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Motivation: loops and cuts

Loop integrals are necessary

...for high precision at high energy

Loop integrals are hard

“Cuts” are useful

...both analytically and numerically

Definition: Cuts put propagators on shell.

Since cuts have been useful, we would like to know how to
understand their meaning, going deeper than
pattern-matching with master integrals.

Ruth Britto Cuts and coproducts of Feynman integrals



Cuts and Hopf algebra of

Cutkosky: Cuts are discontinuities across branch cuts

We claim:

For integrals in the class of multiple polylogarithms (MPL),
the discontinuities described by cuts are naturally found within the
Hopf algebra of MPL.

There is a graphical Hopf algebra that
I involves cut diagrams, and
I corresponds to the Hopf algebra of MPL.
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First claim

3 equivalent definitions of discontinuities: “Cut = Disc = δ”

Familiar for the first cut; we extend it to sequences of cuts.

I will explain this claim and give some examples, and then comment on
reconstruction of the full integral from its cuts.
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Outline

Cuts (review)

Coproducts of MPL in Hopf algebra (background)

Sequential discontinuities: Cut, Disc, δ

Examples

Reconstruction: from cuts to integrals (via coproducts)

The graphical Hopf algebra
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Review: unitarity cuts

“ Disc = Cut ”

Discontinuities = Landau singularities = replace propagators by Dirac
delta functions in integral.

S = 1 + iT

The unitarity condition: S†S = 1.

2ImT = T †T
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Cut across one channel, with any number of loops.
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Unitarity Cuts

∆A1−loop =

∫
d4` δ+(`2

1) δ+(`2
2) Atree

Left(`1, `2) Atree
Right(`1, `2)

Cut conditions: `2
1 = 0, `2

2 = 0.
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...
.
..

K
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2l

By unitarity, this is the discontinuity of the amplitude across a branch cut.
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Review: 1-loop cut construction

Expansion in master integrals, thanks to Passarino-Veltman
reduction

Theorem: “cut-constructibility”

Cut both sides, solve for coefficients. Nontrivial work, but well
established by now.

Generalized cuts are particularly useful.

Classic alternative: dispersion relations.
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Beyond one loop

Integrals get complicated. Various sophisticated techniques (e.g. MB,
DE)

What is the set of master integrals? How do we evaluate them?

Analytic techniques are still tough.
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Multiple polylogarithms (MPL)

A large class of integrals are described by multiple polylogarithms:

I (a0; a1, . . . , an; an+1) ≡
∫ an+1

a0

dt

t − an
I (a0; a1, . . . , an−1; t)

Examples:

I (0; 0; z) = log z, I (0; a; z) = log
(

1−
z

a

)
I (0; ~an; z) =

1

n!
logn

(
1−

z

a

)
, I (0;~0n−1, a; z) = −Lin

( z
a

)
Harmonic polylog if all ai ∈ {−1, 0, 1}.

n is the transcendental weight.

Observation: most known Feynman integrals can be written in terms of classical and
harmonic polylogs.
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Hopf algebra

Product and coproduct:

µ : H⊗H → H, ∆ : H → H⊗H

Compatible with each other:

∆(a · b) = ∆(a) ·∆(b) ,

The algebra is graded by transcendental weight:

Hn
∆−→

n⊕
k=0

Hk ⊗Hn−k ,

and

∆n1,...,nk : Hn → Hn1 ⊗ . . .⊗Hnk .
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Hopf algebra of MPL

Goncharov’s coproduct formula for MPL (modulo π):

∆I (a0; a1, . . . , an; an+1)

=
∑

0=i0<···<ik<ik+1=n+1

I (a0; ai1 , . . . , aik ; am+1)⊗
k∏

p=0

I (aip ; aip+1, . . . , aip+1−1; aip+1
)

Examples:

∆(a · b) = ∆(a) ·∆(b)

∆(1) = 1⊗ 1

∆(log z) = 1⊗ log z + log z ⊗ 1

∆(log x log y) = 1⊗ (log x log y) + log x ⊗ log y + log y ⊗ log x + (log x log y)⊗ 1

∆(Lin(z)) = 1⊗ Lin(z) + Lin(z)⊗ 1 +

n−1∑
k=1

Lin−k (z)⊗
logk z

k!
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Symbols of MPL

The “symbol” S is essentially the maximal iteration.

S(F ) ≡ ∆1,...,1(F ) ∈ H1 ⊗ . . .⊗H1 .

S
(

1

n!
logn z

)
= z ⊗ · · · ⊗ z︸ ︷︷ ︸

n times

S(Lin(z)) = −(1− z)⊗ z ⊗ · · · ⊗ z︸ ︷︷ ︸
(n−1) times

Functions are all weight 1 = log.

(symbol is familiar from remainder functions [Goncharov, Spradlin, Vergu, Volovich])
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Coproducts of Feynman integrals

Observation: without internal masses, coproduct can be written such that

∆1,n−1F =
∑
i

log(−si )⊗ fsi

first entries are Mandelstam invariants,

and each second entry fsi is the discontinuity of F in the channel si .

[Gaiotto, Maldacena, Sever, Viera]

Thus: the coproduct captures standard cuts.

What about generalized cuts?
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Cut=Disc=δ for generalized cuts

Need to define generalized cuts. In real kinematics, we do it as a sequence of
traditional cuts.

Need to specify kinematic regions.

Need to identify the MPL variables and explain the correspondence.

Limited by: number of channels, transcendental weight, and number of variables.
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Definition of Disc

The discontinuity across the branch cut.

Discx [F (x ± i0)] = F (x ± i0)− F (x ∓ i0),

Example:
Discx log(x + i0) = 2πi θ(−x).

Sequential:

Discx1,...,xk F ≡ Discxk
(
Discx1,...,xk−1 F

)
.
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Definition of multiple cuts

Cuts1,...,sk F

With real kinematics.

Defined by: cut propagators + consistent energy flow + corresponding kinematic
region

Multiple cuts are taken simultaneously.
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Cutting Rules

Traditional [Veltman]:

for massless scalar theory.
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Cutting Rules

Generalized:

Colors are ci = 0, 1 for each cut i : we overlay consistent energy flow across
each cut.

We must allow repeated cuts of same propagator or same loop.
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Cutting Rules

Example:
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From Mandelstam invariants to MPL variables

From the Largest Time Equation [Veltman]:

F + F∗ = −
∑
s

Cuts F ,

Hence:

Discs F = −Cuts F .

Generalize to:

Cuts1,...,sk F = (−1)k Discs1,...,sk F .

Valid in a particular kinematic region: cut invariants si positive, others negative.
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Definition of δ

If

∆1,1,...,1︸ ︷︷ ︸
k times

,n−kF =
∑

{x1,...,xk}
log x1 ⊗ · · · ⊗ log xk ⊗ gx1,...,xk ,

then

δx1,...,xkF
∼= gx1,...,xk .

More precisely: match branch points. The “∼=” means modulo π.

Motivated by coproduct identity : ∆ Disc = (Disc⊗1) ∆ [Duhr]

and first-entry condition.

If δxF ∼= gx , then Discx F ∼= (Discx ⊗ 1)(log x ⊗ gx ) = ±2πi gx . Sign determined by iε
prescription.
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Coproduct and discontinuities for Feynman integrals

Discs1 F = (−2πi) δs1F .

Discs1,...,sk F =
∑

x1,...,xk

±(2πi)kδx1,...,xkF .

Assume prior knowledge of alphabet (e.g. from cuts)

Underlying claim: kinematics put us on the branch cuts, so that it is
correct to use our definition of Disc.
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Basic example: 3-mass triangle

k

p2 − k

p3 + k

p3

p1

p2

T = − i

p2
1

2

z − z̄

(
Li2(z)− Li2(z̄) +

1

2
log(zz̄) log

(
1− z

1− z̄

))
≡ − i

p2
1

2

z − z̄
P2

where

zz̄ =
p2

2

p2
1

, (1− z)(1− z̄) =
p2

3

p2
1
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Basic example: 3-mass triangle

k

p2 − k

p3 + k

p3

p1

p2

T = − i

p2
1

2

z − z̄

(
Li2(z)− Li2(z̄) +

1

2
log(zz̄) log

(
1− z

1− z̄

))
≡ − i

p2
1

2

z − z̄
P2

Discp2
2
T = − 2π

p2
1(z − z̄)

log
1− z

1− z̄
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Coproduct of the 3-mass triangle

∆P2 = P2 ⊗ 1 + 1⊗ P2 +
1

2
log(zz̄)⊗ log

1− z

1− z̄
+

1

2
log[(1− z)(1− z̄)]⊗ log

z̄

z

= P2 ⊗ 1 + 1⊗ P2 +
1

2
log
(
−p2

2

)
⊗ log

1− z

1− z̄
+

1

2
log
(
−p2

3

)
⊗ log

z̄

z

+
1

2
log(−p2

1)⊗ log
1− 1/z̄

1− 1/z

Alphabet: {z, z̄, 1− z, 1− z̄}.

Here

z =
1

p2

(
p2

1 + p2
2 − p2

3 +
√
λ
)
, z̄ =

1

p2

(
p2

1 + p2
2 − p2

3 −
√
λ
)
,

where λ ≡ (p2
1)2 + (p2

2)2 + (p2
3)2 − 2p2

1p
2
2 − 2p2

1p
2
3 − 2p2

2p
2
3 .

Hence

zz̄ =
p2

2

p2
1

, (1− z)(1− z̄) =
p2

3

p2
1

,
√
λ = z − z̄
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Coproduct of the 3-mass triangle

∆P2 = P2 ⊗ 1 + 1⊗ P2 +
1

2
log(zz̄)⊗ log

1− z

1− z̄
+

1

2
log[(1− z)(1− z̄)]⊗ log

z̄

z

= P2 ⊗ 1 + 1⊗ P2 +
1

2
log
(
−p2

2

)
⊗ log

1− z

1− z̄
+

1

2
log
(
−p2

3

)
⊗ log

z̄

z

+
1

2
log(−p2

1)⊗ log
1− 1/z̄

1− 1/z

Alphabet: {z, z̄, 1− z, 1− z̄}.

Here

z =
1

p2

(
p2

1 + p2
2 − p2

3 +
√
λ
)
, z̄ =

1

p2

(
p2

1 + p2
2 − p2

3 −
√
λ
)
,

where λ ≡ (p2
1)2 + (p2

2)2 + (p2
3)2 − 2p2

1p
2
2 − 2p2

1p
2
3 − 2p2

2p
2
3 .

Hence

zz̄ =
p2

2

p2
1

, (1− z)(1− z̄) =
p2

3

p2
1

,
√
λ = z − z̄
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First cut of the 3-mass triangle

Cut in the p2
2 channel.

k

p2 − k

p3 + k
p1

p2

p3

Kinematic region: p2
2 > 0; p2

1 , p
2
3 < 0.

Cutp2
2
T =

2π

p2
1(z − z̄)

log
1− z

1− z̄

= −Discp2
2
T

δp2
2
P2 =

1

2
log

1− z

1− z̄

Discp2
2
T = (−2πi)δp2

2
T .
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Second cut of the 3-mass triangle

p1

p2

p3 k

p2 − k

p3 + k

Cutp2
3 ,p

2
2
T =

4π2i

p2
1(z − z̄)

Kinematic region: p2
3 , p

2
2 > 0; p2

1 < 0
Equivalently: z̄ < 0, z > 1.

Now we have to match the alphabet with Mandelstam invariants:

Discp2
2 ,p

2
3
T = Cutp2

2 ,p
2
3
T .

Discp2
2 ,p

2
3
T = 4π2 δp2

2 ,1−zT
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2-loop example: 3-point ladder

p1

p2

p3
1

2

3

4

5

6

L = i
(
p2

1

)−2 1

(1− z)(1− z̄)(z − z̄)
F

F = 6
[
Li4 (z)− Li4(z̄)

]
− 3 log (zz̄)

[
Li3 (z)− Li3(z̄)

]
+

1

2
log2(zz̄)

[
Li2(z)− Li2(z̄)

]
.

zz̄ =
p2

2

p2
1

, (1− z)(1− z̄) =
p2

3

p2
1
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Coproduct of the ladder

p1

p2

p3
1

2

3

4

5

6

∆1,1,2F = log
p2

3

p2
1

⊗ log z ⊗
(

log z log z̄ −
1

2
log2 z̄

)
− log

p2
3

p2
1

⊗ log z̄ ⊗
(

log z log z̄ −
1

2
log2 z

)
− log

p2
2

p2
1

⊗ log(1− z)⊗
(

log z log z̄ −
1

2
log2 z

)
+ log

p2
2

p2
1

⊗ log(1− z̄)⊗
(

log z log z̄ −
1

2
log2 z̄

)
+ log

p2
2

p2
1

⊗ log(zz̄)⊗ [Li2(z)− Li2(z̄)] ,

Individual cut diagrams diverge, but sums are finite.

Same alphabet as triangle. p2
2

p2
1

= zz̄,
p2

3

p2
1

= (1− z)(1− z̄)
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Two cuts of the ladder

Cutp2
1 ,p

2
2
F = Discp2

1 ,p
2
2
F = −(2πi)2 δp2

1 ,z̄
F ,

Cutp2
2 ,p

2
1
F = Discp2

2 ,p
2
1
F = (2πi)2 [δp2

2 ,z
+ δp2

2 ,1−z ]F .

Variables matched within the correct kinematic region:
p2

1 , p
2
2 > 0 and p2

3 < 0, or equivalently 0 < z̄ < 1 < z.
Follow iε for signs.

Ruth Britto Cuts and coproducts of Feynman integrals



Two cuts of the ladder

Cutp2
1 ,p

2
3
F = Discp2

1 ,p
2
3
F = −(2πi)2 δp2

1 ,1−zF ,

Cutp2
3 ,p

2
1
F = Discp2

3 ,p
2
1
F = (2πi)2 [δp2

3 ,z̄
+ δp2

3 ,1−z̄ ]F .

Kinematic region: p2
1 , p

2
3 > 0 and p2

2 < 0, or equivalently z̄ < 0 < z < 1.
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Cuts live strictly within their own regions

Notice: the “1236” cut diagram is common to both double-cuts, but gives
different values!

?
= “Disc”
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Third cut of the ladder?

p1

p2

p3

k2

p3 − k2

k1 + k2

p3 + k1

k1

p1 − k1

Cut = 0 in the kinematic region p2
1 , p

2
2 , p

2
3 > 0.

Disc = 0 : no region detects the three cuts simultaneously.

It’s consistent, but we should continue to more complicated examples. [in progress]
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Reconstruction: from cut to symbol

Integrability condition on symbols: for each k,∑
i1,...,in

ci1,...,in d log aik ∧ d log aik+1

[
ai1 ⊗ · · · ⊗ aik−1

⊗ aik+2
⊗ · · · ⊗ ain

]
= 0 .

Combine with first entry condition (=Mandelstam invariant) and known cut(s).

Related to exchanging order of cuts.
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Reconstruction: from cut to symbol

Integrability condition on symbols: for each k,∑
i1,...,in

ci1,...,in d log aik ∧ d log aik+1

[
ai1 ⊗ · · · ⊗ aik−1

⊗ aik+2
⊗ · · · ⊗ ain

]
= 0 .

Combine with first entry condition (=Mandelstam invariant) and known cut(s).
Example: p2

2 cut of triangle.
1

2
(zz̄)⊗

1− z

1− z̄

For integrability, add

1

2
(1− z)⊗ z̄ −

1

2
(1− z̄)⊗ z

For the first entry condition, add

1

2
(1− z̄)⊗ z̄ −

1

2
(1− z)⊗ z

Both conditions are satisfied.

Result:

S(T ) =
1

2
zz̄ ⊗

1− z

1− z̄
+

1

2
(1− z)(1− z̄)⊗

z̄

z
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Reconstruction: from cut to symbol

Integrability condition on symbols: for each k,∑
i1,...,in

ci1,...,in d log aik ∧ d log aik+1

[
ai1 ⊗ · · · ⊗ aik−1

⊗ aik+2
⊗ · · · ⊗ ain

]
= 0 .

Combine with first entry condition (=Mandelstam invariant) and known cut(s).

Reconstruction of the symbol of the ladder is unique from any of its single or double
cuts.

Knowledge of alphabet is crucial.
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Reconstruction: from symbol to full function

In general, integrating a symbol is an unsolved problem.

But in many cases we have enough information to constrain the function
uniquely & algebraically.

In the same example, from the p2
2 cut of triangle, given that:

S(T ) =
1

2
zz̄ ⊗

1− z

1− z̄
+

1

2
(1− z)(1− z̄)⊗

z̄

z

and antisymmetry under z ↔ z̄, the solution

T = P2(z)

=

(
Li2(z)− Li2(z̄) +

1

2
log(zz̄) log

(
1− z

1− z̄

))
is unique.

Ladder & massive triangles are easy too. At most, fix a single free constant by
numerical evaluation at a point.
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Generalizations for internal masses

First entries adjusted for thresholds

S
( )

= 1
ε

m2−p2

m2 + m2 ⊗
m2
(
m2−p2

)
p2 +

(
m2 − p2

)
⊗ p2

(m2−p2)2 +O (ε) .

Include cuts of massive propagators
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Coproducts as diagrams

[in preparation with Abreu, Duhr, Gardi]

Second entries are discontinuities; first entries have discontinuities.

Motivated by the identity
∆ Disc = (Disc⊗1) ∆.

The companion relation
∆ ∂ = (1⊗ ∂) ∆

produces useful differential equations.
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Diagram operations: pinch ⊗ cut

Pinch and cut complementary subsets of edges:
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Diagram operations: pinch ⊗ cut

Pinch and cut complementary subsets of edges:
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Diagram operations: pinch ⊗ cut

Pinch and cut complementary subsets of edges:

Can also start with a cut diagram.

Operation is purely combinatorial and is the coproduct of a full Hopf algebra with
product, unit, counit, antipode.
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2 equivalent Hopf algebras

The combinatorial algebra agrees with the Hopf algebra on the MPL of evaluated
diagrams!

But we have to make adjustments:

Integrals live in different dimensions. With n propagators, D = n− 2ε for n even;
D = n + 1− 2ε for n odd. Conjecture: these integrals form a basis of 1-loop
integrals.

E.g. box and triangle in D = 4− 2ε, bubble and tadpole in D = 2− 2ε.

Need to insert extra terms:

Isomorphic to the more basic construction. (For any value of 1/2.)
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What are these generalized cuts?

Generalized cuts are sensitive to kinematic regions. Our graphical relations make no
reference to kinematics, and we need complex cuts like 4-cuts of boxes. Here, we
define cuts as residues.

At least at 1-loop, differences are proportional to iπ, which drops out of the coproduct.

The residues can be written beautifully in terms of determinants.
(Gram and modified Cayley)

Not very clear how to generalize to higher loops, but the nature of coproducts
suggests it should be possible. [related work: Brown; Bloch and Kreimer]
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Evidence for the graphical conjecture

all tadpoles and bubbles

triangles and boxes with several combinations of internal and external masses

consistency checks for more complicated boxes, 0m pentagon, 0m hexagon

Checked to several orders in ε.
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Summary & Outlook

Cuts are used to compute Feynman integrals and explain simplicity of amplitudes.

Cut diagrams are discontinuities of loop amplitudes.

Hopf algebra structure identifies generalized discontinuities!

Use Hopf algebra to interpret cut diagrams and reconstruct multi-loop integrals.

The Hopf algebra can also be written diagrammatically. Diagram representations
of cuts and differential equations.

Make contact with maximal cuts/ complex residues of multiloop integrals?

Expand cutting rules to capture more of the coproduct? e.g. repeated cuts in
the same channel, crossed cuts, ...

For diagrammatic algebra beyond one loop: what is a good basis? what are the
exact operations? what about elliptic functions?

Use diagrammatic operations to generate differential equations.

Aim to compute cuts & reconstruct amplitudes cleanly and efficiently.
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