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HIGGS BOSON

▸ 4th of July 2012: The begin of the precision physics age of Higgs boson 
phenomenology 

▸ Immediately after the discovery of the Higgs boson we started to ask 
questions about it’s nature: 
Couplings, spin, parity, mass, cross sections … 
 
 

▸ The basis for testing our understanding  
of nature is on the one side precise 
 measurements that are sensitive 
 to the Higgs boson properties. 

▸ LHC provides the input!  
Run 2: Data, data, data

The LHC is a precision machine!

mh = 125.09GeV± 0.2%

Now: 2 % of future LHC data analysed.



DEMAND FOR PRECISION ON THEORY SIDE
▸ Testing our understanding of nature:  

Compare experiment and theory! 

▸ The key to theoretical predictions at the LHC:  
 
 

HIGGS BOSON PREDICTIONS
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DEMAND FOR PRECISION ON THEORY SIDE
▸ Testing our understanding of nature:  

Compare experiment and theory! 

▸ The key to theoretical predictions at the LHC:  
 
 
 

▸ Compute perturbativ corrections from first principle 
QFT: Standard Model 

▸ Allows for % - level predictions for - experimental 
precision will reach comparable levels!
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How often is 
H 

produced?



HIGGS BOSON PRODUCTION

4 WAYS TO PRODUCE A HIGGS

ggF Associated

VBF ttH

~88.2% ~4.1%

~6.8% ~0.9%



PERTURBATIVE CORRECTIONS TO HIGGS BOSON PRODUCTION
GLUON FUSION HIGGS PRODUCTION
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▸ N3LO corrections 
stabilise perturbative 
expansion. 

▸ Significant reduction in 
residual perturbative 
uncertainty estimates. 

▸ High orders are 
required!



INGREDIENT NR1: GLUONS.
GLUON FUSION
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COMPUTING N3LO CROSS SECTIONS IS CHALLENGING
GLUON FUSION

▸ Work in an EFT 
 
 
 

▸ Removes one loop! 

▸ Excellent approximation: Captures dominant QCD effects.  
 

▸ Supplement with mass corrections, EWK corrections etc.

Simplifications:

mt ! 1

�LOt ⇠ 7%

�NLO

t ⇠ 0.7%



COMPUTING N3LO CROSS SECTIONS IS CHALLENGING
GLUON FUSION AT N3LO

Simplifications:

▸ Perform expansion around kinematic limit: Production Threshold

z =
m2

H

ŝ
⇠ 1

p1

p2

H
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▸ Expand to sufficiently high order to ensure stable results.

▸ Simplifies the analytic functions: Only numbers!



EXPANDED
GLUON FUSION AT N3LO
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COMPUTING N3LO CROSS SECTIONS IS CHALLENGING
GLUON FUSION AT N3LO

Simplifications:

▸ Perform expansion around kinematic limit: Production Threshold

z =
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▸ Expand to sufficiently high order to ensure stable results.

▸ Simplifies the analytic functions: Only numbers!



NEW: EXACT SOLUTION FOR GLUON FUSION @ N3LO
GLUON FUSION AT N3LO

▸ Major analytic effort: 912 master integrals! 

▸ Challenge of new analytic functions: Elliptic integrals! 

▸ Elliptic integrals:  
We are at the beginning of understanding these functions! 
Analytic continuation, numerical evaluation, functional 
identities, … 



EXPANDED VS. EXACT
GLUON FUSION AT N3LO
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■ Full
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INDIVIDUAL INITIAL STATE CHANNELS
GLUON FUSION AT N3LO
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INDIVIDUAL INITIAL STATE CHANNELS
GLUON FUSION AT N3LO
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PHENOMENOLOGY: IT’S COMPLICATED
GLUON FUSION AT N3LO
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▸ Many contributions 
to be take into 
account: QCD, EWK,  
 
…
mt, mb, mc

▸ Many sources of 
uncertainty to 
estimate! 
Perturbative 
truncation, PDF, 
…

↵S



HIGGS BOSON MEASUREMENTS

▸ Incredible agreement of 
data and theory 

▸ Triumph of SM predictions 

▸ Higgs production 
~10 sigma observed

ENTER THE AGE OF PRECISION HIGGS PHYSICS



IHIXS

IHIXS 2 - NEW CODE!

https://people.phys.ethz.ch/~pheno/ihixs/

https://people.phys.ethz.ch/~pheno/ihixs/


How often is H 
produced and 
decays into a 

certain volume?



Differential Cross Sections
▸ Inclusive cross sections are idealised objects 

Important test of QFT, extraction of coupling constants, etc. 

▸ Real life observables:  
Fiducial cross sections for realistic final states! 

▸ Avoid extrapolation:  
Predict as close to experimental outcome as possible



CHALLENGES OF DIFFERENTIAL PREDICTIONS
▸ Analytic complexity of high order perturbative 

computation 

▸ Complicated mathematical structures: Elliptic / multiple 
polylogarithms, couple differential equations, algebraic complexity, …

▸ Numerical integration over complicated and 
“divergent” final state configurations: 

▸ Infrared subtraction at 2-loops and beyond. 

▸ Main challenge of the last couple of years. 

▸ Many methods available now.

• Sector decomposition 
• Non-Linear Mappings 
• qT 
• FKS+  
• N-Jettiness 
• Antenna 
• Colourful 
• Projection-To-Born 
• …

H+J

VBF

DIFFERENTIAL CROSS SECTIONS



CHALLENGES OF DIFFERENTIAL PREDICTIONS
▸ Analytic complexity of high order perturbative 

computation 

▸ Complicated mathematical structures: Elliptic / multiple 
polylogarithms, couple differential equations, algebraic complexity, …

▸ Numerical integration over complicated and 
“divergent” final state configurations:

DIFFERENTIAL CROSS SECTIONS

Inclusive cross sections - analytic formulae: ~ seconds

Differential cross sections for Higgs boson final states: 10 - 100 CPU hours

Differential cross sections for Higgs + J boson final states: 100000+ CPU hours

2 ! 1

2 ! 1

2 ! 2



HIGGS - DIFFERENTIAL CROSS SECTIONS

▸ Introduce a framework that allows to compute 
differential cross sections at N3LO. 

▸ Circumvent problems of NNLO infrared subtraction.  

▸ Applicable for real life observables at the LHC.

Specifically: Differential Higgs Production in QCD

P P ! H +X ! �� +X

P P ! H +X ! 4l +X

▸ Today: Recent Progress, NNLO, Obstacles, Method

DIFFERENTIAL CROSS SECTIONS



HIGGS - DIFFERENTIAL CROSS SECTIONS
▸ Focus on the degrees of freedom of the 

Higgs boson: 

▸ Entirely described in terms of pT and Y (and 
a trivial azimuthal angle). 
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COMPUTING PERTURBATIVELY



HIGGS - DIFFERENTIAL CROSS SECTIONS
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HIGGS - DIFFERENTIAL CROSS SECTIONS
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COMPUTING PERTURBATIVELY
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HIGGS - DIFFERENTIAL CROSS SECTIONS
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PARTONIC HIGGS - DIFFERENTIAL CROSS SECTIONS
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PARTONIC HIGGS - DIFFERENTIAL CROSS SECTIONS

▸ Compute all required matrix elements of different final 
states X to a given order in perturbation theory.
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LO:
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NNLO:

COMPUTING PERTURBATIVELY



PARTONIC HIGGS - DIFFERENTIAL CROSS SECTIONS

h

Z
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▸ Phase space integral over partonic final state phase space 
momenta 

▸ Integrate over as many partons as there are in X. 

▸ Integration over fixed multiplicity matrix elements is divergent! 
(KLN).
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PARTONIC HIGGS - DIFFERENTIAL CROSS SECTIONS
h

Z
d�n

▸ Perform integration over parton phase space analytically 

▸ Rely on tools to perform analytic computation learned 
from inclusive N3LO 

▸ Make singularities of final state parton integrations 
manifest using dimensional regularisation.

COMPUTING PERTURBATIVELY

d = 4� 2✏



COMPUTING PERTURBATIVELY

PARTONIC HIGGS - DIFFERENTIAL CROSS SECTIONS
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COMPUTING PERTURBATIVELY
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REVERSE UNITARITY FRAMEWORK:
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▸ Opens the door to large variety of loop integral technology! 

▸ IBPs + Differential equations

▸ Key observation: Cut propagators can be differentiated 
similar to usual propagators.



COMPUTING PERTURBATIVELY

REVERSE UNITARITY FRAMEWORK:
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▸ Coefficient: Rational function of remaining kinematic 
variables. 

▸ Master Integral: Integrated Feynman integrals: 
Polylogarithms, rational functions of remaining kinematic 
variables. 

▸ Explicit Laurent series in dimensional regulator.



COMPUTING PERTURBATIVELY

HIGGS - DIFFERENTIAL CROSS SECTIONS: RAPIDITY
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▸ Inclusive rapidity 
distribution 

▸ Large K-factors 



COMPUTING PERTURBATIVELY

HIGGS - DIFFERENTIAL CROSS SECTIONS: FIDUCIAL XS (ATLAS)
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▸ Fiducial rapidity 
distribution. 

▸ Non-trivial features due 
to  
selection criteria. 

▸ Relatively flat K-factors 

▸ Similar perturbative 
behaviour as inclusive  
distribution 

P P ! H +X ! �� +X



COMPUTING PERTURBATIVELY

HIGGS - DIFFERENTIAL CROSS SECTIONS: FIDUCIAL XS
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▸ Distributions of the photon 
momenta: 

▸ Leading Photon pT 

▸ Pseudo - rapidity difference

�⌘ = |⌘�1 � ⌘�2 |

P P ! H +X ! �� +X



BEYOND NNLO



BEYOND NNLO

WHAT DID WE LEARN FROM NNLO
▸ Higgs-differential cross sections: fast and stable framework 

for fiducial cross sections. 

▸ Analytic computation at NNLO comparably simple.

MAIN CHALLENGES FOR N3LO
▸ Rapid growth in analytic complexity: Many more integrals 

to compute, large rational expressions as a result 

▸ Numerical stability vs. speed in evaluation of analytic 
coefficients.



BEYOND NNLO

FIXED ORDER MATRIX ELEMENTS

VVV RVV

RRR

RV^2 RRV100 000 diagrams
1000 @ NNLO

Rapid growth in complexity



BEYOND NNLO

FIXED ORDER MATRIX ELEMENTS

VVV RVV

RRR

RV^2 RRV100 000 diagrams
1000 @ NNLO

Rapid growth in complexity

Known already! (Inclusive / H+J  @NNLO)



BEYOND NNLO

FIXED ORDER MATRIX ELEMENTS

▸ Missing matrix elements with 2 or 3 final state partons. 

▸ Same strategy as for NNLO: Analytic computation using 
reverse unitarity, master integrals and differential 
equations. 

▸ Number of master integrals required: 100 x NNLO. 

▸ Solving differential equations for master integrals: 
Need boundary conditions = Master integrals evaluated at 
one single point.



THRESHOLD EXPANSION

THRESHOLD EXPANSION FOR DIFFERENTIAL CROSS SECTIONS ???

z =
m2

H

ŝ
⇠ 1

p1

p2

H

▸ Excellent approximation for inclusive cross section. 

▸ Reason Nr.1: 
Crucial analytic information a full calculation relies on - boundary conditions.  
+ checks, testing ground for technology, etc. 

▸ Reason Nr. 2: Can we use it for phenomenology?

z̄ = 1� z �̂(z̄) = �SV + �(0) + z̄�(1) + . . .



THRESHOLD EXPANSION

▸ Rapidity distribution
THRESHOLD EXPANSION @ NNLO DIFFERENTIAL
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THRESHOLD EXPANSION

▸ Bulk of XS is described well with a couple of terms 

▸ Systematic improvement possible 

THRESHOLD EXPANSION @ NNLO DIFFERENTIAL
▸ Rapidity distribution normalised to true value.
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THRESHOLD EXPANSION

THRESHOLD EXPANSION @ NNLO DIFFERENTIAL
▸ PT distribution

▸ Bad convergence 
at low pT

▸ On-set of 
distribution at NLO 
while threshold 
limit is tree level.
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SOFT EXPANSION

THRESHOLD EXPANSION @ NNLO DIFFERENTIAL
▸ PT distribution normalised to true value.

▸ Even with 10 
terms marginally 
within 20 % 

▸ Quality of 
expansion is 
subject to 
observable: 
Threshold 
sensitivity
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THRESHOLD EXPANSION

THRESHOLD EXPANSION EXPANSION

▸ Systematically improvable approximation. 

▸ Soft expansion gives the opportunity to study differential 
distribution 

▸ Doing phenomenology in this approximation requires careful 
case by case analysis to see if the approximation is valid! 

▸ Use Inclusive result: 
Rescale to correct  
inclusive cross section 
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THE ROAD TO N3LO VIA THRESHOLD EXPANSIONS

TOWARDS N3LO

▸ Extend analytic techniques  
for automatic soft amplitude expansions. 

▸ Apply reverse unitarity, differential equations,  
Multiple PolyLog, IBPs, Symbol tools, …. 

▸ Compute 110 new double differential soft master integrals. 

▸ Compute the first terms (Soft-Virtual SV) at N3LO 

▸ Put into code and look at  the N3LO corrections to the rapidity 
distribution and …



N3LO CORRECTIONS TO THE RAPIDITY DISTRIBUTION

SV @ N3LO
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BE CAREFUL WHEN YOU DO SOMETHING NEW

� ⇠
Z

dzLgg(z)


log5(1� z)

1� z

�

+

LHAPDF
▸ LHAPDF: Grid of points for PDFs in x and Q 

▸ Interpolation between points with certain precision 

▸ Not meant to be precise enough for N3LO plus distributions yet 
…. 

▸ Improvements required: New interpolator, evolve from smooth 
PDF …. ? 

SV @ N3LO



N3LO CORRECTIONS TO THE RAPIDITY DISTRIBUTION
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SV @ N3LO
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Use Log^12 Interpolator or fit!

N3LO CORRECTIONS TO THE RAPIDITY DISTRIBUTION



HIGGS DIFFERENTIAL CROSS SECTIONS AT N3LO

FIRST RESULTS

▸ So far: We computed the first two terms in the threshold 
expansion. 

▸ Important step:  
All required analytical boundary information for full 
computation obtained. 

▸ Remember: 2 terms in the threshold expansion are not enough! 

▸ However …. 



HIGGS DIFFERENTIAL CROSS SECTIONS AT N3LO

FIRST RESULTS: N3LO CORRECTIONS ON RAPIDITY DISTRIBUTION



HIGGS DIFFERENTIAL CROSS SECTIONS AT N3LO

FIRST RESULTS: FIRST COMBINATION WITH LOWER ORDERS



CONCLUSIONS

▸ Exact computation of  
N3LO inclusive Higgs production cross section. 

▸ Higgs-differential cross sections: 
Promising framework for realistic final state observables. 

▸ Threshold expansions provide a key ingredient for analytic 
computation. 

▸ Threshold expansion can be used at the differential level to 
approximate differential cross section predictions. 

▸ Many interesting things to be encountered when going to 
higher order.

Thank you!



BEYOND NNLO

UV RENORMALISATION AND IR FACTORISATION
▸ To derive UV counter terms and IR subtraction terms we 

require NNLO cross sections computed beyond the finite 
term in 

▸ Allow to derive complete N3LO scale variation from 
DGLAP
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