THE HIGGS PORTAL TO DARK MATTER AT THE LHC

Susanne Westhoff

Universität Heidelberg

Carl Zeiss Stiftung

Seminar — July 21, 2016 — Humboldt University Berlin

DARK MATTER!

DARK MATTER?

[ATLAS experiment, event n. 55091306, recorded on July 14, 2012]

THE "WIMP" MIRACLE

Relic dark matter abundance after thermal freeze-out: $\Omega_{\rm DM}h^2 \simeq \frac{3 \times 10^{-27} {\rm cm}^3 {\rm s}^{-1}}{\langle \sigma_A v \rangle} = 0.1199 \pm 0.0022 \quad \text{[Planck coll. 2015, arXiv:1502.01589]}$

Thermally averaged **annihilation cross section**: $\langle \sigma_A v \rangle = 3 \times 10^{-26} \text{cm}^3 \text{s}^{-1} \approx 1 \text{ pb}$

Weakly Interacting Massive Particle around $\Lambda_{\rm EW} \simeq 100 \, {\rm GeV}$?

PARTICLE DARK MATTER

Weak interactions with standard model suggest heavy mediator:

Example: fermion dark matter

$$M_{\eta}^2 \gg q^2$$
: $\mathcal{L}_{\text{eff}}^{(6)} = \mathcal{C}(\overline{\chi}\Gamma\chi)(\overline{\psi}\Gamma\psi) + \dots$

HIGGS-PORTAL DARK MATTER

 $\begin{array}{ll} (H^{\dagger}H) \text{ is a standard-model singlet.} & {}^{H} = \frac{1}{\sqrt{2}} \begin{pmatrix} \sqrt{2} \, G^{+} \\ v + h + i G^{0} \end{pmatrix} \\ \chi & \text{ is part of a dark sector.} \\ Z_{2} & \text{ symmetry} \rightarrow \text{DM candidate stable.} \end{array}$

Renormalizable portal interactions: [Patt, Wilczek, hep-ph/0605188] Scalar DM $\chi = S$: $\mathcal{L} = (S^{\dagger}S)(H^{\dagger}H)$ [e.g., O'Connell et al., hep-ph/0611014] Vector DM $\chi = V_{\mu}$: $\mathcal{L} = (V_{\mu}V^{\mu})(H^{\dagger}H)$ [e.g. Hambye, arXiv:0811.0172]

Effective portal interaction through mediator(s):

Fermion DM:
$$\mathcal{L}_{eff} = \frac{g_S}{\Lambda} (\bar{\chi}\chi) (H^{\dagger}H) + i \frac{g_P}{\Lambda} (\bar{\chi}\gamma_5\chi) (H^{\dagger}H)$$

HIGGS PORTAL AT THE LHC

UV-COMPLETE FERMION HIGGS PORTALS

Higgs portal at the LHC is "open" for mediator searches.

SINGLET-DOUBLET MODEL

Dark fermions mix through Yukawa interaction:

$$\mathcal{L} = -m_D \overline{\psi}_D \psi_D - m_S \overline{\psi}_S \psi_S - (y \overline{\psi}_D H \psi_S + \text{ h.c.})$$

$$\psi_D = \begin{pmatrix} \psi_D^+ \\ \psi_D^0 \end{pmatrix}$$

$$\langle H \rangle = v/\sqrt{2}$$

$$\chi_l^0 = \cos \theta \psi_D^0 - \sin \theta \psi_S$$

$$\chi_h^0 = \sin \theta \psi_D^0 + \cos \theta \psi_S$$

Mixing controls coupling to Higgs and gauge bosons:

Three parameters: $m_{\chi_l^0}, m_{\chi_h^0}, y$

SEARCH FOR (HIGGS-PORTAL) DARK MATTER

relic abundance (annihilation)

 $\left\{ m_{\chi_{l}^{0}}, m_{\chi_{h}^{0}}, y \right\}$

high-energy colliders (production)

Bounds from indirect detection are weak. [Beniwal et al., 1512.06458]

[picture taken at the Homestake Mine in Lead, SD]

BOUNDS ON DM-NUCLEON INTERACTIONS

Currently strongest bound on weak-scale DM scattering: LUX experiment: $\sigma_0(m_\chi \approx 100 \,{\rm GeV}) \lesssim 10^{-45} {\rm cm}^2$ [LUX coll., arXiv:1512.03506]

DARK FERMION-NUCLEON SCATTERING

direct detection bounds \rightarrow DM must be singlet-like, $\theta \approx \pi/2$.

RELIC ABUNDANCE

Dirac dark matter annihilation: $\chi \bar{\chi} \to Z \to q \bar{q}, \ell^+ \ell^-$

Observed abundance: $\Omega_{\chi}h^2=0.1199\pm0.0022$ [Planck coll., arXiv:1502.01589]

Direct detection strongly constrains DM annihilation rate.

Co-annihilation prevents over-abundance: small DM-mediator mass splitting

COLLIDER SEARCHES

Look for missing energy or production of mediators.

e.g. at the Large Hadron Collider

[ATLAS experiment, CERN]

Dark-matter production in proton-proton collisions:

$$\sigma(pp \to \chi\chi + X) = \int ds \,\mathcal{L}_{ij}(s) \hat{\sigma}_{ij}(s)$$

Mediator searches

Mono-jet searches

DARK FERMION SEARCHES AT COLLIDERS

Soft leptons: $m_m^0 - m_l^0, m^+ - m_l^0 \lesssim 30 \,\text{GeV}$

Similar to SUSY electroweakino searches: [Giudice, Han, Wang, Wang, arXiv:1004.4902]

[Gori, Jung, Wang, arXiv: 1307.5952] [Schwaller, Zurita, arXiv:1312.7350]

[Dutta et al., arXiv:1411.6043]

LHC Run II $E_T > 300 \,\mathrm{GeV}$ $p_T(j_1) > 300 \,\mathrm{GeV}$ $p_T(\ell) < 20 \,\mathrm{GeV}$

Vector boson fusion might be complementary. [Berlin et al., arXiv:1502.05044] Mono-jet signal is too small for LHC energies.

EWK-INO SEARCH WITH SOFT LEPTONS

Interpret these signatures in fermion Higgs portal context.

SUMMARY DARK DIRAC FERMIONS

SUMMARY DARK MAJORANA FERMIONS

Future direct detection experiments and/or a high-energy collider can test this model.

FERMION DARK MATTER AT FUTURE COLLIDERS

electron-positron (ILC): $\sqrt{s} = 500 - 1000 \,\mathrm{GeV}$

clean environment, less background

- fermion mediators: soft leptons (+ISR) sensitivity to mediator masses $m_\eta \lesssim \sqrt{s}/2$

[Berggren et al., arXiv:1309.7342]

proton-proton (FCC): $\sqrt{s} = 100 \,\mathrm{TeV}$

enhanced cross section allows for sharper cuts

- fermion mediators: soft leptons and jet(s)
- boson mediators: jet(s)+missing energy

[Low, Wang, arXiv:1404.0682] [Bramante et al., arXiv:1412.4789]

[Harris et al., arXiv:1509.02904]

extended mass reach $m_{\rm max}^{\rm FCC} \approx 5 \times m_{\rm max}^{\rm LHC}$

TAKE HOME

Higgs-portal fermion dark matter

- Opportunity at LHC Run II:

Search for resonant production of mediators with soft leptons and missing transverse energy.

- **Direct detection** experiments provide complementary information.
- Future lepton and high-energy hadron colliders are helpful to test such models conclusively.

BACKUP

VECTOR BOSON FUSION

Sensitivity to fermion Higgs portal at 13-TeV LHC:

[CMS-PAS-HIG-14-038]

DIRECT DETECTION BOUNDS

fermion dark matter with scalar Higgs-portal coupling:

MAJORANA SINGLET-DOUBLET MODEL

