The experimental frontier(s)

LHC / HL-LHC Plan

Linear Collider?
The precision frontier

• LHC Run 2 and beyond:
 high statistics \rightarrow high experimental precision
 needs to be matched by theory predictions!

• means predictions at (at least) next-to-leading order (NLO)
 in the strong (and electro-weak) coupling

• there are cases where predictions at NNLO
 (or even beyond, and/or resummation)
 are required to match the experimental precision
The precision frontier

• LHC Run 2 and beyond:
 high statistics → high experimental precision
 needs to be matched by theory predictions!

• means predictions at (at least) next-to-leading order (NLO)
 in the strong (and electro-weak) coupling

• there are cases where predictions at NNLO
 (or even beyond, and/or resummation)
 are required to match the experimental precision
 tedious calculations, automation desired!
current status:

- NLO automation:
current status:

- **NLO automation:**

 pretty advanced

 NLO matched to parton shower is new state of the art
current status:

- **NLO automation:**
 pretty advanced
 NLO matched to parton shower is new state of the art

- **NNLO:** still a long way to automation
Les Houches 05: NLO wishlist for LHC

<table>
<thead>
<tr>
<th>process $(V \in {Z, W, \gamma})$</th>
<th>background to</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. $pp \rightarrow VV$ jet</td>
<td>$t\bar{t}H$, new physics</td>
</tr>
<tr>
<td>2. $pp \rightarrow H + 2$ jets</td>
<td>H production by VBF</td>
</tr>
<tr>
<td>3. $pp \rightarrow t\bar{t} bb$</td>
<td>$t\bar{t}H$</td>
</tr>
<tr>
<td>4. $pp \rightarrow t\bar{t} + 2$ jets</td>
<td>$t\bar{t}H$</td>
</tr>
<tr>
<td>5. $pp \rightarrow VV bb$</td>
<td>VBF $\rightarrow H \rightarrow VV$, $t\bar{t}H$, new physics</td>
</tr>
<tr>
<td>6. $pp \rightarrow VV + 2$ jets</td>
<td>VBF $\rightarrow H \rightarrow VV$</td>
</tr>
<tr>
<td>7. $pp \rightarrow V + 3$ jets</td>
<td>various new physics signatures</td>
</tr>
<tr>
<td>8. $pp \rightarrow VVV$</td>
<td>SUSY trilepton</td>
</tr>
<tr>
<td>Process</td>
<td>Comments</td>
</tr>
<tr>
<td>---------</td>
<td>----------</td>
</tr>
<tr>
<td>$(V \in {Z, W, \gamma})$</td>
<td>WW jet completed by Dittmaier/Kallweit/Uwer [3]; Campbell/Ellis/Zanderighi [4] and Binoth/Karg/Kauer/Sanguinetti (in progress)</td>
</tr>
<tr>
<td>$pp \to VV$ jet</td>
<td>NLO QCD to the gg channel completed by Campbell/Ellis/Zanderighi [5]; NLO QCD+EW to the VBF channel completed by Ciccolini/Demmer/Dittmaier [6, 7] ZZZ completed by Lazopoulos/Melnikov/Petriello [8] and WWZ by Hankele/Zeppenfeld [9]</td>
</tr>
<tr>
<td>$pp \to VVV$</td>
<td>relevant for ttH</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Calculations completed since Les Houches 2005</th>
<th></th>
<th>Calculations remaining from Les Houches 2005</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. $pp \to t\bar{t}b\bar{b}$</td>
<td>relevant for ttH</td>
<td></td>
</tr>
<tr>
<td>2. $pp \to t\bar{t}+2$jets</td>
<td>relevant for VBF $\rightarrow H \rightarrow VV$, ttH</td>
<td></td>
</tr>
<tr>
<td>3. $PP \to VV+2$jets</td>
<td>relevant for VBF $\rightarrow H \rightarrow VV$</td>
<td></td>
</tr>
<tr>
<td>4. $PP \to V+3$jets</td>
<td>VBF contributions calculated by (Bozzi)/Jäger/Oleari/Zeppenfeld [10–12]</td>
<td></td>
</tr>
<tr>
<td>5. $pp \to b\bar{b}b\bar{b}$</td>
<td>various new physics signatures</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Calculations beyond NLO added in 2007</th>
<th></th>
<th>Calculations including electroweak effects</th>
</tr>
</thead>
<tbody>
<tr>
<td>6. $gg \rightarrow W^W^ , O(\alpha_s^2)$</td>
<td>backgrounds to Higgs</td>
<td></td>
</tr>
<tr>
<td>7. NNLO $pp \rightarrow t\bar{t}$</td>
<td>normalization of a benchmark process</td>
<td></td>
</tr>
<tr>
<td>8. NNLO to VBF and Z/γ+jet</td>
<td>Higgs couplings and SM benchmark</td>
<td></td>
</tr>
<tr>
<td>9. $pp \rightarrow b\bar{b}b\bar{b}$</td>
<td>Higgs and new physics signatures</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Calculations including electroweak effects</th>
<th></th>
<th>Calculations including electroweak effects</th>
</tr>
</thead>
<tbody>
<tr>
<td>10. $gg \rightarrow W^W^ , O(\alpha_s^2)$</td>
<td>backgrounds to Higgs</td>
<td></td>
</tr>
<tr>
<td>11. NNLO $pp \rightarrow t\bar{t}$</td>
<td>normalization of a benchmark process</td>
<td></td>
</tr>
<tr>
<td>12. NNLO to VBF and Z/γ+jet</td>
<td>Higgs couplings and SM benchmark</td>
<td></td>
</tr>
<tr>
<td>13. NNLO QCD+NLO EW for W/Z</td>
<td>precision calculation of a SM benchmark</td>
<td></td>
</tr>
<tr>
<td>Process ((V \in {Z, W, \gamma}))</td>
<td>Comments</td>
<td></td>
</tr>
<tr>
<td>---------------------------------</td>
<td>----------</td>
<td></td>
</tr>
<tr>
<td>Calculations completed since Les Houches 2005</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. (pp \rightarrow VV) jet</td>
<td>(WW) jet completed by Dittmaier/Kallweit/Uwer [4, 5]; Campbell/Ellis/Zanderighi [6]. (ZZ) jet completed by Binoth/Gleisberg/Karg/Kauer/Sanguinetti [7].</td>
<td></td>
</tr>
<tr>
<td>2. (pp \rightarrow \text{Higgs}+2\text{jets})</td>
<td>NLO QCD to the (gg) channel completed by Campbell/Ellis/Zanderighi [8]; NLO QCD+EW to the VBF channel completed by Ciccolini/Denner/Dittmaier [9, 10]. (ZZZ) completed by Lazo/oulois/Melnikov/Petriello [11] and (WWZ) by Hanke/Zeppenfeld [12] (see also Binoth/Ossola/Papadopoulos/Pittau [13]).</td>
<td></td>
</tr>
<tr>
<td>3. (pp \rightarrow VVV)</td>
<td>relevant for (t\bar{t}H) computed by Bredenstein/Denner/Dittmaier/Pozzorini [14, 15] and Bevilacqua/Czakon/Papadopoulos/Worek [16]. calculated by the Blackhat/Sherpa [17] and Rocket [18] collaborations.</td>
<td></td>
</tr>
<tr>
<td>4. (pp \rightarrow t\bar{t}bb)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. (pp \rightarrow V+3\text{jets})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calculations remaining from Les Houches 2005</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. (pp \rightarrow t\bar{t}+2\text{jets})</td>
<td>relevant for (t\bar{t}H) computed by Bevilacqua/Czakon/Papadopoulos/Worek [19].</td>
<td></td>
</tr>
<tr>
<td>7. (pp \rightarrow VV b\bar{b}), (8. pp \rightarrow VV+2\text{jets})</td>
<td>relevant for VBF (\rightarrow H \rightarrow VV, t\bar{t}H) relevant for VBF (\rightarrow H \rightarrow VV) VBF contributions calculated by (Bozzi)Jäger/Oleari/Zeppenfeld [20–22].</td>
<td></td>
</tr>
<tr>
<td>NLO calculations added to list in 2007</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. (pp \rightarrow b\bar{b}b\bar{b})</td>
<td>(q\bar{q}) channel calculated by Golem collaboration [23].</td>
<td></td>
</tr>
<tr>
<td>NLO calculations added to list in 2009</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10. (pp \rightarrow V+4\text{jets})</td>
<td>top pair production, various new physics signatures.</td>
<td></td>
</tr>
<tr>
<td>11. (pp \rightarrow Wbbj)</td>
<td>top, new physics signatures.</td>
<td></td>
</tr>
<tr>
<td>12. (pp \rightarrow t\bar{tt})</td>
<td>various new physics signatures.</td>
<td></td>
</tr>
<tr>
<td>Calculations beyond NLO added in 2007</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13. (gg \rightarrow W^+W^- O(\alpha_s^2\alpha_s^2))</td>
<td>backgrounds to Higgs.</td>
<td></td>
</tr>
<tr>
<td>14. NNLO (pp \rightarrow t\bar{tt})</td>
<td>normalization of a benchmark process.</td>
<td></td>
</tr>
<tr>
<td>15. NNLO to VBF and (Z/\gamma+\text{jet})</td>
<td>Higgs couplings and SM benchmark.</td>
<td></td>
</tr>
<tr>
<td>Calculations including electroweak effects</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16. NNLO QCD+NLO EW for (W/Z)</td>
<td>precision calculation of a SM benchmark.</td>
<td></td>
</tr>
</tbody>
</table>
Les Houches 2011:

NLO QCD wishlist

<table>
<thead>
<tr>
<th>Process ($V \in {Z, W, \gamma}$)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. $pp \to VV$ jet</td>
<td>WW jet completed by Dittmaier/Kallweit/Uwer [27, 28]; Campbell/Ellis/Zanderighi [29]. ZZ jet completed by Binoth/Gliesberg/Karg/Kauer/Sanguinetti [30]. NLO QCD to the gg channel completed by Campbell/Ellis/Zanderighi [31]; NLO QCD+EW to the VBF channel completed by Ciccolini/Denner/Dittmaier [32, 33]. Interference QCD-EW in VBF channel [34, 35]. ZZZ completed by Lazopoulos/Melnikov/Petriello [36] and WWZ by Hankele/Zeppenfeld [37], see also Binoth/Ossola/Papadopoulos/Pittau [38]. VBFNLO [39, 40] meanwhile also contains $WW, ZZ, WW\gamma, ZZ\gamma, WZ\gamma, W\gamma\gamma, Z\gamma\gamma, \gamma\gamma\gamma$. $ZZ\gamma$, $W\gamma\gamma$ relevant for $t\bar{t}H$, computed by Bredenstein/Denner/Dittmaier/Pozzorini [41, 42] and Bevilacqua/Czakon/Papadopoulos/Pittau/Worek [41] and Kotta et al. [44], W+3jets calculated by the Blackhat/Sherpa [44] and Rocket [45] collaborations. $Z+3$jets by Blackhat/Sherpa [46].</td>
</tr>
<tr>
<td>2. $pp \to Higgs+2$ jets</td>
<td>relevant for $t\bar{t}H$, computed by Bevilacqua/Czakon/Papadopoulos/Worek [47, 48]. W+jets calculated by Pozzorini et al. [25], Bevilacqua et al. [23], W+jets [49], W+jets [50], VBF contributions calculated by Bozzi et al. [51], Jager/Oleari/Zeppenfeld [52, 53].</td>
</tr>
<tr>
<td>3. $pp \to VVV$</td>
<td>relevant for $t\bar{t}H$, computed by Bevilacqua/Czakon/Papadopoulos/Worek [47, 48]. W+jets calculated by Pozzorini et al. [25], Bevilacqua et al. [23], W+jets [49], W+jets [50], VBF contributions calculated by Bozzi et al. [51], Jager/Oleari/Zeppenfeld [52, 53].</td>
</tr>
<tr>
<td>4. $pp \to t\bar{t}bb$</td>
<td>relevant for $t\bar{t}H$, computed by Bevilacqua/Czakon/Papadopoulos/Worek [47, 48]. W+jets calculated by Pozzorini et al. [25], Bevilacqua et al. [23], W+jets [49], W+jets [50], VBF contributions calculated by Bozzi et al. [51], Jager/Oleari/Zeppenfeld [52, 53].</td>
</tr>
<tr>
<td>5. $pp \to V+3$ jets</td>
<td>relevant for $t\bar{t}H$, computed by Bevilacqua/Czakon/Papadopoulos/Worek [47, 48]. W+jets calculated by Pozzorini et al. [25], Bevilacqua et al. [23], W+jets [49], W+jets [50], VBF contributions calculated by Bozzi et al. [51], Jager/Oleari/Zeppenfeld [52, 53].</td>
</tr>
</tbody>
</table>

Calculations remaining from Les Houches 2005

<table>
<thead>
<tr>
<th>Process</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>6. $pp \to t\bar{t}+2$ jets</td>
<td>relevant for $t\bar{t}H$, computed by Bevilacqua/Czakon/Papadopoulos/Worek [47, 48]. W+jets calculated by Pozzorini et al. [25], Bevilacqua et al. [23], W+jets [49], W+jets [50], VBF contributions calculated by Bozzi et al. [51], Jager/Oleari/Zeppenfeld [52, 53].</td>
</tr>
<tr>
<td>7. $pp \to VV b\bar{b}$</td>
<td>relevant for $t\bar{t}H$, computed by Bevilacqua/Czakon/Papadopoulos/Worek [47, 48]. W+jets calculated by Pozzorini et al. [25], Bevilacqua et al. [23], W+jets [49], W+jets [50], VBF contributions calculated by Bozzi et al. [51], Jager/Oleari/Zeppenfeld [52, 53].</td>
</tr>
<tr>
<td>8. $pp \to VV+2$ jets</td>
<td>relevant for $t\bar{t}H$, computed by Bevilacqua/Czakon/Papadopoulos/Worek [47, 48]. W+jets calculated by Pozzorini et al. [25], Bevilacqua et al. [23], W+jets [49], W+jets [50], VBF contributions calculated by Bozzi et al. [51], Jager/Oleari/Zeppenfeld [52, 53].</td>
</tr>
</tbody>
</table>

NLO calculations added to list in 2007

<table>
<thead>
<tr>
<th>Process</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>9. $pp \to bbbb$</td>
<td>relevant for $t\bar{t}H$, computed by Bevilacqua/Czakon/Papadopoulos/Worek [47, 48]. W+jets calculated by Pozzorini et al. [25], Bevilacqua et al. [23], W+jets [49], W+jets [50], VBF contributions calculated by Bozzi et al. [51], Jager/Oleari/Zeppenfeld [52, 53].</td>
</tr>
</tbody>
</table>

NLO calculations added to list in 2009

<table>
<thead>
<tr>
<th>Process</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>10. $pp \to V+4$ jets</td>
<td>top pair production, various new physics signatures Blackhat/Sherpa: $W+4$jets [22], $Z+4$jets [20].</td>
</tr>
<tr>
<td>11. $pp \to Wbb\bar{b}$</td>
<td>top pair production, various new physics signatures Blackhat/Sherpa: $W+4$jets [22], $Z+4$jets [20].</td>
</tr>
<tr>
<td>12. $pp \to t\bar{t}t\bar{t}$</td>
<td>top pair production, various new physics signatures Blackhat/Sherpa: $W+4$jets [22], $Z+4$jets [20].</td>
</tr>
<tr>
<td>$pp \to 4$ jets</td>
<td>Blackhat/Sherpa [19].</td>
</tr>
</tbody>
</table>
Les Houches 2011:

NLO QCD wishlist retired

“NLO revolution”

<table>
<thead>
<tr>
<th>Process ((V \in {Z, W, \gamma}))</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. (pp \rightarrow VV) jet</td>
<td>(WW) jet completed by Dittmaier/Kallweit/Uwer [27, 28]; Campbell/Ellis/Zanderighi [29]. (ZZ) jet completed by Binoth/Gliesberg/Karg/Kauer/Sanguinetti [30]. NLO QCD to the (gg) channel completed by Campbell/Ellis/Zanderighi [31]. NLO QCD+EW to the VBF channel completed by Ciccolini/Denner/Dittmaier [32, 33]. Interference QCD-EW in VBF channel [34, 35]. (ZZ) completed by Lazopoulos/Melnikov/Petriello [36] and (WWZ) by Hankele/Zeppenfeld [37]. see also Binoth/Ossola/Papadopoulos/Pittau [38]. VBFNLO [39, 40] meanwhile also contains (WWW, ZZW, WW\gamma, ZZ\gamma, WZ\gamma, W\gamma\gamma, ZZ\gamma, W\gamma\gamma, Z\gamma\gamma, \gamma\gamma\gamma) relevant for (ttH), computed by Bredenstein/Denner/Dittmaier/Pozzorini [41, 42] and Bevilacqua/Czakon/Papadopoulos/Pittau/Worek [43]. (W+3)jets calculated by the Blackhat/Sherpa [44] and Rocket [45] collaborations (Z+3)jets by Blackhat/Sherpa [46].</td>
</tr>
<tr>
<td>2. (pp \rightarrow \text{Higgs+2jets})</td>
<td></td>
</tr>
<tr>
<td>3. (pp \rightarrow VVV)</td>
<td></td>
</tr>
<tr>
<td>4. (pp \rightarrow t\bar{t}bb)</td>
<td>relevant for (ttH), computed by Bevilacqua/Czakon/Papadopoulos/Worek [47, 48] Pozzorini et al.[25], Bevilacqua et al.[23] (W+W^+) and (W^-+)jets [49], (W^+W^-+)jets [50], VBF contributions calculated by (Bozzi)/Jäger/Oleari/Zeppenfeld [51, 52, 53]</td>
</tr>
<tr>
<td>5. (pp \rightarrow V+3)jets</td>
<td></td>
</tr>
<tr>
<td>Calculations remaining from Les Houches 2005</td>
<td></td>
</tr>
<tr>
<td>6. (pp \rightarrow \bar{t}\bar{t}+2)jets</td>
<td>relevant for (ttH), computed by Bevilacqua/Czakon/Papadopoulos/Worek [47, 48] Pozzorini et al.[25], Bevilacqua et al.[23] (W+W^+) and (W^-+)jets [49], (W^+W^-+)jets [50], VBF contributions calculated by (Bozzi)/Jäger/Oleari/Zeppenfeld [51, 52, 53]</td>
</tr>
<tr>
<td>7. (pp \rightarrow VWbb)</td>
<td></td>
</tr>
<tr>
<td>8. (pp \rightarrow VV+2)jets</td>
<td></td>
</tr>
<tr>
<td>NLO calculations added to list in 2007</td>
<td></td>
</tr>
<tr>
<td>9. (pp \rightarrow bbbb)</td>
<td>Binoth et al. [54, 55]</td>
</tr>
<tr>
<td>NLO calculations added to list in 2009</td>
<td></td>
</tr>
<tr>
<td>10. (pp \rightarrow V+4) jets</td>
<td>top pair production, various new physics signatures Blackhat/Sherpa: (W+4)jets [22], (Z+4)jets [20] see also HEJ [56] for (W+n)jets top, new physics signatures, Reina/Schutzmeier [11] various new physics signatures</td>
</tr>
<tr>
<td>11. (pp \rightarrow Wbbj)</td>
<td></td>
</tr>
<tr>
<td>12. (pp \rightarrow tt\bar{t}\bar{t})</td>
<td></td>
</tr>
<tr>
<td>also: (pp \rightarrow 4) jets</td>
<td>Blackhat/Sherpa [19]</td>
</tr>
</tbody>
</table>
what caused the “NLO revolution”?

- gauge dependent off-shell states introduce “spurious” terms
- try to use on-shell quantities as building blocks

- construct N-point one-loop amplitudes from tree amplitudes
 Bern, Dixon, Kosower ‘98

- use of complex momenta in generalised cuts
 Britto, Cachazo, Feng ’04

- numerical reduction at integrand level
 Ossola, Papadopoulos, Pittau ’06

- D-dimensional unitarity
 Anastasiou, Britto, Feng, Kunszt, Mastrolia ’06; Forde ’07; Giele, Kunszt, Melnikov ’08, Badger ’09, ...
one-loop N-point amplitude:

\[= \sum_i C_i^4 + \sum_i C_i^3 + \sum_i C_i^2 + \mathcal{R} \]

“master integrals”: boxes, triangles, bubbles

most complicated functions are dilogarithms

\(C_i^n \) can be obtained by numerical reduction at integrand level

automated tools: CutTools, Samurai, Ninja

Ossola, Papadopoulos, Pittau

Mastrolia, Ossola, Reiter, Tramontano, van Deurzen

Mastrolia, Mirabella, Peraro
But …

… fulfilled wishes create more wishes …
Les Houches 2013: Higgs

<table>
<thead>
<tr>
<th>Process</th>
<th>State of the Art</th>
<th>Desired</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>$d\sigma @ NNLO$ QCD (expansion in $1/m_t$) full m_t/m_b dependence @ NLO QCD and @ NLO EW NNLO+PS, in the $m_t \to \infty$ limit</td>
<td>$d\sigma @ NNNLO$ QCD (infinite-m_t limit) full m_t/m_b dependence @ NNLO QCD and @ NNLO QCD+EW NNLO+PS with finite top quark mass effects</td>
</tr>
<tr>
<td>H + j</td>
<td>$d\sigma @ NNLO$ QCD (g only) and finite-quark-mass effects @ LO QCD and LO EW</td>
<td>$d\sigma @ NNLO$ QCD (infinite-m_t limit) and finite-quark-mass effects @ NLO QCD and NLO EW</td>
</tr>
<tr>
<td>H + 2j</td>
<td>$\sigma_{tot}(VBF) @ NNLO(DIS)$ QCD $d\sigma(VBF) @ NLO$ EW $d\sigma(gg) @ NLO$ QCD (infinite-m_t limit) and finite-quark-mass effects @ LO QCD</td>
<td>$d\sigma(VBF) @ NNLO$ QCD + NLO EW $d\sigma(gg) @ NNLO$ QCD (infinite-m_t limit) and finite-quark-mass effects @ NLO QCD and NLO EW</td>
</tr>
<tr>
<td>H + V</td>
<td>$d\sigma @ NNLO$ QCD $d\sigma @ NLO$ EW $\sigma_{tot}(gg) @ NLO$ QCD (infinite-m_t limit)</td>
<td>with $H \to bb$ @ same accuracy $d\sigma(gg) @ NLO$ QCD with full m_t/m_b dependence</td>
</tr>
<tr>
<td>$t\bar{t}H$ and $t\bar{t}$</td>
<td>$d\sigma$(stable top) @ LO QCD</td>
<td>$d\sigma$(top decays) @ NLO QCD and NLO EW</td>
</tr>
<tr>
<td>$t\bar{t}H$</td>
<td>$d\sigma$(stable tops) @ NLO QCD</td>
<td>$d\sigma$(top decays) @ NLO QCD and NLO EW</td>
</tr>
<tr>
<td>$gg \to HH$</td>
<td>$d\sigma @ NLO$ QCD (leading m_t dependence) $d\sigma @ NNLO$ QCD (infinite-m_t limit)</td>
<td>$d\sigma @ NLO$ QCD with full m_t/m_b dependence</td>
</tr>
<tr>
<td>Process</td>
<td>State of the Art</td>
<td>Desired</td>
</tr>
<tr>
<td>---------</td>
<td>------------------</td>
<td>---------</td>
</tr>
</tbody>
</table>
| $t\bar{t}$ | σ_{tot} (stable tops) @ NNLO QCD
σ(top decays) @ NLO QCD
σ(stable tops) @ NLO EW | σ(top decays)
@ NNLO QCD + NLO EW |
| $t\bar{t} + j(j)$ | σ(NWA top decays) @ NLO QCD | σ(NWA top decays)
@ NNLO QCD + NLO EW |
| $t\bar{t} + Z$ | σ(stable tops) @ NLO QCD | σ(top decays) @ NLO QCD
+ NLO EW |
| single-top | σ(NWA top decays) @ NLO QCD | σ(NWA top decays)
@ NNLO QCD + NLO EW |
| dijet | σ @ NNLO QCD (g only)
σ @ NLO EW (weak) | σ @ NNLO QCD + NLO EW |
| 3j | σ @ NLO QCD | σ @ NNLO QCD + NLO EW |
| $\gamma + j$ | σ @ NLO QCD
σ @ NLO EW | σ @ NNLO QCD + NLO EW |
Les Houches 2013: vector bosons

<table>
<thead>
<tr>
<th>Process</th>
<th>State of the Art</th>
<th>Desired</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td>$d\sigma(\text{lept. } V \text{ decay})$ @ NNLO QCD</td>
<td>$d\sigma(\text{lept. } V \text{ decay})$ @ NNNLO QCD and @ NNLO QCD + EW</td>
</tr>
<tr>
<td></td>
<td>$d\sigma(\text{lept. } V \text{ decay})$ @ NLO EW</td>
<td>$d\sigma(\text{lept. } V \text{ decay})$ @ NNLO QCD + NLO EW</td>
</tr>
<tr>
<td>$V + j(j)$</td>
<td>$d\sigma(\text{lept. } V \text{ decay})$ @ NLO QCD</td>
<td>$d\sigma(\text{decaying off-shell } V)$ @ NNLO QCD + NLO EW</td>
</tr>
<tr>
<td></td>
<td>$d\sigma(\text{lept. } V \text{ decay})$ @ NLO EW</td>
<td>@ NNLO QCD + NLO EW</td>
</tr>
<tr>
<td>VV'</td>
<td>$d\sigma(V \text{ decays})$ @ NLO QCD</td>
<td>$d\sigma(V \text{ decays})$ @ NLO QCD</td>
</tr>
<tr>
<td></td>
<td>$d\sigma(\text{on-shell } V \text{ decays})$ @ NLO EW</td>
<td>@ NNLO QCD + NLO EW</td>
</tr>
<tr>
<td>$g g \rightarrow V V$</td>
<td>$d\sigma(V \text{ decays})$ @ LO QCD</td>
<td>$d\sigma(V \text{ decays})$ @ NLO QCD</td>
</tr>
<tr>
<td>$V\gamma$</td>
<td>$d\sigma(V \text{ decay})$ @ NLO QCD</td>
<td>$d\sigma(V \text{ decay})$ @ NNLO QCD + NLO EW</td>
</tr>
<tr>
<td></td>
<td>$d\sigma(\text{PA, } V \text{ decay})$ @ NLO EW</td>
<td>@ NNLO QCD + NLO EW</td>
</tr>
<tr>
<td>$V b b$</td>
<td>$d\sigma(\text{lept. } V \text{ decay})$ @ NLO QCD</td>
<td>$d\sigma(\text{lept. } V \text{ decay})$ @ NNNLO QCD + NLO EW</td>
</tr>
<tr>
<td></td>
<td>massive b</td>
<td>+ NLO EW, massless b</td>
</tr>
<tr>
<td>$VV'\gamma$</td>
<td>$d\sigma(V \text{ decays})$ @ NLO QCD</td>
<td>$d\sigma(V \text{ decays})$ @ NLO QCD + NLO EW</td>
</tr>
<tr>
<td>VV''</td>
<td>$d\sigma(V \text{ decays})$ @ NLO QCD</td>
<td>$d\sigma(V \text{ decays})$ @ NLO QCD + NLO EW</td>
</tr>
<tr>
<td>$V V' + j$</td>
<td>$d\sigma(V \text{ decays})$ @ NLO QCD</td>
<td>$d\sigma(V \text{ decays})$ @ NLO QCD + NLO EW</td>
</tr>
<tr>
<td>$V V' + j j$</td>
<td>$d\sigma(V \text{ decays})$ @ NLO QCD</td>
<td>$d\sigma(V \text{ decays})$ @ NLO QCD + NLO EW</td>
</tr>
<tr>
<td>$\gamma \gamma$</td>
<td>$d\sigma$ @ NNLO QCD + NLO EW</td>
<td>q_{T} resummation at NNLL matched to NNLO</td>
</tr>
</tbody>
</table>
Measure of complexity

#loops + #legs + #scales (masses, off-shellness)

Complexity does not scale linearly!

(refers to physical results, not individual integrals)
NLO automation

\[
\sigma^{NLO} = \int_{m+1} \left[d\sigma^R - d\sigma^S \right]_{\epsilon=0}^{\epsilon=0} + \int_m \left[\frac{d\sigma^V}{\text{cancel poles}} + \int_s d\sigma^S \right]_{\epsilon=0}^{\epsilon=0}
\]

- tree level
- virtual corrections
- real corrections
- infrared subtractions
NLO automation

After the "NLO revolution" not the bottleneck anymore

Automated tools exist at NLO

\[\sigma^{NLO} = \int_{m+1} \left[d\sigma^R - d\sigma^S \right]_{\epsilon=0} + \int_m \left[\begin{array}{c} d\sigma^V \text{ cancel poles} \\ \text{analytically} \\ \int_s d\sigma^S \text{ numerically} \end{array} \right]_{\epsilon=0} \]
NLO automation

Monte Carlo program
• tree amplitudes
• infrared subtractions
• phase space integration/ event generation
• parton shower (optional)

One-loop provider
• virtual amplitude
 BLHA or custom made

all in one:
• Powheg
• Sherpa
• Herwig7/Matchbox
• Geneva
• Vincia

collection of pre-computed processes:
• MCFM
• VBF_NLO

• MG5_aMC@NLO
• Helac-NLO
• Grace
• Blackhat
• GoSam
• Madloop
• NJet
• OpenLoops
• Recola
NLO automation

one-loop reduction libraries:

unitarity-based:
- CutTools
- Samurai
- Ninja

• Ossola, Papadopoulos, Pittau
• Mastrolia, Ossola, Reiter, Tramontano
• Mastrolia, Mirabella, Peraro

tensor reduction and scalar integrals:
- LoopTools
- golem95
- PJFry
- Collier

• T. Hahn et al.
• Binoth, Guillet, GH, Reiter, von Soden
• Fleischer, Riemann, Yundin
• Denner, Dittmaier, Höfer

scalar integrals:
- OneLoop
- QCDLoop
- FF

• van Hameren
• Ellis, Zanderighi
• van Oldenborgh, Vermaseren
GoSam @ 1-loop

http://gosam.hepforge.org
Interface to Monte Carlo programs

both original Binoth-Les-Houches-Accord
and extended standards [CPC 185 (2014)]
are supported

allows combination with
different MC programs
Interface to Monte Carlo programs

both original Binoth-Les-Houches-Accord and extended standards [CPC 185 (2014)] are supported.

allows combination with different MC programs
Interface to Monte Carlo programs

both original Binoth-Les-Houches-Accord and extended standards [CPC 185 (2014)] are supported

allows combination with different MC programs
Installation and usage of GoSam

installation: installation script downloads GoSam and reduction libraries and installs everything

```
wget http://gosam.hepforge.org/gosam-installer/gosam_installer.py
chmod +x gosam_installer.py
./gosam_installer.py  [--prefix=installation_path]
```

installation script will also install FORM [J.Vermaseren et al.] and QGraf [P. Nogueira] if not present already
Installation and usage of GoSam

installation: installation script downloads GoSam and reduction libraries and installs everything

```bash
wget http://gosam.hepforge.org/gosam-installer/gosam_installer.py
chmod +x gosam_installer.py
./gosam_installer.py [--prefix=installation_path]
```

installation script will also install FORM [J. Vermaseren et al.] and QGraf [P. Nogueira] if not present already

usage: create template for input file `process.in`:

```bash
gosam.py --template process.in
```

edit input file `process.in` to generate amplitude (standalone):

```bash
gosam.py process.in
```

within BLHA:

```bash
gosam.py --olp order.lh
```

example input file:

```
# example input file:
process_name=eett
process_path=eett
in= e+, e-
out= t, t~
model= smdiag
model.options=ewchoose
order= gs, 0, 2
zero=me
one=gs, e
regularisation_scheme=dred
```

many more options available, will take defaults if not set
Examples of processes calculated with GoSam

- **GoSam + MadDipole/MadGraph/MadEvent**

 \[pp \rightarrow W^+W^- + 2 \text{jets} \quad \text{[Greiner, GH, Mastrolia, Ossola, Reiter, Tramontano '12]} \]

 \[pp \rightarrow \tilde{\chi}^0_1 \tilde{\chi}^0_1 + \text{jet} \quad \text{[Cullen, Greiner, GH '12]} \]

 \[pp \rightarrow (G \rightarrow \gamma\gamma) + 1 \text{jet} \quad \text{[Greiner, GH, Reichel, von Soden-Fraunhofen '13]} \]

 \[pp \rightarrow \gamma\gamma + 1, 2 \text{jets} \quad \text{[Gehrmann, Greiner, GH '13]} \]

 \[pp \rightarrow HH + 2 \text{jets} \quad \text{[Dolan, Englert, Greiner, Spannowsky '13]} \]

- **GoSam + Sherpa**

 \[pp \rightarrow W^+W^+ + 2 \text{jets} \quad \text{[Greiner, GH, Luisoni, Mastrolia, Ossola, Reiter, Tramontano '12]} \]

 \[pp \rightarrow H + 2 \text{jets} \quad \text{[van Deurzen, Greiner, Luisoni, Mastrolia, Mirabella, Ossola, Peraro, von Soden-Fraunhofen, Tramontano '13]} \]

 \[pp \rightarrow W^+W^- b\bar{b} \quad \text{[GH, Maier, Nisius, Schlenk, Winter '13]} \]

 \[pp \rightarrow t\bar{t} + 0, 1 \text{jet} \quad \text{(includes shower) [Höche, Huang, Luisoni, Schönherr, Winter '13]} \]

 \[pp \rightarrow H t\bar{t} + 0, 1 \text{jet} \quad \text{[van Deurzen, Luisoni, Mastrolia, Mirabella, Ossola, Peraro '13]} \]

- **GoSam + Powheg (includes shower)**

 \[pp \rightarrow HW/HZ + 0, 1 \text{jet} \quad \text{[Luisoni, Nason, Oleari, Tramontano '13]} \]

 \[pp \rightarrow Wb\bar{b} + 1 \text{jet} \quad \text{[Luisoni, Oleari, Tramontano '15]} \]

- **GoSam + Herwig++/Matchbox (includes shower)**

 \[pp \rightarrow Z + \text{jet} \quad \text{[Bellm, Gieseke, Greiner, GH, Plätzer, Reuschle, von Soden-Fraunhofen '13]} \]

- **GoSam + MadDipole/MadGraph/MadEvent + Sherpa**

 \[pp \rightarrow H + 3 \text{jets} \quad \text{[Cullen, v.Deurzen, Greiner, Luisoni, Mastrolia, Mirabella, Ossola, Peraro, Tramontano '13,'15]} \]
Examples of processes calculated with GoSam

• GoSam + MadDipole/MadGraph/MadEvent
 \[pp \rightarrow W^+W^- + 2 \text{ jets} \quad \text{[Greiner, GH, Mastrolia, Ossola, Reiter, Tramontano '12]} \]
 \[pp \rightarrow \tilde{\chi}_1^0 \tilde{\chi}_1^0 + \text{jet} \quad \text{[Cullen, Greiner, GH '12]} \]
 \[pp \rightarrow (G \rightarrow \gamma\gamma) + 1 \text{ jet} \quad \text{[Greiner, GH, Reichel, von Soden-Fraunhofen '13]} \]
 \[pp \rightarrow \gamma\gamma + 1, 2 \text{ jets} \quad \text{[Gehrmann, Greiner, GH '13]} \]
 \[pp \rightarrow HH + 2 \text{ jets} \quad \text{[Dolan, Englert, Greiner, Spannowsky '15]} \]

• GoSam + Sherpa
 \[pp \rightarrow W^+W^+ + 2 \text{ jets} \quad \text{[Greiner, GH, Luisoni, Mastrolia, Ossola, Reiter, Tramontano '12]} \]
 \[pp \rightarrow H + 2 \text{ jets} \quad \text{[van Deurzen, Greiner, Luisoni, Mastrolia, Mirabella, Ossola, Peraro, von Soden-Fraunhofen, Tramontano '13]} \]
 \[pp \rightarrow W^+W^- b\bar{b} \quad \text{[Höche, Huang, Luisoni, Schönherr, Winter '13]} \]
 \[pp \rightarrow t\bar{t} + 0, 1 \text{ jet} \quad \text{(includes shower)} \quad \text{[Höche, Huang, Luisoni, Schönherr, Winter '13]} \]
 \[pp \rightarrow H + t\bar{t} + 0, 1 \text{ jet} \quad \text{[van Deurzen, Luisoni, Mastrolia, Mirabella, Ossola, Peraro '13]} \]

• GoSam + Powheg (includes shower)
 \[pp \rightarrow HW/HZ + 0, 1 \text{ jet} \quad \text{[Luisoni, Nason, Oleari, Tramontano '13]} \]
 \[pp \rightarrow Wb\bar{b} + 1 \text{ jet} \quad \text{[Luisoni, Oleari, Tramontano '15]} \]

• GoSam + Herwig++/Matchbox (includes shower)
 \[pp \rightarrow Z + \text{jet} \quad \text{[Bellm, Gieseke, Greiner, GH, Plätzer, Reuschle, von Soden-Fraunhofen '13]} \]

• GoSam + MadDipole/MadGraph/MadEvent + Sherpa
 \[pp \rightarrow H + 3 \text{ jets} \quad \text{[Cullen, v.Deurzen, Greiner, Luisoni, Mastrolia, Mirabella, Ossola, Peraro, Tramontano '13,'15]} \]

also: EW corrections, BSM [Greiner et al '15]
beyond one loop
building blocks of higher order calculations

example 2 to 2 scattering

LO: usually tree level diagrams

NLO: one loop (virtual) + extra real radiation + subtraction terms

NNLO:

double real

1-loop virtual

× single real

2-loop virtual
need efficient methods to

- generate the amplitudes
- reduce the loop amplitudes to coefficients \(\otimes \) master integrals
- calculate the master integrals

individual contributions to an amplitude (virtual/real) are usually \textit{divergent}

- requires the isolation of the singularities in epsilon

 (dimensional regularisation)

- \textbf{need a good subtraction method for singularities of individual contributions}
need efficient methods to

• generate the amplitudes
• reduce the loop amplitudes to coefficients \otimes master integrals
• calculate the master integrals

individual contributions to an amplitude (virtual/real) are usually \textit{divergent}

• requires the isolation of the singularities in epsilon
 (dimensional regularisation)

• need a good \textit{subtraction} method for singularities of individual contributions
need efficient methods to

- generate the amplitudes
- reduce the loop amplitudes to coefficients \(\otimes \) master integrals
- calculate the master integrals

individual contributions to an amplitude (virtual/real) are usually *divergent*

- requires the isolation of the singularities in epsilon (dimensional regularisation)

- need a good subtraction method for singularities of individual contributions
automated 2-loop amplitudes: GoSam @ 2 loops

- Projectors to form factors
- Integral families
- GoSam.py process.rc
- Process definition

Create:
- QGRAF files
- Python, FORM files
- Qgraf, FORM, Python

Run:
- Create amplitude files
- Create Reduce files
- Create SecDec files

Diagram pictures

Numerical integration

Two-loop amplitude
credits

GoSam 2–loop

QGRAF
P. Nogueira

FORM
J. Vermaseren, J. Kuipers, T. Ueda, J. Vollinga

Reduze
C. Studerus, A. von Manteuffel

GoSam 1–loop
see above

SecDec
see later
NNLO automation

- need an efficient method to isolate and subtract infrared singularities from the double real radiation part

Five main methods:

- **Antenna subtraction**
 - Gehrmann, Gehrmann-De Ridder, NG (05)

- **q_T subtraction**
 - Catani, Grazzini (07)

- **Colourful subtraction**
 - Del Duca, Somogyi, Tronsanyi
 - Czakon (10); Boughezal et al (11)

- **Stripper**
 - Boughezal, Focke, Liu, Petriello (15); Gaunt, Stahlhofen, Tackmann, Walsh (15)

Each method has its advantages and disadvantages

<table>
<thead>
<tr>
<th>Method</th>
<th>Analytic</th>
<th>FS Colour</th>
<th>IS Colour</th>
<th>Local</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antenna</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>x</td>
</tr>
<tr>
<td>q_T</td>
<td>✓</td>
<td>x</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Colourful</td>
<td>✓</td>
<td>x</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Stripper</td>
<td>x</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>N-jettiness</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>
antenna subtraction

\[\text{e+e-} \rightarrow 3 \text{ jets} \quad \text{[Gehrmann-DeRidder, Gehrmann, Glover, GH '07; Weinzierl '08]} \]

\[\text{pp} \rightarrow 2 \text{ jets} \quad \text{[Currie, Gehrmann-DeRidder, Gehrmann, Glover, Pires '13,'14]} \]

\[\text{pp} \rightarrow \text{H+jet} \quad \text{[Chen, Gehrmann, Glover, Jaquier '14]} \]

\[\text{pp} \rightarrow \text{t \overline{t} bar} \quad \text{[Abelof, Gehrmann-DeRidder, Maierhöfer, Pozzorini '13, '14]} \]

\[\text{pp} \rightarrow \text{Z+jet} \quad \text{[Gehrmann-DeRidder, Gehrmann, Glover, Huss, Morgan '15]} \]

qt subtraction (colourless final states)

\[\text{pp} \rightarrow \text{H, pp} \rightarrow \text{V, pp} \rightarrow \text{HV, pp} \rightarrow \gamma \gamma \]

[Catani, Cieri, De Florian, Ferrera, Grazzini, Tramontano '07 - '14]

\[\text{pp} \rightarrow \text{Z} \gamma \quad \text{[Grazzini, Kallweit, Rathlev, Torre '13]} \]

\[\text{pp} \rightarrow \text{Z Z, pp} \rightarrow \text{W+W-} \quad \text{[Cascioli, T.Gehrmann, Grazzini, Kallweit, Maierhöfer, von Manteuffel, Pozzorini, Rathlev, Tancredi, Weihs '13,'14]} \]

N-jettiness

\[\text{pp} \rightarrow \text{H+jet} \quad \text{[Boughezal, Focke, Giele, Liu, Petriello '15]} \]

\[\text{pp} \rightarrow \text{W+jet} \quad \text{[Boughezal, Focke, Liu, Petriello '15]} \]

\[\text{pp} \rightarrow \text{H+V} \quad \text{[Campbell, Ellis, Williams '16]} \]

sector-improved residue subtraction

\[\text{pp} \rightarrow \text{t \overline{t} bar} \quad \text{[Czakon, Fiedler, Mitov '13,'15]} \]

\[\text{pp} \rightarrow \text{H+jet} \quad \text{[Boughezal, Caola, Melnikov, Petriello, Schulze '14]} \]

\[\text{pp} \rightarrow \text{t+jet} \quad \text{[Brucherseifer, Caola, Melnikov '14]} \]
• antenna subtraction
 \(e^+e^- \rightarrow 3 \text{ jets} \) [Gehrmann-DeRidder, Gehrmann, Glover, GH ’07; Weinzierl ’08]
 \(pp \rightarrow 2 \text{ jets} \) [Currie, Gehrmann-DeRidder, Gehrmann, Glover, Pires ‘13,’14]
 \(pp \rightarrow H+\text{jet} \) [Chen, Gehrmann, Glover, Jaquier ’14]
 \(pp \rightarrow t \overline{t} \) [Abelof, Gehrmann-DeRidder, Maierhöfer, Pozzorini ‘13, ‘14]
 \(pp \rightarrow Z+\text{jet} \) [Gehrmann-DeRidder, Gehrmann, Glover, Huss, Morgan ’15]

• qt subtraction (colourless final states)
 \(pp \rightarrow H, pp \rightarrow V, pp \rightarrow HV, pp \rightarrow \gamma \gamma \)
 [Catani, Cieri, De Florian, Ferrera, Grazzini, Tramontano ’07 - ’14]
 \(pp \rightarrow Z \gamma \) [Grazzini, Kallweit, Rathlev, Tancredi ’13]
 \(pp \rightarrow Z Z, pp \rightarrow W+W- \) [Cascioli, T.Gehrmann, Grazzini, Kallweit, Maierhöfer, von Manteuffel, Pozzorini, Rathlev, Tancredi, Weihs ’13,’14]

• N-jettiness
 \(pp \rightarrow H+\text{jet} \) [Boughezal, Focke, Giele, Liu, Petriello ’15]
 \(pp \rightarrow W+\text{jet} \) [Boughezal, Focke, Liu, Petriello ’15]
 \(pp \rightarrow H+V \) [Campbell, Ellis, Williams ’16]

• sector-improved residue subtraction
 \(pp \rightarrow t \overline{t} \) [Czakon, Fiedler, Mitov ’13,’15]
 \(pp \rightarrow H+\text{jet} \) [Boughezal, Caola, Melnikov, Petriello, Schulze ’14]
 \(pp \rightarrow t+\text{jet} \) [Brucherseifer, Caola, Melnikov ’14]

2 to 2 NNLO results are emerging rapidly!
NNLO automation

apart from double real radiation:

- need an efficient method to calculate 2-loop integrals, in particular with several mass scales

examples:
SecDec

http://secdec.hepforge.org

algorithm: T. Binoth, GH ‘00
version 1.0: J. Carter, GH ‘10
version 2.0: S. Borowka, J. Carter, GH ‘12
version 3.0: S. Borowka, GH, S. Jones, M. Kerner, J. Schlenk, T. Zirke ‘15
other public programs based on sector decomposition:

- **sector_decomposition** (uses Ginac) (only Euclidean region)
 [Bogner, Weinzierl ’07]

 supplemented with **CSectors**
 for construction of integrand in terms of Feynman parameters
 [Gluza, Kajda, Riemann, Yundin ’10]

- **FIESTA** (versions 1,2,3,4) (use Mathematica, C++)
 [A.Smirnov, V.Smirnov, Tentyukov, ’08,’09,’13,’15]
SecDec

based on method of sector decomposition
 (Hepp 66; Denner & Roth 96; Binoth & GH 00)

• factorizes poles in dim. regulator epsilon from
 * multi-loop integrals
 * multi-dimensional parameter integrals

• produces Laurent series in epsilon, coefficients will be finite parametric integrals

• integrates coefficients numerically
 uses Cuba library (T.Hahn) or NIntegrate (Wolfram Research)
 1-dim: cquad (Gonnet)
SecDec basic workflow

1a graph info

1b user-defined function

2 Feynman integral

3 iterated sector decomposition

no

multiscale?

yes

4 contour deformation

5 subtraction of poles

6 expansion in ϵ

7 numerical integration

8 result

$$\sum_{m=-2L}^{n} C_m \epsilon^m$$
SecDec basic workflow

1a. graph info → 2. Feynman integral → 3. iterated sector decomposition
1b. user-defined function → 2. Feynman integral

3. iterated sector decomposition → no → 6. expansion in ϵ
3. iterated sector decomposition → yes → 4. contour deformation → 4. contour deformation

4. contour deformation → 5. subtraction of poles
4. contour deformation

5. subtraction of poles → 2. Feynman integral
5. subtraction of poles

2. Feynman integral → 3. iterated sector decomposition
2. Feynman integral

3. iterated sector decomposition → no → 6. expansion in ϵ
3. iterated sector decomposition

6. expansion in ϵ → 7. numerical integration
6. expansion in ϵ

7. numerical integration → 8. result
7. numerical integration

8. result

 optionally on a cluster graphics by S.Borowka
new features in SecDec-3.0

- implementation of two new decompositions strategies G1, G2 based on a geometric algorithm ([J. Schlenk], inspired by Kaneko/Ueda ’10)
- uses Normaliz (for triangulation) (Bruns, Ichim, Römer, Söger)

→ guaranteed to stop, produces less sectors than original strategy X

<table>
<thead>
<tr>
<th>Diagram</th>
<th>Strategy X</th>
<th>Strategy G1</th>
<th>Strategy G2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>282 sectors 1s</td>
<td>266 sectors 8s</td>
<td>166 sectors 4s</td>
</tr>
<tr>
<td></td>
<td>368 sectors 1s</td>
<td>360 sectors 9s</td>
<td>235 sectors 5s</td>
</tr>
<tr>
<td></td>
<td>548 sectors 3s</td>
<td>506 sectors 15s</td>
<td>304 sectors 4s</td>
</tr>
<tr>
<td></td>
<td>infinite recursion</td>
<td>72 sectors 5s</td>
<td>76 sectors 1s</td>
</tr>
<tr>
<td></td>
<td>27336 sectrs 5510s</td>
<td>32063 sectrs 11856s</td>
<td>27137 sectrs 443s</td>
</tr>
</tbody>
</table>
new features in SecDec-3.0

• improved user interface → easy input files, custom definition of kinematics

• propagators with zero or negative powers are possible
 → easy interface to reduction programs

• linear propagators can be treated

• usage on a cluster facilitated

• speed improvements

• option to use numerical integrators from Mathematica

• complex masses
coming soon:

algebraic part in python

new IBP method

numerical part on GPU

speedup by sampling adjustment for (sub-)dominant sectors

SecDec as a library to be linked to any amplitude calculation

S. Borowka, GH, S. Jahn, M. Kerner, S. Jones, J. Schlenk, T. Zirke
(Multi-)Loop integral repository

Loopedia
AN EASILY SEARCHABLE DATABASE OF FEYNMAN GRAPHS AND FEYNMAN INTEGRALS

Loopedia

Name proposed by Sophia Borowka

Idea

Have a database containing Feynman graphs that is easily searchable, provides links to literature, and ideally also explicit e-expansions accessible in well-defined, uniform, customizable formats.

Here is the Online test version of Loopedia (Viktor Papara)

Please contribute your thoughts to the Mindmap. More detailed suggestions can be collected on the Ideas page.

Join
application to loop integrals with several mass scales

example $gg \rightarrow HH$: 4 independent scales s_{12}, s_{23}, m_H, m_t

Leading Order already involves 1-loop diagrams
Leading Order already involves 1-loop diagrams

Example \(gg \rightarrow HH \): 4 independent scales \(s_{12}, s_{23}, m_H, m_t \)

NLO \((= 2 \text{ loops})\):

(most) 2-loop diagrams not known analytically with full mass dependence
examples of 2-loop box diagrams
results in the literature so far

LO with full heavy quark mass dependence

Glover, van der Bij '88, Plehn, Spira, Zerwas '96

NLO in $m_t \to \infty$ limit (EFT): Dawson, Dittmaier, Spira '98 (HPAIR)

- supplemented with $1/m_t$ expansion: $\pm 10\%$
 - Grigo, Hoff, Melnikov, Steinhauser '13, '15
- full mass dependence in NLO real radiation part and matching to parton shower
 - Frederix, Hirschi, Mattelaer, Maltoni, Torrielli, Vryonidou, Zaro '14;
 Maltoni, Vryonidou, Zaro '14

NNLO in $m_t \to \infty$ limit:

De Florian, Mazzitelli '13

- including all matching coefficients
 - Grigo, Melnikov, Steinhauser '14
- supplemented with $1/m_t$ expansion: $\pm 10\%$
 - Grigo, Hoff, Steinhauser '15
- soft gluon resummation NNLL matched to NNLO
 - De Florian, Mazzitelli '15
+ lots of phenomenological studies

Baglio, Barr, Dolan, Englert, Ferreira de Lima, Goncalves-Netto, Greiner, Gröber, Krauss, Maierhöfer, Maltoni, Mühlleitner, Papaefstathiou, Spannowsky, Spira, Thompson, Vryonidou, Zaro, Zurita, ... '12,'13,'14,'15
results in the literature so far

LO with full heavy quark mass dependence
Glover, van der Bij '88, Plehn, Spira, Zerwas '96

NLO in $m_t \rightarrow \infty$ limit (EFT): Dawson, Dittmaier, Spira '98 (HPAIR)

- supplemented with $1/m_t$ expansion:
 - Grigo, Hoff, Melnikov, Steinhauser '13, '15
 - (+10%)

- full mass dependence in NLO real radiation part and matching to parton shower
 - Frederix, Hirschi, Mattelaer, Maltoni, Torrielli, Vryonidou, Zaro '14;
 Maltoni, Vryonidou, Zaro '14

NNLO in $m_t \rightarrow \infty$ limit:
De Florian, Mazzitelli '13

- including all matching coefficients
 - Grigo, Melnikov, Steinhauser '14

- supplemented with $1/m_t$ expansion:
 - Grigo, Hoff, Steinhauser '15

- soft gluon resummation NNLL matched to NNLO
 - De Florian, Mazzitelli '15

+ lots of phenomenological studies
 - Baglio, Barr, Dolan, Englert, Ferreira de Lima, Goncalves-Netto, Greiner, Gröber, Krauss, Maierhöfer, Maltoni, Mühlleitner, Papaefstathiou, Spannowsky, Spira, Thompson, Vryonidou, Zaro, Zurita, ... '12,'13,'14,'15
results in the literature so far

LO with full heavy quark mass dependence

Glover, van der Bij '88, Plehn, Spira, Zerwas '96

NLO in $m_t \to \infty$ limit (EFT): Dawson, Dittmaier, Spira '98 (HPAIR)

- supplemented with $1/m_t$ expansion: (±10%)
 - Grigo, Hoff, Melnikov, Steinhauser '13, '15
- full mass dependence in NLO real radiation part and matching to parton shower
 - Frederix, Hirschi, Mattelaer, Maltoni, Torrielli, Vryonidou, Zaro '14;
 Maltoni, Vryonidou, Zaro '14

NNLO in $m_t \to \infty$ limit: De Florian, Mazzitelli '13

- including all matching coefficients
 - Grigo, Melnikov, Steinhauser '14
- supplemented with $1/m_t$ expansion: Grigo, Hoff, Steinhauser '15
- soft gluon resummation NNLL matched to NNLO
 - De Florian, Mazzitelli '15

+ lots of phenomenological studies
 - Baglio, Barr, Dolan, Englert, Ferreira de Lima, Goncalves-Netto, Greiner, Gröber, Krauss, Maierhöfer, Maltoni, Mühlleitner, Papaefstathiou, Spannowsky, Spira, Thompson, Vryonidou, Zaro, Zurita, ... '12,'13,'14,'15
calculation of the 2-loop amplitude

• use GoSam-2loop to generate the amplitude
• reduction with Reduze2 [C. Studerus, A. von Manteuffel]

(Fire5 [A.V. Smirnov], LiteRed [R.N. Lee])

→ 8 integral families with 9 propagators each
→ partly finite basis

• produce input files for SecDec with GoSam-2loop
• independent implementation with Qgraf, Reduze2, Mathematica [M. Kerner]
• evaluate integrals (SecDec) & coefficients
2-loop amplitude

<table>
<thead>
<tr>
<th></th>
<th>1-loop</th>
<th>2-loop</th>
</tr>
</thead>
<tbody>
<tr>
<td>direct</td>
<td>63</td>
<td>~10000</td>
</tr>
<tr>
<td>use symmetries</td>
<td>21</td>
<td>~1600</td>
</tr>
<tr>
<td>use IBP’s</td>
<td>8</td>
<td>~300</td>
</tr>
</tbody>
</table>

of sampling points determined by

- contribution to amplitude
- time per sampling point

Target accuracy set at amplitude level
examples of master integrals

a planar 7 propagator integral:

\[m_H = 125 \text{ GeV} \]
\[m_t = 173 \text{ GeV} \]
a non-planar 7 propagator integral:

\[I = \frac{P_{-1}}{\varepsilon} + P_0 \]

\[m_H = 125 \text{ GeV} \]
\[m_t = 173 \text{ GeV} \]
Summary and Outlook

• LHC Run II and beyond is a precision game!
• NNLO techniques are advancing rapidly
 → automation feasible!
• tools towards this aim presented here:
 ➡ GoSam GoSam-1loop: public, 2-loop extension underway
 ➡ SecDec
 ✓ can do integrals with several mass scales numerically
 ✓ is being made ready for large scale phenomenological applications
try out the tools!

http://gosam.hepforge.org

http://secdec.hepforge.org
SecDec can also do

- integrals with inverse propagators (numerators), e.g.

\[I_{NP2B}^{1,0} = \int d^D p_1 \int d^D p_2 \frac{(p_1 + k_1)^2}{(p_2 - m_t^2)((p_2 + k_1 + k_2)^2 - m_t^2)((p_2 + k_1 + k_2 + k_3)^2 - m_t^2)(p_2 - p_1)^2(p_2 - p_1 + k_1)^2(p_1^2 - m_t^2)((p_1 + k_2)^2 - m_t^2)} \]

- integrals with contracted tensor numerators, e.g.

\[I_{NP2B}^{k2} = \int d^D p_1 \int d^D p_2 \frac{(p_1 \cdot k_1)(p_2 \cdot k_3)}{(p_2 - m_t^2)((p_2 + k_1 + k_2)^2 - m_t^2)((p_2 + k_1 + k_2 + k_3)^2 - m_t^2)(p_2 - p_1)^2(p_2 - p_1 + k_1)^2(p_1^2 - m_t^2)((p_1 + k_2)^2 - m_t^2)} \]

→ no need for a scalar integral basis