATION OF SOFT FUNCTIONS

DIJET SOFT FUNCTIONS

SOFT SERVE

N-JET OBSERVABLES

ANGULARITIES

SCET-1 VS SCET-2

NNLL' RESUMMATION

Momentum scales

Higgs p_T spectrum

Η

Momentum scales

Higgs p_T spectrum

Η

Scale separation

For $\Lambda_{QCD} \ll p_T, m_H, m_t$ the cross section factorises

$$d\sigma \simeq \sum_{i,j} f_{i/
ho}(\Lambda_{ ext{QCD}},\mu) \otimes f_{j/
ho}(\Lambda_{ ext{QCD}},\mu) \otimes d\hat{\sigma}_{ij
ightarrow HX}(p_T,m_H,m_t,\mu)$$

• universal parton-distribution functions $f_{i/p}$

▶ perturbative partonic cross section
$$d\hat{\sigma}_{ij \rightarrow HX}$$

Factorisation scale μ separates short- and long-distance dynamics

single-logarithmic evolution controlled by DGLAP equations

$$\frac{df_{i/p}(\mu)}{d\ln\mu} = \sum_{j} P_{ij}(\alpha_s) \otimes f_{j/p}(\mu)$$

Small p_T

For $p_T \ll m_H, m_t$ the partonic cross section factorises further

$$\frac{d\hat{\sigma}}{dp_T} \simeq H(m_H, m_t, \mu) \ J_1(p_T, \mu) \otimes J_2(p_T, \mu) \otimes S(p_T, \mu)$$

- hard function H
- ▶ jet (beam) functions J_i
- ▶ soft function S

perturbative ($p_T \gg \Lambda_{QCD}$)

double-logarithmic RG evolution

$$\Rightarrow$$
 Sudakov logarithms $\alpha_s^n \ln^{2n} \frac{m_H}{p_T}$

[Bauer, Fleming, Pirjol, Stewart 00; Beneke, Chapovsky, Diehl, Feldmann 02]

Effective field theory for energetic massless particles

[Bauer, Fleming, Pirjol, Stewart 00; Beneke, Chapovsky, Diehl, Feldmann 02]

Effective field theory for energetic massless particles

split into two energetic collinear partons

00000000000000000

[Bauer, Fleming, Pirjol, Stewart 00; Beneke, Chapovsky, Diehl, Feldmann 02]

Effective field theory for energetic massless particles

[Bauer, Fleming, Pirjol, Stewart 00; Beneke, Chapovsky, Diehl, Feldmann 02]

Effective field theory for energetic massless particles

SCET-1

۸

Three-scale problem: $\mu_S \ll \mu_J \ll \mu_H$

Sudakov resummation with standard RG techniques

$$\frac{dH(Q,\mu)}{d\ln\mu} = \left[2\Gamma_{\rm cusp}(\alpha_s)\ln\frac{Q^2}{\mu^2} + 4\gamma_H(\alpha_s)\right]H(Q,\mu)$$

► anomalous dimensions: Γ_{cusp} , γ_H , γ_J , γ_s

▶ matching corrections: *c*_H, *c*_J, *c*_S

⋪

Two-scale problem: $\mu_S \sim \mu_J \ll \mu_H$

¥

Two-scale problem: $\mu_S \sim \mu_J \ll \mu_H$

Jet and soft functions are ill-defined in dimensional regularisation

$$k^{\mu}=k_{-}\,rac{n^{\mu}}{2}+k_{+}\,rac{ar{n}^{\mu}}{2}+k_{\perp}^{\mu}\qquad\Rightarrow\qquad J\sim\int_{0}^{Q}rac{dk_{+}}{k_{+}}\qquad S\sim\int_{
ho_{T}}^{\infty}rac{dk_{+}}{k_{+}}$$

 \Rightarrow in light-cone coordinates DR is attached to the transverse space $d^{d-2}k_{\perp}$

Momentum modes

In SCET-2 one cannot distinguish soft from collinear modes when radiated into jet direction

 \Rightarrow need additional regulator that distinguishes modes by their rapidities

۸

Two-scale problem: $\mu_S \sim \mu_J \ll \mu_H$

$$\begin{array}{c} \begin{array}{c} \mu_{\scriptscriptstyle H} \sim Q \\ \mu_{\scriptscriptstyle J} \sim \mu_{\scriptscriptstyle S} \sim p_{\scriptscriptstyle T} \end{array} \end{array} \begin{array}{c} \hline d\hat{\sigma} \simeq {\cal H}(Q,\mu) \ {\cal J}(p_{\scriptscriptstyle T},\mu) \otimes {\cal S}(p_{\scriptscriptstyle T},\mu) \\ \\ \ln^2 \frac{{\cal Q}^2}{p_{\scriptscriptstyle T}^2} = \ln^2 \frac{{\cal Q}^2}{\mu^2} - \ln^2 \frac{p_{\scriptscriptstyle T}^2}{\mu^2} + \end{array} \begin{array}{c} \end{array}$$

The regulator can be implemented on the level of phase-space integrals

[Becher, GB 11]

$$\int d^4k \,\,\delta(k^2) \,\,\theta(k^0) \quad \Rightarrow \quad \int d^dk \,\,\left(\frac{\nu}{k_+}\right)^{\alpha} \delta(k^2) \,\,\theta(k^0)$$

 \Rightarrow induces rapidity logarithms that cannot be resummed with standard RG techniques

SCET-2

Two-scale problem: $\mu_S \sim \mu_J \ll \mu_H$

Rapidity logarithms exponentiate (in position space)

[Becher, Neubert 10; Chiu, Jain, Neill, Rothstein 11]

$$\mathcal{J}(\boldsymbol{x}_{T}, \boldsymbol{\mu}, \boldsymbol{Q}, \boldsymbol{\nu}) \, \mathcal{S}(\boldsymbol{x}_{T}, \boldsymbol{\mu}, \boldsymbol{x}_{T}, \boldsymbol{\nu}) \; = \; \left(\boldsymbol{Q}^{2} \boldsymbol{x}_{T}^{2}\right)^{-F(\boldsymbol{x}_{T}, \boldsymbol{\mu})} \; \boldsymbol{W}(\boldsymbol{x}_{T}, \boldsymbol{\mu})$$

► anomalous dimensions: Γ_{cusp} , γ_H , F

▶ matching corrections: c_H, W

Applications

- e^+e^- event-shape variables
- Thrust (N³LL) [Becher, Schwartz 08; Abbate et al 10]
- Heavy jet mass (N³LL) [Chien, Schwartz 10]
- C-parameter (N³LL) [Hoang, Kolodrubetz, Mateu, Stewart 14]
- Jet broadening (NNLL) [Becher, GB 12]
- Angularities (NNLL)
 [GB, Hornig, Lee, Talbert, in progress]

Can we automate these calculations?

hadron collider observables

- Threshold Drell-Yan (N³LL) [Becher, Neubert, Xu 07]
- W/Z/H at large p_T (N³LL) [Becher, GB, Lorentzen, Marti 13,14]
- Higgs at small p_T (NNLL) [Becher, Neubert, Wilhelm 12]
- Jet veto (NNLL) [Becher et al 13; Stewart et al 13]
- N-jettiness (NNLL) [Berger et al 10; Jouttenus et al 13]

Applications

- e^+e^- event-shape variables
- Thrust (N³LL) [Becher, Schwartz 08; Abbate et al 10]
- Heavy jet mass (N³LL) [Chien, Schwartz 10]
- C-parameter (N³LL) [Hoang, Kolodrubetz, Mateu, Stewart 14]
- Jet broadening (NNLL) [Becher, GB 12]
- Angularities (NNLL)
 [GB, Hornig, Lee, Talbert, in progress]

hadron collider observables

- Threshold Drell-Yan (N³LL) [Becher, Neubert, Xu 07]
- W/Z/H at large p_T (N³LL) [Becher, GB, Lorentzen, Marti 13,14]
- Higgs at small p_T (NNLL) [Becher, Neubert, Wilhelm 12]
- Jet veto (NNLL) [Becher et al 13; Stewart et al 13]
- N-jettiness (NNLL) [Berger et al 10; Jouttenus et al 13]

QCD-based resummation codes: CAESAR (NLL) ARES (NNLL, e^+e^-)

[Banfi, Salam, Zanderighi 04]

[Banfi, McAslan, Monni, Zanderighi 14]

OUTLINE

SOFT-COLLINEAR EFFECTIVE THEORY

SCALES, MODES, SCET-1 AND SCET-2

AUTOMATED CALCULATION OF SOFT FUNCTIONS

DIJET SOFT FUNCTIONS

SOFT SERVE

N-JET OBSERVABLES

ANGULARITIES

SCET-1 VS SCET-2

NNLL' RESUMMATION

Resummation ingredients

Accuracy	Γ _{cusp}	$\gamma_{H}, \left\{ \begin{array}{c} \gamma_{J}, \gamma_{S} \\ F \end{array} ight.$	$c_H, \left\{ \begin{array}{c} c_J, c_S \\ W \end{array} \right.$	SCET-1 SCET-2
LL	1-loop	_	_	
NLL	2-loop	1-loop	tree	
NNLL	3-loop	2-loop	1-loop	
N ³ LL	4-loop	3-loop	2-loop	

Precision resummations require observable-dependent 2-loop ingredients

- so far analytic calculations on a case-by-case basis
- $\Rightarrow\,$ develop generic method for automated computations

Dijet soft functions

Definition

$$S(\tau,\mu) = \frac{1}{N_c} \sum_{i \in X} \mathcal{M}(\tau; \{k_i\}) \operatorname{Tr} \langle 0|S_{\bar{n}}^{\dagger}S_n|X\rangle \langle X|S_n^{\dagger}S_{\bar{n}}|0\rangle$$

- ▶ soft Wilson lines $S_n, S_{\overline{n}}$
- generic measurement function $\mathcal{M}(\tau; \{k_i\})$
- SCET-1 and SCET-2 observables
- ▶ relevant for $e^+e^- \rightarrow 2$ jets, $e^-p \rightarrow 1$ jet, $pp \rightarrow 0$ jets

Structure of divergences is independent of the observable

- \Rightarrow isolate singularities with universal phase-space parametrisation
- \Rightarrow compute observable-dependent integrations numerically

NLO calculation

NLO calculation

One gluon emission

$$S^{(1)}(\tau,\mu) \sim \int d^d k \left(rac{
u}{k_+ + k_-}
ight)^lpha \, \delta(k^2) \, heta(k^0) \, \left. \mathcal{M}_1(\tau;k) \right. \left| \mathcal{A}(k)
ight|^2$$

• $n \leftrightarrow \bar{n}$ symmetrised version of phase-space regulator

• matrix element
$$|\mathcal{A}(k)|^2 \sim \frac{1}{k_+k_-}$$

Phase-space parametrisation

$$k_T = \sqrt{k_+ k_-}$$
 $y = \frac{k_+}{k_-}$ $t = \frac{1 - \cos \theta}{2}$

- \triangleright k_T is only dimensionful variable
- measurement vector $v^{\mu} \rightarrow$ one angle in transverse plane: $\theta \triangleleft (\vec{k}_{\perp}, \vec{v}_{\perp})$

Measurement function

Generic form

$$\mathcal{M}_1(\tau; k) = \exp\left(-\tau \, k_T \, y^{n/2} \, f(y, t)\right)$$

- ▶ assumes Laplace transform with $[\tau] = 1/\text{mass} \rightarrow \text{fixes } k_T$ dependence
- ▶ parameter *n* is fixed by requirement that f(y, t) is finite and non-zero for $y \rightarrow 0$

Measurement function

Generic form

$$\mathcal{M}_1(\tau; k) = \exp\left(-\tau \, k_T \, y^{n/2} \, f(y, t)\right)$$

Observable	n	f(y,t)
Thrust	1	1
Angularities	1 – A	1
Recoil-free broadening	0	1/2
Threshold Drell-Yan	-1	1 + <i>y</i>
W@large p_T	-1	$1+y-2\sqrt{y}\cos heta$
e^+e^- transverse thrust	1	$\frac{1}{s\sqrt{y}} \left(\sqrt{\left(c\cos\theta + \left(\frac{1}{\sqrt{y}} - \sqrt{y}\right)\frac{s}{2}\right)^2 + 1 - \cos^2\theta} - \left c\cos\theta + \left(\frac{1}{\sqrt{y}} - \sqrt{y}\right)\frac{s}{2}\right \right)$

$$\cos \theta = 1 - 2t$$

NLO master formula

After performing the observable-independent integrations one finds

$$S^{(1)}(\tau,\mu) \sim \Gamma(-2\varepsilon - \alpha) \int_0^1 dy \; \frac{y^{-1+n\varepsilon+\alpha/2}}{(1+y)^{\alpha}} \; \int_0^1 dt \; \left(4t(1-t)\right)^{-1/2-\varepsilon} \; \left[f(y,t)\right]^{2\varepsilon+\alpha}$$

- ▶ singularities from $k_T \rightarrow 0$ and $y \rightarrow 0$ are factorised
- ▶ additional regulator is needed only for n = 0 (→ SCET-2)

Isolate singularities with standard subtraction techniques

$$\int_0^1 dx \ x^{-1+n\varepsilon} \ f(x) = \int_0^1 dx \ x^{-1+n\varepsilon} \left[\underbrace{f(x) - f(0)}_{\text{finite}} + \underbrace{f(0)}_{1/\varepsilon} \right]$$

NNLO calculation

NNLO calculation

Double real emission

$$S_{RR}^{(2)}(\tau,\mu) \sim \int d^d k \left(\frac{\nu}{k_++k_-}\right)^{\alpha} \delta(k^2) \theta(k^0) \int d^d l \left(\frac{\nu}{l_++l_-}\right)^{\alpha} \delta(l^2) \theta(l^0) \mathcal{M}_2(\tau;k,l) \left|\mathcal{A}(k,l)\right|^2$$

- higher dimensional phase-space integrations
- ► three colour structures: $\underbrace{C_F C_A, C_F T_F n_f}_{\text{correlated}}, \underbrace{C_F^2}_{\text{uncorrelated}}$

Non-trivial matrix element

$$\left|\mathcal{A}(k,l)\right|^{2}_{C_{F}T_{F}n_{f}} \sim \frac{2k \cdot l(k_{-}+l_{-})(k_{+}+l_{+}) - (k_{-}l_{+}-k_{+}l_{-})^{2}}{(k_{-}+l_{-})^{2}(k_{+}+l_{+})^{2}(2k \cdot l)^{2}}$$

 \Rightarrow complex singularity structure with overlapping divergences

Correlated emissions

Phase-space parametrisation

$$p_T = \sqrt{(k_+ + l_+)(k_- + l_-)}$$
 $y = \frac{k_+ + l_+}{k_- + l_-}$ $a = \sqrt{\frac{k_- l_+}{k_+ l_-}}$ $b = \sqrt{\frac{k_- k_+}{l_- l_+}}$

- \triangleright p_T is only dimensionful variable
- ▶ three angles in transverse plane: $\theta_k \triangleleft (\vec{k}_{\perp}, \vec{v}_{\perp}), \ \theta_l \triangleleft (\vec{l}_{\perp}, \vec{v}_{\perp}), \ \theta_{kl} \triangleleft (\vec{k}_{\perp}, \vec{l}_{\perp})$

Measurement function

$$\mathcal{M}_{2}^{corr}(\tau;k,l) = \exp\left(-\tau \, p_T \, y^{n/2} \, F(a,b,y,t_k,t_l,t_{kl})\right)$$

- ▶ *p*^{*T*} dependence fixed on dimensional grounds
- ▶ $F(a, b, y, t_k, t_l, t_{kl})$ is finite and non-zero for $y \rightarrow 0$

Uncorrelated emissions

Phase-space parametrisation

$$y_{k} = \frac{k_{+}}{k_{-}} \qquad q_{T} = \sqrt{k_{+}k_{-}} \left(\frac{\sqrt{l_{+}l_{-}}}{l_{-}+l_{+}}\right)^{-n} + \sqrt{l_{+}l_{-}} \left(\frac{\sqrt{k_{+}k_{-}}}{k_{-}+k_{+}}\right)^{-n}$$
$$y_{l} = \frac{l_{+}}{l_{-}} \qquad b = \sqrt{\frac{k_{+}k_{-}}{l_{+}l_{-}}} \left(\frac{\sqrt{k_{+}k_{-}}}{k_{-}+k_{+}}\right)^{n} \left(\frac{\sqrt{l_{+}l_{-}}}{l_{-}+l_{+}}\right)^{-n}$$

▶ q_T is only dimensionful variable; again three angles θ_k , θ_l , θ_{kl}

Measurement function

$$\mathcal{M}_{2}^{unc}(\tau; k, l) = \exp\left(-\tau \, q_T \, y_k^{n/2} \, y_l^{n/2} \, G(y_k, y_l, b, t_k, t_l, t_{kl})\right)$$

- q_T dependence fixed on dimensional grounds
- ▶ $G(y_k, y_l, b, t_k, t_l, t_{kl})$ is finite and non-zero for $y_k \rightarrow 0$ and $y_l \rightarrow 0$

SoftSERVE

C++ program for numerical evaluation of soft functions

- Divonne integrator from Cuba library
- phase-space remappings to improve numerical convergence
- option to work with multi-precision variables (boost, GMP/MPFR)
- bash scripts for renormalisation in Laplace and cumulant space

۲		SoftSERVE - Hepforge - Hepforge - Mozilla Firefox	+ - C	×
ſ	SoftSERVE - Hepforg × +			
4) () softserve.hepforge.org/index.p	ohp 🗸 🖄 🗸 🖨 🛛 🗸	↓ 俞	≡
		A project to numerically evaluate soft functions for generic dijet observables in Soft-Collinear Effective Theory is hosted by Hepforg	e, IPPP Dur	ham
	Home Current version Manual Template Guide Contact	Serve		
	So	oft Simulation and Evaluation of Real and Virtual Emissions		
		Guido Bell, Rudi Rahn and Jim Talbert		
	Soft Soft	ISERVE is a C++ program to evaluate bare soft functions for wide classes of observables in t-Collinear Effective Theory.		

Available results

- e^+e^- event-shape variables
- Thrust [Kelley et al 11; Monni et al 11]
- C-parameter
 [Hoang et al 14]
- Recoil-free broadening [Becher, GB 12]
- Angularities
 [--]
- Hemisphere masses
 [Kelley et al 11; Hornig al 11]

hadron collider observables

- Threshold Drell-Yan [Belitsky 98]
- W at large p_T
 [Becher et al 12]
- *p_T* resummation
 [Becher, Neubert 10; Echevarria et al 15]
- *p_T* jet veto
 [Banfi et al 12; Becher et al 13; Stewart et al 13]
- Rapidity dependent jet vetoes
 [Gangal et al 16]
- Soft-drop jet groomer
 [--]
- Transverse thrust

Soft anomalous dimension

RG equation in Laplace space

$$\frac{d S(\tau, \mu)}{d \ln \mu} = -\frac{1}{n} \left[4 \Gamma_{\text{cusp}}(\alpha_s) \ln(\mu \bar{\tau}) - 2 \gamma^{S}(\alpha_s) \right] S(\tau, \mu)$$

Two-loop solution with $L = \ln(\mu \bar{\tau})$

$$\begin{split} S(\tau,\mu) \, &= \, 1 + \left(\frac{\alpha_{\rm S}}{4\pi}\right) \left\{ -\frac{2\Gamma_0}{n} \, L^2 + \frac{2\gamma_0^S}{n} \, L + c_1^S \right\} + \left(\frac{\alpha_{\rm S}}{4\pi}\right)^2 \left\{ \frac{2\Gamma_0^2}{n^2} L^4 - 4\Gamma_0 \left(\frac{\gamma_0^S}{n^2} + \frac{\beta_0}{3n}\right) L^3 \right. \\ &\left. - 2 \left(\frac{\Gamma_1}{n} - \frac{(\gamma_0^S)^2}{n^2} - \frac{\beta_0 \gamma_0^S}{n} + \frac{\Gamma_0 c_1^S}{n}\right) L^2 + 2 \left(\frac{\gamma_1^S}{n} + \frac{\gamma_0^S c_1^S}{n} + \beta_0 c_1^S\right) L + c_2^S \right\} \end{split}$$

Results will be presented in the form

$$\begin{split} \gamma_{1}^{S} &= \gamma_{1}^{C_{A}} C_{F} C_{A} + \gamma_{1}^{n_{f}} C_{F} T_{F} n_{f} + \gamma_{1}^{C_{F}} C_{F}^{2} \\ c_{2}^{S} &= c_{2}^{C_{A}} C_{F} C_{A} + c_{2}^{n_{f}} C_{F} T_{F} n_{f} + c_{2}^{C_{F}} C_{F}^{2} \end{split}$$

Performance

W at large p_T	$c_2^{C_A}$	$c_2^{n_f}$	runtime*
standard setting	-2.660 ± 0.075	-25.313 ± 0.009	30 sec
precision setting	-2.651 ± 0.005	-25.307 ± 0.001	9 h
analytic	-2.650	-25.307	[Becher et al 12]

C-parameter	$c_2^{C_A}$	$c_2^{n_f}$	runtime*
standard setting	-57.893 ± 0.039	43.817 ± 0.004	25 sec
precision setting	-57.973 ± 0.004	43.818 ± 0.001	20 min
EVENT2	-58.16 ± 0.26	43.74 ± 0.06	[Hoang et al 14]

* on a single 8-core machine

Angularities

 e^+e^- event shape that interpolates between thrust (A = 0) and broadening (A = 1)

 \Rightarrow last missing ingredient for NNLL resummation

[GB, Hornig, Lee, Talbert to appear]

Soft-drop jet mass

Jet grooming removes soft radiation from jets

[Frye, Larkoski, Schwartz, Yan 16]

- parameter β controls aggressiveness of groomer
- observable violates non-abelian exponentiation theorem \Rightarrow non-trivial C_F^2 structure
- confirm and extend existing NNLO results

N-jet soft functions

Definition

$$S(\tau,\mu) = \sum_{i \in X} \mathcal{M}(\tau; \{k_i\}) \langle 0|(S_{n_1}S_{n_2}S_{n_3}\dots)^{\dagger}|X\rangle \langle X|S_{n_1}S_{n_2}S_{n_3}\dots|0\rangle$$

- soft function is a matrix in colour space
- generic measurement function $\mathcal{M}(\tau; \{k_i\})$
- SCET-1 and SCET-2 observables
- assume non-abelian exponentiation in a first step

Motivation

- resummation for hadronic event shapes, boosted top observables, ...
- subtraction technique for NNLO calculations [Catani, Grazzini 07; Boughezal et al 15; Gaunt et al 15]

N-jet soft functions

Technical aspects

- > 2-particle correlations are similar to dijet case
 - \Rightarrow generalise phase-space parametrisations to arbitrary $n_i \cdot n_j$
- S-particle correlations arise only in real-virtual contribution (→ NAE)
- ▶ no 4-particle correlations (→ NAE)

N-jettiness

[Stewart, Tackmann, Waalewijn 10]

$$\mathcal{T}_{N}(\{k_{i}\}) = \sum_{i} \min_{j} (n_{j} \cdot k_{i}) \qquad j = \underbrace{a, b,}_{\text{beams}} \underbrace{1, \dots, N}_{\text{jets}}$$

- 1-jettiness soft function known to NNLO
- general case $N \ge 2$ known to NLO

[Boughezal, Liu, Petriello 15; Campbell, Ellis, Mondini, Williams 17] [Jouttenus, Stewart, Tackmann, Waalewijn 11]

1-jettiness

Kinematics

Two-loop finite terms for different partonic channels

(preliminary)

dots: [GB, Dehnadi, Mohrmann, Rahn to appear]

lines: [Campbell, Ellis, Mondini, Williams 17]

2-jettiness

$$n_{ab} \equiv n_a \cdot n_b = n_1 \cdot n_2 = 2$$
$$n_{a1} \equiv n_a \cdot n_1 = n_b \cdot n_2 = 1 - \cos \theta$$
$$n_{b1} \equiv n_b \cdot n_1 = n_a \cdot n_2 = 1 + \cos \theta$$

Two-loop finite terms: dipole contributions

2-jettiness

$$n_{ab} \equiv n_a \cdot n_b = n_1 \cdot n_2 = 2$$
$$n_{a1} \equiv n_a \cdot n_1 = n_b \cdot n_2 = 1 - \cos \theta$$
$$n_{b1} \equiv n_b \cdot n_1 = n_a \cdot n_2 = 1 + \cos \theta$$

Two-loop finite terms: sum of tripole contributions

(preliminary)

dots: [GB, Dehnadi, Mohrmann, Rahn to appear]

AUTOMATING CALCULATIONS IN SOFT-COLLINEAR EFFECTIVE THEORY THEORY SEMINAR - DESY ZEUTHEN

OUTLINE

SOFT-COLLINEAR EFFECTIVE THEORY

SCALES, MODES, SCET-1 AND SCET-2

AUTOMATED CALCULATION OF SOFT FUNCTIONS

DIJET SOFT FUNCTIONS

SOFT SERVE

N-JET OBSERVABLES

ANGULARITIES

SCET-1 VS SCET-2

NNLL' RESUMMATION

Angularities

 e^+e^- event shape that depends on a continous parameter a

[Berger, Kucs, Sterman 03]

$$e_a(\{k_i\}) = \sum_i |k_{\perp}^i| e^{-|\eta_i|(1-a)}$$

• interpolates between thrust (a = 0) and total jet broadening (a = 1)

Factorisation theorem for $e_a \rightarrow 0$

$$\frac{1}{\sigma_0}\frac{d\sigma}{de_a}\simeq H(Q,\mu)\int de_n\ de_{\bar{n}}\ de_s\ J_n(e_n,\mu)\ J_{\bar{n}}(e_{\bar{n}},\mu)\ S(e_s,\mu)\ \delta(e_a-e_n-e_{\bar{n}}-e_s)$$

- ► relevant scales: $\mu_H^2 \sim Q^2 \gg \mu_J^2 \sim Q^2 e_a^{\frac{Z}{2-a}} \gg \mu_S^2 \sim Q^2 e_a^2$
- ► thrust: $\mu_H^2 \sim Q^2 \gg \mu_J^2 \sim Q^2 e_0 \gg \mu_S^2 \sim Q^2 e_0^2$ (SCET-1)
- ► broadening: $\mu_H^2 \sim Q^2 \gg \mu_J^2 \sim Q^2 e_1^2 \sim \mu_S^2 \sim Q^2 e_1^2$ (SCET-2)

SCET-1 vs SCET-2

Resummation in Laplace space

$$\frac{1}{\sigma_0}\frac{d\sigma}{d\tau_a} \simeq H(Q,\mu)\,\widetilde{J}_n(\tau_a,\mu)\,\widetilde{J}_{\overline{n}}(\tau_a,\mu)\,\widetilde{S}(\tau_a,\mu)$$

Different formalisms

$$\frac{\text{SCET-1:}}{(a < 1)} \qquad \frac{1}{\sigma_0} \frac{d\sigma}{d\tau_a} = e^{4S(\mu_H, \mu_J) - 2A_H(\mu_H, \mu_J) + \frac{4}{1-a}S(\mu_S, \mu_J) + \frac{2}{1-a}A_S(\mu_J, \mu_S)} \left(\frac{Q^2}{\mu_H^2}\right)^{-2A_\Gamma(\mu_H, \mu_J)} \times (\mu_s \bar{\tau}_a)^{-\frac{4}{1-a}A_\Gamma(\mu_J, \mu_S)} H(Q, \mu_H) \tilde{J}_n(\tau_a, \mu_J) \tilde{J}_n(\tau_a, \mu_J) \tilde{S}(\tau_a, \mu_S)$$

$$\frac{\text{SCET-2:}}{(a=1)} \qquad \frac{1}{\sigma_0} \frac{d\sigma}{d\tau_a} = e^{4S(\mu_H,\mu_S)-2A_H(\mu_H,\mu_S)} \left(\frac{Q^2}{\mu_H^2}\right)^{-2A_{\Gamma}(\mu_H,\mu_J)} \left(\frac{\nu_J}{\nu_S}\right)^{-2F(\tau_a,\mu_S)} \times H(Q,\mu_H) \widetilde{J}_n(\tau_a,\mu_J,\nu_J) \widetilde{J}_n(\tau_a,\mu_J,\nu_J) \widetilde{S}(\tau_a,\mu_S,\nu_S)$$

Can one derive the SCET-2 expression directly from SCET-1?

[Larkoski, Neill, Thaler 14]

Mapping rapidity onto RGE logs

Compare RG equations

$$\frac{d\ln\tilde{S}(\tau_a,\mu_S)}{d\ln\mu_S} = -\frac{4}{1-a}\Gamma_{cusp}\ln(\mu_S\bar{\tau}_a) + \dots \\ \frac{d\ln\tilde{S}(\tau_a,\mu_S,\nu_S)}{d\ln\mu_S} = 4\Gamma_{cusp}\ln(\mu_S\bar{\tau}_a) - 4\Gamma_{cusp}\ln(\nu_S\bar{\tau}_a) + \dots \end{cases} \right\} \qquad \mu_S = \nu_S \frac{1-a}{2-a} \tau_a^{-\frac{1}{2-a}}$$

$$\frac{d\ln \widetilde{J}(\tau_a,\mu_J)}{d\ln \mu_J} = -2\frac{2-a}{1-a}\Gamma_{cusp}\ln\left(\frac{Q^{(1-a)/(2-a)}}{\mu_J\,\widetilde{\tau}_a^{1/(2-a)}}\right) + \dots$$

$$\frac{d\ln \widetilde{J}(\tau_a,\mu_J,\nu_J)}{d\ln \mu_J} = 2\Gamma_{cusp}\ln\left(\frac{\nu_J}{Q}\right) + \dots$$

$$\Rightarrow \qquad \frac{\mu_J}{\mu_S} = 1 + (1-a) \ln \frac{\nu_J}{\nu_S} + \mathcal{O}(1-a)^2$$

SCET-2 limit

Smooth limit for RG kernels

$$\frac{1}{1-a} S(\mu_S, \mu_J) \xrightarrow{a \to 1} \mathcal{O}(1-a)$$

$$\frac{1}{1-a} A_S(\mu_J, \mu_S) \xrightarrow{a \to 1} \gamma^S \left(\alpha_s(1/\bar{\tau}) \right) \ln \frac{\nu_J}{\nu_S} + \mathcal{O}(1-a)$$

Matching corrections are divergent in the limit $a \rightarrow 1$

$$c_1^J \xrightarrow{a \to 1} \frac{d_1'}{2(1-a)} + \hat{c}_1^J + \mathcal{O}(1-a)$$
$$c_1^S \xrightarrow{a \to 1} -\frac{d_1'}{(1-a)} + \hat{c}_1^S + \mathcal{O}(1-a)$$

but the product of jet and soft functions is well-defined!

SCET-2 limit

Matching corrections yield additional contribution to anomaly exponent

$$\frac{\alpha_{s}(\mu_{J})}{4\pi}\left\{2c_{1}^{J}\right\} + \frac{\alpha_{s}(\mu_{S})}{4\pi}\left\{c_{1}^{S}\right\} \xrightarrow{a \to 1} -2\left(\frac{\alpha_{s}(1/\bar{\tau})}{4\pi}\right)^{2}\beta_{0} d_{1}' \ln \frac{\nu_{J}}{\nu_{S}} + \mathcal{O}(1-a)$$

Relation between collinear anomaly and soft anomalous dimension

$$d_1 = -\gamma_0^S$$

$$d_2 = -\gamma_1^S + \beta_0 d_1'$$

where d'_1 is the ε -coefficient of the one-loop anomaly exponent

$$F(\tau,\mu=1/\bar{\tau}) = \frac{\alpha_s}{4\pi} \left\{ d_1 + d_1' \varepsilon \right\} + \left(\frac{\alpha_s}{4\pi} \right)^2 \left\{ d_2 + d_2' \varepsilon \right\} + \dots$$

Resembles connection between threshold and p_T resummation

[Li,Zhu 16; Vladimirov 16]

NNLO soft function

Two-loop soft anomalous dimension and matching correction from SoftSERVE

AUTOMATING CALCULATIONS IN SOFT-COLLINEAR EFFECTIVE THEORY THEORY SEMINAR - DESY ZEUTHEN

State of the art

Accuracy	Γ _{cusp}	$\gamma_H, \gamma_J, \gamma_S$	c_H, c_J, c_S
NLL	2-loop	1-loop	tree
NLL'	2-loop	1-loop	1-loop
NNLL	3-loop	2-loop	1-loop
NNLL'	3-loop	2-loop	2-loop

[Hornig, Lee, Ovanesyan 09]

- > γ_H and c_H are known to 2-loop
- ▶ 2-loop \(\gamma_S\) and \(c_S\) from SoftSERVE
- $\gamma_J = \frac{1}{2} \gamma_H + \frac{1}{2(1-a)} \gamma_S$ fixed by RG invariance
- extract 2-loop c_J from EVENT2-fit
- \Rightarrow extend resummation to NNLL' accuracy

Theory input

Further refinements

- ▶ matching to fixed-order α_s^2 calculation \Rightarrow NNLL' + NLO accuracy
- angularity-dependent profile scales
- non-perturbative shape function

$$\frac{d\sigma}{de_a}(e_a) \xrightarrow{\text{tail region}} \frac{d\sigma}{de_a} \left(e_a - \frac{2}{1-a} \frac{\Omega_1}{Q} \right)$$
[Lee, Sterman 06]

same NP parameter Ω_1 that controls shift of thrust and C-parameter distributions

Theory input

Further refinements

- matching to fixed-order α_s^2 calculation \Rightarrow NNLL' + NLO accuracy
- angularity-dependent profile scales
- non-perturbative shape function

$$\frac{d\sigma}{de_a}(e_a) \xrightarrow{\text{tail region}} \frac{d\sigma}{de_a} \left(e_a - \frac{2}{1-a} \frac{\Omega_1}{Q} \right)$$
 [Lee, Sterman 06]

same NP parameter Ω_1 that controls shift of thrust and C-parameter distributions

⇒ test implementation of non-perturbative effects with angularity distributions

Convergence

AUTOMATING CALCULATIONS IN SOFT-COLLINEAR EFFECTIVE THEORY THEORY SEMINAR - DESY ZEUTHEN

Comparison to L3 data

Binned distributions without / with non-perturbative effects

(preliminary)

AUTOMATING CALCULATIONS IN SOFT-COLLINEAR EFFECTIVE THEORY THEORY SEMINAR - DESY ZEUTHEN

Conclusions

Automated calculation of NNLO soft functions

- softserve.hepforge.org
- compact integral representation for anomalous dimensions

[GB, Rahn, Talbert 18]

- explicit results for ~ 15 dijet soft functions
- first results for N-jet observables

Angularities

- comparison of SCET-1 and SCET-2 resummations
- precision analysis at NNLL' + NLO accuracy
- α_s determination in progress

Backup slides

SCET-1 results

Observable	$\gamma_1^{C_A}$	$\gamma_1^{n_f}$	$c_2^{C_A}$	$c_2^{n_f}$
Thrust	15.7945	3.90981	-56.4992	43.3902
[Kelley et al, Monni et al 11]	(15.7945)	(3.90981)	(-56.4990)	(43.3905)
C-parameter	15.7947	3.90980	- 57.9754	43.8179
[Hoang et al 14]	(15.7945)	(3.90981)	(-58.16 ± 0.26)	(43.74 ± 0.06)
Threshold Drell-Yan	15.7946	3.90982	6.81281	-10.6857
[Belitsky 98]	(15.7945)	(3.90981)	(6.81287)	(-10.6857)
W@large p _T	15.7947	3.90981	-2.65034	-25.3073
[Becher et al 12]	(15.7945)	(3.90981)	(-2.65010)	(-25.3073)
Transverse thrust [Becher, Garcia 15]	-158.278 (-148 ⁺²⁰ ₋₃₀)	19.3955 (18 ⁺² ₋₃)		

> upper numbers: SoftSERVE / SecDec in a few hours on a single machine

Iower numbers: analytic (black) or fit to fixed-order code (gray)

Rapidity-dependent jet veto

Non-standard jet veto in Higgs production

- clustering effects violate non-abelian exponentiation
- ► RGE in momentum space (→ inverse Laplace transform)
- confirm existing NNLO results

[Gangal, Stahlhofen, Tackmann 14]

[Gangal, Gaunt, Stahlhofen, Tackmann 16]

SCET-2

Anomaly exponent obeys simple RG equation

$$\frac{d F(\tau, \mu)}{d \ln \mu} = 2 \Gamma_{\rm cusp}(\alpha_s)$$

Two-loop solution with $L = \ln(\mu \bar{\tau})$

$$F(\tau,\mu) = \left(\frac{\alpha_s}{4\pi}\right) \left\{ 2\Gamma_0 L + d_1 \right\} + \left(\frac{\alpha_s}{4\pi}\right)^2 \left\{ 2\Gamma_0 \beta_0 L^2 + 2\left(\Gamma_1 + \beta_0 d_1\right) L + d_2 \right\}$$

► two-loop anomaly coefficient $d_2 = d_2^{C_A} C_F C_A + d_2^{n_f} C_F T_F n_f + d_2^{C_F} C_F^2$

SCET-2 results

Observable	$d_2^{C_A}$	$d_2^{n_f}$
Recoil-free broadening	7.03595	-11.5393
[Becher, GB 12]	(7.03605)	(-11.5393)
<i>p_T</i> resummation	-3.73389	-8.29610
[Becher, Neubert 10]	(-3.73167)	(-8.29630)
E_T resummation	15.9804 (-)	-18.7370 (-)
Transverse thrust	208.098	- 37.1766
[Becher et al 15]	(208.0 ± 0.1)	(-37.191 ± 0.006)

• do not confirm QCD result for E_T resummation

$$B_g^{(2)} = \frac{1}{16} \left(d_2 + 2\gamma_1^g + \beta_0 e_1^g \right) = \begin{cases} 33.0081 & \text{SoftSERVE} \\ -5.1 \pm 1.6 & \text{[Grazzini et al 14]} \end{cases}$$

p_T jet veto

Standard jet veto based on transverse momenta

- SCET-2 observable with clustering effects
- **RGE** in momentum space (\rightarrow inverse Laplace transform)
- confirm existing NNLO results

[Banfi et al 12; Becher et al 13; Stewart et al 13]

