Non-local effects in exclusive $b \rightarrow s\ell\ell$ decays

Danny van Dyk
Technische Universität München
Theorieseminar
Humboldt-Universität zu Berlin
The B Anomalies
in the Standard Model (SM), rare b decays are suppressed

- CKM suppressed: $V_{tb}V_{ts}^* \sim \lambda^2$
 - ✓
- loop suppressed: $1/(16\pi^2)$
 - ✓
- (partially) GIM suppressed
 - ✓

even small New Physics (NP) contributions might yield significant effects amongst the suppressed SM “background”

- much theoretical and phenomenological interest in $b \to s\ell\ell$ decays
Motivation (experiment)

experimental measurements on $b \rightarrow s \ell \ell$

- LHCb measurements $B \rightarrow K\mu\mu$, $B \rightarrow K^*\mu\mu$, $B_s \rightarrow \phi\mu\mu$

- analogous measurements by Belle, ATLAS and CMS

- test of Lepton-Flavor Non-Universality (μ vs e)

raised a lot of interest, lot of work from theory + experiment

- gave rise to the so-called b Anomalies

 ▶ P'_5: one coefficient in the angular distribution of $B \rightarrow K^*(\rightarrow K\pi)\ell^+\ell^-$ decays

 ▶ $R_{K^(*)}$: ratio of branching ratios $B \rightarrow K^{(*)}\mu^+\mu^- / B \rightarrow K^{(*)}e^+e^-$
Motivation (experiment)

intriguing "anomalies" in some observables

less significant yet intriguing deviations in branching ratios

[LHCb JHEP06(2014)133]

[LHCb JHEP09(2015)179]
significant SM pulls in global fits

[Descotes-Genon, Hofer, Matias, Virto 2015 + others]

decays

- $B \rightarrow K \ell^+ \ell^-$
- $B \rightarrow K^* \ell^+ \ell^-$
- $B_S \rightarrow \phi \ell^+ \ell^-$
- $B_S \rightarrow \ell^+ \ell^-$

observables

- 96 ($\ell = \mu$ only)
- 101 ($\ell = \mu, e$)

significance already at the level of $\sim 5\sigma$

caveat: Systematic uncertainty due to non-local contributions
State of the Art
for $\Lambda_{\text{EW}}, \Lambda_{\text{NP}} \gg M_B : b \to s$ FCNC mediated by $D = 6$ ops:

$$\mathcal{L}_W = \mathcal{L}_{\text{QCD}} + \mathcal{L}_{\text{QED}} + \frac{4G_F}{\sqrt{2}} \left[\lambda_t \sum_i C_i \mathcal{O}_i + \lambda_c \sum_i C_i^c \mathcal{O}_i^c + \lambda_u \sum_i C_i^u \mathcal{O}_i^u \right]$$

$$\mathcal{O}_7 = \frac{e}{16\pi^2} m_b (\bar{s}\sigma^{\mu\nu} P_R b) F_{\mu\nu}$$

$$\mathcal{O}_8 = \frac{g_s}{16\pi^2} m_b (\bar{s}\sigma^{\mu\nu} P_R T^A b) G_{\mu\nu}^A$$

$$\mathcal{O}_9 \ell = \frac{\alpha}{4\pi} (\bar{s} \gamma_\mu P_L b) (\bar{\ell} \gamma^\mu \ell)$$

$$\mathcal{O}_{10} \ell = \frac{\alpha}{4\pi} (\bar{s} \gamma_\mu P_L b) (\bar{\ell} \gamma^\mu \gamma_5 \ell)$$

$$\mathcal{O}_1^c = (\bar{c} \gamma_\mu P_L b) (\bar{s} \gamma^\mu P_L c)$$

$$\mathcal{O}_2^c = (\bar{c} \gamma_\mu P_L T^a b) (\bar{s} \gamma^\mu P_L T^a c)$$

$$\mathcal{O}_1^u = (\bar{u} \gamma_\mu P_L b) (\bar{s} \gamma^\mu P_L u)$$

$$\mathcal{O}_2^u = (\bar{u} \gamma_\mu P_L T^a b) (\bar{s} \gamma^\mu P_L T^a u)$$

$$\mathcal{O}_i = (\bar{s} \gamma_\mu P_X b) \sum_q (\bar{q} \gamma^\mu q)$$

SM contributions to $C_i(\mu_b)$ known to NNLL [Bobeth, Misiak, Urban '99; Misiak, Steinhauser '04, Gorbahn, Haisch '04; Gorbahn, Haisch, Misiak '05; Czakon, Haisch, Misiak '06]
Amplitudes in a Nutshell

\[A_{\lambda}^{L,R} = \mathcal{N}_\lambda \left\{ (C_9 \pm C_{10}) \mathcal{F}_\lambda(q^2) + \frac{2m_bM_B}{q^2} \left[C_7 \mathcal{F}_\lambda^T(q^2) - 16\pi^2 \frac{M_B}{m_b} \mathcal{H}_\lambda(q^2) \right] \right\} \]

- local form factors: \(\mathcal{F}_\lambda^{(T)}(q^2) = \langle \bar{\lambda}(k)|\bar{\lambda}^{(T)} b|\bar{B}(k+q)\rangle \)
- non-local: \(\mathcal{H}_\lambda(q^2) = i \mathcal{P}_\mu^\lambda \int d^4x \, e^{iq \cdot x} \langle \bar{M}_\lambda(k)|T\{\mathcal{J}_{em}(x), C_7\mathcal{O}_i(0)\}|\bar{B}(q+k)\rangle \)
- CKM structure: \(\mathcal{H}_\lambda = -\frac{\lambda_u}{\lambda_t} \mathcal{H}^{(u)}(q) - \frac{\lambda_c}{\lambda_t} \mathcal{H}^{(c)}(q) \quad \lambda_q = V_{qb}V_{qs}^* \)
Local Form Factors

- computable on the lattice
 - $B \to K \checkmark$
 - $B \to K^* \checkmark$
 - $\Lambda_b \to \Lambda \checkmark$
 - accessing small q^2 computationally expensive \to extrapolate

- accessed through Light-Cone Sum Rules
 - $B \to K \checkmark$
 - $B \to K^* \checkmark$
 - $\Lambda_b \to \Lambda \checkmark$

- simultaneous fit to both theory inputs available

- will not further discuss local form factors in this talk
\(\mathcal{H}^\mu(q, k) \equiv i \int d^4x \ e^{iq \cdot x} \langle \overline{K}^*(k, \eta) | T\{ \mathcal{J}^\mu_{\text{em}}(x), C_i \mathcal{O}_i(0) \} | \overline{B}(k + q) \rangle
\equiv M_B^2 \eta^*_\alpha \left[S^{\alpha \mu}_\perp \mathcal{H}_\perp(q^2) - S^{\alpha \mu}_\parallel \mathcal{H}_\parallel(q^2) - S^{\alpha \mu}_0 \mathcal{H}_0(q^2) \right]

- \(S^{\alpha \mu}_\lambda \) – basis of Lorentz structures (carefully chosen)
- \(\mathcal{H}_\lambda \) – Lorentz invariant correlation functions
- \(\lambda \) – polarization states (\(\perp, \parallel, 0 \))
Calculation: local OPE for q^2 below the J/ψ

- q^2: mass square of the lepton system
- E_{K^*}: energy of the K^* in the B rest frame
 - QCD Factorization shown for small q^2, large $E_{K^*} \sim m_b$

[sketch from Blake, Gershon, Hiller 2015]
Calculation: local OPE for q^2 below the J/ψ

- **QCD Factorization** (to NLO in α_s)

 $\mathcal{H}_\lambda = C_\lambda \mathcal{F}_\lambda + \sum \int \frac{d\omega}{\omega} \Phi^B_\pm(\omega) \int_0^1 du T^\pm_\lambda(u, \omega) \phi^\pm_M(u) + \mathcal{O}(\Lambda/m_B, \Lambda/E)$

\begin{align*}
\mathcal{H}_\lambda(q^2) &= \mathcal{H}_{\lambda;\text{fact,LO}}(q^2) + \mathcal{H}_{\lambda;\text{fact,NLO}}(q^2) + \mathcal{H}_{\lambda;\text{spect}}(q^2) + \mathcal{H}_{\lambda;\text{WA}}(q^2) + \cdots
\end{align*}
Calculation: Light-Cone OPE for \(q^2 \ll 4m_c^2 \)

- \(q^2 \): mass square of the lepton system
- Light-Cone OPE includes power corrections to QCDF for \(q^2 \ll 4m_c^2 \)

[sketch from Blake, Gershon, Hiller 2015]
Calculations: Light-Cone OPE for $q^2 \ll 4m_c^2$

- LCSRs with B-meson DAs

[Khodjamirian, Mannel, Pivovarov, Wang 2010]

LC exp. of charm prop.

$\mathcal{H}_\lambda = (\text{matching coeff}) \times F^{LCSR}_\lambda$

$\frac{q^2}{4m_c^2} \rightarrow \left(\frac{C_1}{3} + C_2 \right) g(m_c^2, q^2) \left[\Sigma \Gamma b \right] + \cdots$

[Balitsky, Braun 1989]
Calculation: Light-Cone OPE for $q^2 \ll 4m_c^2$

LCSRs with B-meson DAs

[Khodjamirian, Mannel, Pivovarov, Wang 2010]

3-particle correction to $\mathcal{F}_\lambda \longrightarrow$

LC exp. of charm prop. [Balitsky, Braun 1989]

\[
q^2 \ll 4m_c^2 \rightarrow \left(\frac{C_1}{3} + C_2 \right) g(m_c^2, q^2) \left[\bar{s} \Gamma b \right] + \\
\text{matching coeff} \\
+ \text{(coeff)} \times \left[\bar{s}_L \gamma^\alpha (i n_+ \cdot D)^n \bar{\sigma}_{\beta \gamma} b_L \right] + \cdots
\]
Calculation: Light-Cone OPE for $q^2 \ll 4m_c^2$

At the end of the day

$$\mathcal{H}_\lambda(q^2) = \mathcal{H}_\lambda;\text{fact,LO}(q^2) + \mathcal{H}_\lambda;\text{fact,NLO}(q^2) + \mathcal{H}_\lambda;\text{spect}(q^2) + \mathcal{H}_\lambda;\text{WA}(q^2) + \mathcal{H}_\lambda;\text{soft}(q^2) + \mathcal{H}_\lambda;\text{soft,0}_8(q^2) + \cdots$$

- $\mathcal{H}_\lambda;\text{soft}$ and $\mathcal{H}_\lambda;\text{fact,LO}$ cancel to large extent
 - reason: $\mathcal{H}_\lambda;\text{fact,LO}$ is color suppressed
- $\mathcal{H}_\lambda;\text{soft,0}_8$ contributions negligible
A different approach
Analytic structure

(a)

(b)

\[B \rightarrow O_i \rightarrow K^* \]

\[J/\psi, \psi(2S) \]

\[J^\mu_{em} \]

\[\bar{B} \rightarrow O_i \rightarrow K^* \]

\[\bar{D} \]

\[\bar{D}^* \]

\[D^* \]

\[\bar{B} \rightarrow O_i \rightarrow K^* \]

\[J^\mu_{em} \]

\[\pi \]

\[J^\mu_{em} \]

\[\bar{B} \rightarrow O_i \rightarrow K^* \]

Graph showing the analytic structure with two diagrams labeled (a) and (b). Diagrams illustrate the decay processes of \(B \) mesons into \(K^* \) mesons through intermediate states involving \(J/\psi, \psi(2S) \), \(\bar{D} \), and \(\bar{D}^* \) mesons. The graphs also include a real part \(Re q^2 \) and an imaginary part \(Im q^2 \) for the decay parameter.
 Strategy

- **calculate** non-local matrix elements at $q^2 < 0$
- **extrapolate** to $q^2 > 0$ via some type of analytic continuation
- **constrain** two narrow resonances at $q^2 > 0$ from data on $B \to \psi_n K^*$

[sketch from Blake, Gershon, Hiller 2015]
Accessing $q^2 > 0$: dispersion relations

Dispersion relation relating $H(q_0^2 < 0)$ to $H(q^2 > 0)$

[Khodjamirian, Mannel, Pivovarov, Wang 2010] [Hambrock, Khodjamirian, Rusov 2015]

\[
H^{(p)}(q^2) - H^{(p)}(q_0^2) = (q^2 - q_0^2) \left[\sum_V \frac{f_V A^p(B \rightarrow VM)}{(m_V^2 - q_0^2)(m_V^2 - q^2 - im_V \Gamma_V^{tot})} + \int_{s_h}^{\infty} ds \frac{\rho_h^{(p)}(s)}{(s^2 - q_0^2)(s - q^2 - i\epsilon)} \right]
\]

- $V = \rho, \omega, \phi, J/\psi, \psi(2S)$
- for $b \rightarrow s$ ⇒ Neglect λ_u and OZI suppressed contributions
 \[\Rightarrow A_c^c(B \rightarrow VM_s) \sim A(B \rightarrow \psi_n M_s)\] can be determined from data.
- for $b \rightarrow d$ both $A^u, c(B \rightarrow VM)$ important ⇒ Need extra theory input (QCDF)
- light-hadron spectral density ⇒ QH-Duality
- integral over Open-charm spectral density $\simeq a_p + b_p \frac{q^2}{4m_D^2}$ (expansion for $q^2 < m_{J/\psi}^2$)
Accessing $q^2 > 0$: z expansion

Ansatz in z valid below the $D\bar{D}$ threshold

Motivated by "z-parametrization" of form factors. [Boyd et al '94, Bourelly et al '08]

1. Extract the poles: $\mathcal{H}_\lambda(q^2) = (q^2 - M^2_{J/\psi})(q^2 - M^2_{\psi(2S)}) \mathcal{H}_\lambda(q^2)$

2. $\mathcal{H}_\lambda(q^2)$ is analytic except for $D\bar{D}$ cut.

3. perform conformal mapping $q^2 \mapsto z(q^2)$.

4. $\mathcal{H}_\lambda(z)$ analytic within unit circle.

5. Taylor expand $\mathcal{H}_\lambda(z)$ around $z = 0$.

6. reasonable convergence expected since $|z| < 0.52$ for $-7\text{GeV}^2 \leq q^2 \leq 14\text{GeV}^2$
Accessing $q^2 > 0$: z expansion

Some details for actual parametrisation

- try to capture most features of the expansion (better convergence)
- parametrize the ratios $\mathcal{H}_\lambda(q^2)/\mathcal{F}_\lambda(q^2)$ instead
- the poles should not modify the asymptotic behaviour at $|q^2| \to \infty$

\[
\mathcal{H}_\lambda(z) = \frac{1 - ZZ_j^*}{Z - Z_j} \frac{1 - Z Z_{\psi}^*(2S)}{Z - Z_{\psi}(2S)} \mathcal{H}_\lambda(z)
\]

\[
\hat{\mathcal{H}}_\lambda(z) = \left[\sum_{k=0}^{K} \alpha_k^{(\lambda)} z^k \right] \mathcal{F}_\lambda(z)
\]

where $\alpha_k^{(\lambda)}$ are complex coefficients, and the expansion is truncated after the term z^K (we use $K = 2$, i.e. 16 real-valued parameters)

- the modified EOS source code is available upon request (public repo and web page should be updated soon!)
Experimental constraints on \(z \) parametrisation

The residues of the poles are given by \(B \to K^* \psi_n \):

\[
\mathcal{H}_\lambda(q^2 \to M_{\psi_n}^2) \sim \frac{M_{\psi_n} f_{\psi_n}^{*} A_{\lambda}^{\psi_n}}{M_B^2 (q^2 - M_{\psi_n}^2)} + \ldots
\]

Angular analyses determine

\[
|r_{\perp}^{\psi_n}|, \ |r_{\parallel}^{\psi_n}|, \ |r_{0}^{\psi_n}|, \ \text{arg}\{r_{\perp}^{\psi_n} r_{0}^{\psi_n}^{*}\}, \ \text{arg}\{r_{\parallel}^{\psi_n} r_{0}^{\psi_n}^{*}\},
\]

where

\[
r_{\lambda}^{\psi_n} \equiv \text{Res}_{q^2 \to M_{\psi_n}^2} \frac{\mathcal{H}_\lambda(q^2)}{\mathcal{F}_\lambda(q^2)} \sim \frac{M_{\psi_n} f_{\psi_n}^{*} A_{\lambda}^{\psi_n}}{M_B^2 \mathcal{F}_\lambda(M_{\psi_n}^2)}
\]

We produce correlated pseudo-observables from a fit (5+5).
Prior Fit to z parametrisation

(Prior) Fit to Experimental and theoretical pseudo-observables

[Bobeth, Chrzaszcz, van Dyk, Virto 2017]

<table>
<thead>
<tr>
<th>k</th>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Re[$\alpha_k^{(\perp)}$]</td>
<td>-0.06 ± 0.21</td>
<td>-6.77 ± 0.27</td>
<td>18.96 ± 0.59</td>
</tr>
<tr>
<td>Re[$\alpha_k^{(</td>
<td></td>
<td>)}$]</td>
<td>-0.35 ± 0.62</td>
</tr>
<tr>
<td>Re[$\alpha_k^{(0)}$]</td>
<td>0.05 ± 1.52</td>
<td>17.26 ± 1.64</td>
<td></td>
</tr>
<tr>
<td>Im[$\alpha_k^{(\perp)}$]</td>
<td>-0.21 ± 2.25</td>
<td>1.17 ± 3.58</td>
<td>-0.08 ± 2.24</td>
</tr>
<tr>
<td>Im[$\alpha_k^{(</td>
<td></td>
<td>)}$]</td>
<td>-0.04 ± 3.67</td>
</tr>
<tr>
<td>Im[$\alpha_k^{(0)}$]</td>
<td>-0.05 ± 4.99</td>
<td>4.29 ± 3.14</td>
<td></td>
</tr>
</tbody>
</table>

Table 1: Mean values and standard deviations (in units of 10^{-4}) of the prior PDF for the parameters $\alpha_k^{(\lambda)}$.

[10x254]Re
[128x254]0:06
[140x254]0:21
[154x254]6:77
[157x254]0:27
[190x254]0:27
[195x254]18:96
[197x254]0:59
[63x152]Re
[74x152]∥
[82x152]0:35
[84x152]0:62
[88x152]3:13
[90x152]0:41
[93x152]12:20
[95x152]1:34
[63x134]Re
[74x134]0
[82x138]0:05
[84x139]1:52
[85x131]17:26
[87x132]1:64
[89x134]–
[63x96]Im
[74x96]∥
[82x100]0:21
[84x102]2:25
[88x103]1:17
[90x104]3:58
[93x105]–0:08
[95x106]2:24
[63x77]Im
[74x77]0
[82x81]0:05
[84x82]4:99
[85x83]0:05
[87x84]4:99
[89x85]4:29
[90x86]3:14
[93x87]–
Confronting LHCb Data
parametrisation does not provide enough freedom in the SM fit in order to deviate substantially from the prior.
SM predictions and Fit including $B \rightarrow K^* \mu^+ \mu^-$ data and C_9^{NP}

$$r_{A_1} \equiv \frac{A_1(q^2)}{V(q^2)} \times \text{kinematics}$$

- expected to be 1 in limit $m_b, E_{K^*} \rightarrow \infty$

- in fit to all $B \rightarrow K^* \ell^+ \mu^-$ data, fit prefers to change local form factor V over non-local correlators

[Bobeth, Chrzaszcz, van Dyk, Virto 2017]
New Physics Analysis

SM predictions and Fit including $B \to K^* \mu^+ \mu^-$ data and C_9^{NP}

[Bobeth, Chrzaszcz, van Dyk, Virto 2017]

the NP hypothesis with $C_9^{\text{NP}} \sim -1$ is strongly favoured by the fit

- pulls $> 3.4\sigma$ in 1D posterior of the parameter
- posterior odds (for some fits strongly) in favour of NP interpretation
Future experimental analyses

Sensitivity to New Physics in C_9 in $B \rightarrow K^* \mu^+ \mu^-$ from an unbinned fit

[Chrzaszcz, Mauri, Serra, Silva Coutinho, van Dyk w.i.p]

- close collaboration with LHCb members
 - preparation for unbinned analysis within LHCb
 - sensitivity study ongoing for LHCb and Belle II prospects
 - extracting C_9 in presence of z^3 will require simultaneous analysis of theory constraints + data
- first contacts by Belle II members
Future experimental analyses

Sensitivity to New Physics in C_9 in $B \to K^* \mu^+ \mu^-$ from an unbinned fit

Preliminary

[Chraszcz, Mauri, Serra, Silva Coutinho, van Dyk w.i.p]

σ vs. $N_{\text{sig}}^{B^0 \to K^{0*} \mu^+ \mu^-} \times 10^3$ for z^2 fit only

- Use $C_9^{\text{NP}} = -1$ as benchmark point
- Use theory inputs exactly as in pheno analysis [Bobeth, Chraszcz, van Dyk, Virto 2017]
- Sensitivity to coefficients of z^3
- (Some) sensitivity to z coefficients in absence of any theory priors!!
- Large increase in C_9^{NP} uncertainty
non-local effects are (figuratively) half of the amplitude, must include them!

technically challenging, but good progress since 2001

theory calculations most reliable at spacelike q^2

- LCSRs [Khodjamirian, Mannel, Pivovarov, Wang 2010]

access timelike q^2 via z-parametrizations

- aiming for global analyses to exploit parametrical correlations
- experimental colleagues have begun work to incorporate z-parametrization in their analyses

did not discuss large $q^2 > M_{\psi(2S)}^2$!
Backup slides
Calculations at negative q^2

LCSRs with B-meson DAs [Khodjamirian, Mannel, Wang 2012]

Soft gluon correction to O_8 contribution

Simpler calculation than charm-loop

Numerically very small
Calculations at negative q^2

Results for $\mathcal{H}^{(c)}$

$B^- \to \pi^- \ell\ell$

$B^- \to K^- \ell\ell$

[Khodjamirian, Mannel, Wang 2012], [Hambrock, Khodjamirian, Rusov 2015]
Calculations at negative q^2

▶ Results for $\mathcal{H}^{(u)}$

$B^- \rightarrow \pi^- \ell \ell$

$B^0 \rightarrow \pi^0 \ell \ell$

[Hambrock, Khodjamirian, Rusov 2015]