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[A.V. Kotikov'91, E. Remiddi'97, T. Gehrmann &
E. Remiddi'00, J. Henn'13]
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I—Introdur:tion. The method of differential equations

Gehrmann & Remiddi: a method to evaluate master integrals.
It is assumed that the problem of reduction to master integrals
is solved.

Henn: use uniform transcendental (UT) bases!

A lot of applications [J.M. Henn, A.V. Smirnov, V.A. Smirnov,
K. Melnikov, F. Caola, R. Bonciani, V. Del Duca, H. Frellesvig,
F. Moriello, M. Argeri, S. Di Vita, P. Mastrolia, E. Mirabella,
J. Schlenk, U. Schubert, L. Tancredi, T. Gehrmann, A. von
Manteuffel, E. Weihs, F. Dulat, B. Mistlberger, R. N. Lee,...]
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I—Introdur:tion. The method of differential equations

m Take some derivatives of given master integrals in masses
or/and kinematic invariants
(or, in an auxiliary parameter [C. Papadopoulos])
m Express them in terms of Feynman integrals of the given
family with shifted indices

m Apply an IBP reduction to express these integrals in terms
of master integrals to obtain a system of differential
equations

m Solve DE
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I—Introdur:tion. The method of differential equations

Let f = (f1,..., fy) be primary master integrals (MI) for a
given family of dimensionally regularized (with D = 4 — 2¢)
Feynman integrals.

Let x = (xi, ..., X,) be kinematical variables and/or masses,
or some new variables introduced to ‘get rid of square roots’.

DE:
0if (e, x) = Ai(e, x)f (€, x),

where 0; = %, and each A; is an N x N matrix.
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I—Introdur:tion. The method of differential equations

Henn (2013): turn to a new basis where DE take the form
0if (€, x) = e Ai(x)f (€, x) .
In the differential form,
df(e,x) = e(d A(x)) f(x,e),
where
A= Zﬂak log () -
k

and A,, are constant matrices. The arguments of the
logarithms «; (letters) are functions of x. Elements of such
basis turn out to be uniformly transcendental (UT).

Let us call it epsilon form.



The case of two scales, i.e. with one variable in the DE, i.e.
n=1.
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The case of two scales, i.e. with one variable in the DE, i.e.
n=1.

One tries to achieve the following form of DE:

f'le,x) =€ Z Lf(e,x).

x — x(k)

where x(¥) is the set of singular points of the DE and N x N
matrices a, are independent of x and e.

For example, if x, = 0, —1,1 then results for elements of such
a basis are expressed in terms of HPL.
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I—Introdur:tion. The method of differential equations

How to turn to a UT basis?
m In simple situations where integrals can be expressed in
terms of gamma functions, just adjust indices properly
m Use Feynman parametrization

m Replace propagators by delta functions and analyze
whether the resulting expression is UT.

m An approach using Magnus and Dyson series expansion



m A part of the procedure is algorithmically described in
[T. Gehrmann, A. von Manteuffel, L. Tancredi and
E. Weihs'14]

DA



Evaluating Feynman integrals by uniformly transcendental differential equations

I—Introdur:tion. The method of differential equations

m A part of the procedure is algorithmically described in

m Constructing UT elements of the basis at the level of
integrand



Evaluating Feynman integrals by uniformly transcendental differential equations

I—Introdur:tion. The method of differential equations

m A part of the procedure is algorithmically described in

m Constructing UT elements of the basis at the level of
integrand

m An algorithmical description in the case of one variable
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I—Evaluating pl hell three-loop four-point massless integrals
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Motivation: three-loop amplitudes of N = 8 supergravity and
N = 4 super-Yang-Mills theory
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I—Evaluating pl hell three-loop four-point massless integrals

The kinematics: p? =0, s = (p1 + p2)°, t = (p1 + p3)?,
u=(p2+p3)’=—-s—t.

A and E
B.C,D, F,G,H,I
in progress
5 _ B dPky dPky dP ks
Fal7...,815(s’ t' D) - I7TD/2 /// k2 81 P2 - kl + k2) ]82 [_1(22]83

[~ (ks — ks)’] 22 [~ (P + k3)*] "“[ (P + ko)?] 22
[—(p1 + P2 + k2)? ]a“[ k3125 [—(p1 + p2 + p3 + ky — k3)?]%
o [—(p3 + ki)?] 2 [—(ps + ko)?] 22
(=(p1 + k1)) (= (ko — k2)?)%[—(ka — k3)?]? [~ (ks — p3)?]o0
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I—Evaluating pl hell three-loop four-point massless integrals

Partial results:
master integrals for D apart from the top sector

K, as a part of C
\pl ps/ \Pl Ps/
1 Waﬁ
I T73751[) 9o = 10
LA L]

/pz p4\ /Pz P4\

Results expressed in terms of HPL
Hay a....a0(x), @ = 1,0, -1,
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I—Evaluating pl hell three-loop four-point massless integrals

IBP reduction by FIRE and by a private code by Bernhard
Mistlberger.

In all the cases, initial DE are transformed into

a b
Ox f(x,€) =€ {;+1+x

} F(x,e).

where a and b are constant matrices.
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I—Evaluating pl hell three-loop four-point massless integrals

Boundary conditions.

Three singular points, at x =0, x = —1, and x = o0,
corresponding to the limits s -+ 0, v — 0, and t — 0,
respectively.

For planar diagrams A and E, the condition of the absence of
singularities at u = 0 served as a very powerful boundary
condition. As a result, only simple information about integrals
expressed in terms of gamma functions fixed completely the
solution of the DE.

There is no this condition in the non-planar cases because
non-planar diagrams have singularities in all the three channels.



Studying limits, s — 0,t — 0, u — 0.
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Studying limits, s — 0,t — 0, u — 0.

Typical contributions to the asymptotic expansion in the limit
x=t/x—0:

hard-hard-hard contribution,

collinear-collinear-collinear contribution,
ultrasoft-collinear-collinear contribution.
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I—Evaluating pl hell three-loop four-point massless integrals

Studying limits, s — 0,t — 0, u — 0.

Typical contributions to the asymptotic expansion in the limit
x=t/x—0:

hard-hard-hard contribution,

collinear-collinear-collinear contribution,
ultrasoft-collinear-collinear contribution.

The code asy.m

(which is now included into FIESTA )
— expression of contributions of regions
in terms of parametric integrals.
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I—Evaluating pl hell three-loop four-point massless integrals

Three last elements of the basis

6
—e’s(s + t)(2sF1,1,0,1,1,1,1,1,1,1,0,0,0,0,0) — SF1,1,1,1,1,1,1,1,1,1,0,0,0,0,—1)
—F1,1,00,1,1,1,1,1,1,0,0,0,00) + F1,1,1,1,1,1,1,1,1,1,0,0,-1,0,-1)) »
6
€'st(3F1,1,0,0,1,1,1,1,1,1,0,0,0,0,0) — 2F1,1,1,0,1,1,1,1,1,1,0,0,0,0,—1)

6 3 2 3 2
€ 5(—55 F1,1,0,1,1,1,1,1,1,1,0,0,0,0,0) + 5S F11,1,1,1,1,1,1,1,1,0,0,0,0,-1)

5
_ZSFI’I’O’I’I’1’1’1’1’1’0’0’0’0’71) + Z5F1,1,1,0,1,1,1,1,1,1,0,0,0,0,71)

3
—2sF111,1,1,1,1,1,1,1,0,0,-1,0,—1) + 55F1,1,1,1,1,1,1,1,1,1,0,0,0,0,72)
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I—Evaluating pl hell three-loop four-point massless integrals

Our analytical result for element 28 is

-(1/3) - (I ep \[Pil)/2 + (10 ep~2 \[Pi]l~2)/9 +

23/24 I ep~3 \[Pil~3 - (271 ep~4 \[Pi]~4)/4320 - (

10201 I ep~5 \[Pi]l~5)/2880 - (23819 ep~6 \[Pil~6)/20160 +

1/2 ep H[{-1}, x] - 7/24 ep~3 \[Pil~2 H[{-1}, x] -

35/12 I ep~4 \[Pil~3 H[{-1}, x] - 3809/960 ep~5 \[Pil~4 H[{-1}, x] -
1157/72 I ep~6 \[Pil~5 H[{-1}, x] + 1/2 ep H[{0}, x] +

1/2 I ep~2 \[Pi] H[{0}, x] - 61/24 ep~3 \[Pil~2 H[{0}, x] +

27/8 I ep~4 \[Pi]l~3 H[{0}, x] - 103/576 ep~5 \[Pil~4 H[{0}, x] + (
58537 I ep~6 \[Pil~5 H[{0}, x]1)/2880 +

9/2 I ep~3 \[Pi] H[{-1, -1}, x] -

35/12 ep~4 \[Pil~2 H[{-1, -1}, x] -

683/24 I ep~5 \[Pil~3 H[{-1, -1}, x] +

3361/240 ep~6 \[Pil~4 H[{-1, -1}, x] - 1/2 ep~2 H[{-1, 0}, x] -
5/2 I ep~3 \[Pi]l H[{-1, 0}, x] + 77/24 ep~4 \[Pil~2 H[{-1, 0}, x] +
395/24 I ep~5 \[Pil~3 H[{-1, 0}, x] + (

739 ep~6 \[Pil~4 H[{-1, 0}, x1)/2880 - 1/2 ep~2 H[{0, -1}, x] -
97/24 ep~4 \[Pil~2 H[{0, -1}, x] +

77/4 1 ep~5 \[Pil~3 H[{0, -1}, x] + (1/2880)

18691 ep~6 \[Pil~4 H[{0, -1}, x] - 5/2 I ep~3 \[Pi] H[{0, 0}, x] +
79/12 ep~4 \[Pil~2 H[{0, 0}, x] -

445/24 I ep~5 \[Pil~3 H[{0, 0}, x] +

73/240 ep~6 \[Pil~4 H[{0, 0}, x] - 9/2 ep~3 H[{-1, -1, -1}, x] +...



Evaluating planar three-loop vertex integrals

[J. Henn, A. Smirnov and V. Smirnov'15]

[J. Henn, A. Smirnov,V. Smirnov & M. Steinhauser'16]



Evaluating Feynman integrals by uniformly transcendental differential equations

I—Evaluating planar three-loop vertex integrals

Evaluating planar three-loop vertex integrals

Numerical evaluation of planar and non-planar three-loop
threshold integrals with FIESTA

(evaluating NRQCD/QCD matching coefficients)
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I—Evaluating planar three-loop vertex integrals

/// d k d kdek3
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at p? = m?, p3 = m? at general s = ¢° = (p; — p2)°
or at threshold, s = 4m?.
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I—Evaluating planar three-loop vertex integrals

/// d k d kdek3
~~~~~ (2 — (ks + pl)zlai [m? — (k2 + p1)?]2

[m? — (ks + pr)?I[m? = (k3 P2l — (k2 + 2T
1
e = (kPP R (s — e PTe [~ (ke — k)T
1
Tl — kTR [k o

at p? = m?, p3 = m? at general s = ¢° = (p; — p2)°

or at threshold, s = 4m?.

Each index can be positive but the total number of positive
indices cannot be more than 9. This family of integrals can be
represented as the union of eight subfamilies.
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I—Evaluating planar three-loop vertex integrals

90 master integrals for general g? and 51 threshold master
integrals

F0,0,0,1,1,1,0,0,0,0,0,0, F0,0,0,0,1,1,0,0,0,1,0,15 F0,0,0,0,1,1,0,0,1,1,0,0, F0,0,1,0,0,0,0,1,0,1,1,0;

F0,0,1,0,0,1,0,1,1,0,1,0, F0,0,1,0,0,1,0,1,1,0,2,05 F0,0,1,0,0,1,0,2,1,0,1,0> F0,0,1,0,1,1,0,0,0,1,0,1,
F0,0,1,0,1,1,0,0,1,1,0,0, F0,0,1,0,1,1,0,0,1,2,0,05 F0,1,1,0,0,0,1,1,0,1,0,05 F0,0,1,0,0,1,0,1,0,1,1,1,
F0,0,1,0,1,2,0,0,1,1,1,0, F0,0,1,1,0,1,0,1,1,0,2,05 F0,0,1,1,0,1,1,1,1,0,0,0> F0,1,1,0,0,1,0,1,0,1,0,1,
F0,1,1,0,0,1,0,1,0,2,0,1, F0,1,1,0,0,1,0,2,0,1,0,15 F0,1,1,0,0,2,0,1,0,1,0,1> F0,1,1,0,0,1,1,1,0,1,0,0,

Fo,1,1,0,1,0,1,1,1,0,0,1, F0,1,1,0,1,1,0,1,0,1,0,1, F0,1,1,0,1,1,0,1,0,1,0,2> F0,1,1,0,1,1,0,1,0,2,0,1,
Fo,1,1,0,1,1,0,2,0,1,0,1, Fo,1,1,0,1,1,1,1,0,1,0,05 F0,1,1,0,1,1,1,1,0,2,0,0> F0,1,1,1,1,1,0,1,0,1,0,0;
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I—Evaluating planar three-loop vertex integrals
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I—Evaluating planar three-loop vertex integrals

(21) (22) (23a) (24b)

(25)
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I—Evaluating planar three-loop vertex integrals
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It is convenient to introduce the variable

s (1-x)?
m2 X
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I—Evaluating planar three-loop vertex integrals

It is convenient to introduce the variable

s (1 —x)?

m?2 X

The values x =1 and x = —1 correspond to s = 0 and
s =4m?.
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I—Evaluating planar three-loop vertex integrals

It is convenient to introduce the variable

s (1—x)?

m? X
The values x =1 and x = —1 correspond to s = 0 and
s =4m?.
DE

f'(e,x) = 6/2\'(x) f(x,e),

where A =37, A,, log(ax) and the letters oy are
x,14+x,1—x,1+x+ x°
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I—Evaluating planar three-loop vertex integrals

90 elements of this basis f(x) are

x2—1
{F0,003,3,3,0,0,0,0,0,0 » 57)( F0,0,2,1,3,3,0,0,0,0,0,05 - - -

6(1—x?)? 4
€ TF1,0,1,1,1,1,1,1,1,0,0,0 ; (1=26)e"F12100011,1,001}
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I—Evaluating planar three-loop vertex integrals

90 elements of this basis f(x) are

x2—1
{F0,003,3,3,0,0,0,0,0,0 » 57)( F0,0,2,1,3,3,0,0,0,0,0,05 - - -

6(1—x?)? 4
€ TF1,0,1,1,1,1,1,1,1,0,0,0 ; (1=26)e"F12100011,1,001}

A solution in an epsilon-expansion with coefficients written in
terms of multiple (Goncharov) polylogarithms (MPL)

2 dt
G(ai,...,anz) = —— G(ap,...,ant)
0 t—a
with indices a; taken from the seven-letters alphabet
{0, 1, r3,—1, 14, 12,1} with

rl,zzé(u\/?i), na=> (-1 V3i)

1
2
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I—Evaluating planar three-loop vertex integrals

A typical expression for analytical results for the elements of
the basis

ep~4x(-24xG[{-1}, 11xG[{0}, x1*G[{0, -1}, 11 +
24xG[{0, -1}, 11xG[{0, -1}, x] - 23=G[{0, -1}, 11xG[{0, 0}, x] -
12xG[{-1}, 11xG[{0}, xIx=G[{0, 1}, 1] + 12xG[{0, -1}, x]1*G[{0, 1}, 1] -
(23xG[{0, 0}, x]1*G[{0, 1}, 11)/2 + 12xG[{0, -1}, 1IxG[{0, 1}, x] +
6xG[{0, 1}, 11*G[{0, 1}, x] + 12+G[{0, -1}, 11*G[{1, O}, =] +
6xG[{0, 1}, 11xG[{1, 0}, x] - 9xG[{0, -1}, 11*G[{r1, OF, x] -
(9xG[{0, 1}, 11*G[{r1, 0}, x1)/2 - 9xG[{0, -1}, 11xG[{r2, 0}, x] -
(9xG[{0, 1}, 11*xG[{r2, 0}, x1)/2 + 24xG[{0}, xI*G[{-1, 0, -1}, 1] +
12xG[{0}, xI*G[{-1, 0, 1}, 11 + 24xG[{0}, xIxG[{0o, -1, -1}, 1] +
24xG[{-1}, x1*G[{0, 0, -1}, 1] - 48*G[{0}, x1*G[{0, 0, -1}, 11 +
48xG[{1}, x1*¢[{0, 0, -1}, 11 - 18xG[{r1}, x1*G[{0, 0, -1}, 11 -
18%G[{r2}, xI*G[{0, 0, -1}, 11 + 24xG[{-1}, xI1x¢[{0, 0, 1}, 1] -
(57xG[{0}, x1*G[{0, 0, 1}, 11)/2 + 24xG[{1}, xIxG[{0, 0, 1}, 1] -
(21x6[{r1}, x1*G[{0, 0, 1}, 11)/2 - (21xG[{r2}, x]1*G[{0, O, 1}, 11)/2 -
6xG[{0}, x1*G[{0, 1, 1}, 11 - 24xG[{-1, -1, 0, 0}, x] +
36+G[{-1, 0, 0, 0}, x] - 24xG[{-1, 1, 0, 0}, x] +
24xG[{0, -1, -1, 0}, x] + 2«G[{0, -1, 0, O}, x] + 12+G[{0, -1, 1, O}, x] -
23x6[{0, 0, -1, 0}, x] - (23xG[{0, 0, 1, O}, x1)/2 +
12%G[{0, 1, -1, 0}, x] + (11xG[{0, 1, 0, O}, x1)/2 +
6xG[{0, 1, 1, 0}, x] - 24xG[{1, -1, 0, 0}, x] + 12%G[{1, 0, -1, O}, x] +
15%G[{1, 0, 0, OF}, x] + 6xG[{1, 0, 1, 0}, x] - 12xG[{1, 1, 0, O}, x] -
9xG[{r1, 0, -1, 0}, x1 + 6%G[{r1, 0, 0, 0O}, x] -
(9x6[{r1, 0, 1, 0}, x1)/2 + (3*G[{r1, 1, 0, O}, x1)/2 -
9+G[{r2, 0, -1, 0}, x] + 6*xG[{r2, 0, 0, 0}, x] -
(9xG[{r2, 0, 1, 0}, x1)/2 + (3*G[{r2, 1, 0, 0}, xI)/2 +
(3xG[{0}, x]xZetal[3])/2 - (3*G[{ri}, x]xZeta[3])/2 -
(3*%G[{r2}, x]*Zetal[3])/2 -
(3x(16%G[{0, -1}, 11-2 + 8xG[{0, -1}, 11*G[{0, 1}, 1] +...
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I—Evaluating planar three-loop vertex integrals

To obtain analytical results for the 51 threshold master
integrals use threshold expansion

o 3
F(ah ceey d12, q2, mz) ~ Z 2(4’”2 - qz)n—janJ(ah ceey d12, qz) .

n=ng j=0
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Threshold master integrals are one-scale integrals
Foo(as, - - -, a1a; m?) defined with g2 set to 4m?.
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because of 1/(x + 1) and 1/(x + 1)? in some coefficients.
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I—Evaluating planar three-loop vertex integrals

To obtain analytical results for the 51 threshold master
integrals use threshold expansion

o 3
F(ah ceey d12, q2, mz) ~ Z 2(4”’2 - qz)n_jEFn,j(ah ceey d12, qz) .

n=ng j=0

Threshold master integrals are one-scale integrals
Foo(as, - - -, a1a; m?) defined with g2 set to 4m?.

We cannot just set g> = 4m?, i.e. x = —1 in our basis
because of 1/(x + 1) and 1/(x + 1)? in some coefficients.

Expand ‘naively’ in x + 1 the corresponding integrals.
Introduce one more (13th) index for the order of this
derivative in s, i.e. deal with the family

) a —ai3
F(al,...,312,813) = g F(al,...,alz)

s=4m?2
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Using IBP relations for integrals at general g and expanding all
the terms naively in g% at g> = 4m?® — 15 IBP relations.
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A naive differentiation in s of all the terms of the naive
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I—Evaluating planar three-loop vertex integrals

Using IBP relations for integrals at general g and expanding all
the terms naively in g% at g> = 4m?® — 15 IBP relations.

A naive differentiation in s of all the terms of the naive

expansion — one more
relation.

Then F'(ay,..., a2, a13) are reduced to master integrals
(with FIRE).

They are all with a;3 = 0, i.e directly correspond to the 51
master threshold integrals.



Matching at threshold
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I—Evaluating planar three-loop vertex integrals

Matching at threshold
x=y—1y—=0:

Aly)

f'le,y) =¢ fle,y),

where A'(y) = Ay + yA, + y? A + .. ..
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I—Evaluating planar three-loop vertex integrals

Matching at threshold
x=y—1y—=0:

Fle.y) = AY)

fle,y),

where A'(y) = Ay + yA, + y? A + .. ..

In the language of differential equations, the naive part of the
expansion near y = 0 corresponds to zero eigenvalues of the
matrix Ay while eigenvalues proportional to e correspond to
other contributions.
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To obtain expansions near y = 0 of the elements of the basis
in higher orders in y, we use a trick from the theory of
differential equations (presented, e.g., in )-



Evaluating Feynman integrals by uniformly transcendental differential equations

I—Evaluating planar three-loop vertex integrals

To obtain expansions near y = 0 of the elements of the basis
in higher orders in y, we use a trick from the theory of
differential equations (presented, e.g., in )-

Construct a polynomial P =1+ _, P,y" such that the DE
for the function g defined by f = Pg takes the form
yg'(y) = Aog(y) (with Ay is independent of y).
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differential equations (presented, e.g., in )-

Construct a polynomial P =1+ _, P,y" such that the DE
for the function g defined by f = Pg takes the form
yg'(y) = Aog(y) (with Ay is independent of y).

Then the solution of this equation is just g = y“°gy with a
boundary value gp.
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I—Evaluating planar three-loop vertex integrals

To obtain expansions near y = 0 of the elements of the basis
in higher orders in y, we use a trick from the theory of
differential equations (presented, e.g., in )-

Construct a polynomial P =1+ _, P,y" such that the DE
for the function g defined by f = Pg takes the form
yg'(y) = Aog(y) (with Ay is independent of y).

Then the solution of this equation is just g = y“°gy with a
boundary value gp.

We implemented this algorithm and constructed P, up to
r =>.
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I—Evaluating planar three-loop vertex integrals

Equating the part of our analytic results for the basis without
log(x 4+ 1) and the naive part of the threshold expansion
expressed in terms of the 51 threshold MI.
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I—Evaluating planar three-loop vertex integrals

Equating the part of our analytic results for the basis without
log(x 4+ 1) and the naive part of the threshold expansion
expressed in terms of the 51 threshold MI.

Solving these equations — coefficients of the epsilon
expansion of the M| up to some order written in terms of MPL
G(a1,...,a, 1) with a; # 1 and a; taken from the alphabet
{0,n,r3,—1, 14,12, 1}.
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I—Evaluating planar three-loop vertex integrals

Equating the part of our analytic results for the basis without
log(x 4+ 1) and the naive part of the threshold expansion
expressed in terms of the 51 threshold MI.

Solving these equations — coefficients of the epsilon
expansion of the M| up to some order written in terms of MPL
G(a1,...,a, 1) with a; # 1 and a; taken from the alphabet
{0,n,r3,—1, 14,12, 1}.

Examples of our results
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I—Evaluating planar three-loop vertex integrals

181¢(5) 21

F0,0,1,0,1,1,0,1,0,1,1,1 = —77 log(2)Gr (0,0, r2, —1) 32 2 log*(2)¢(3)
+115+2<(3) — 12Lis (%) — 12log(2)Lis (%) - 2'%5(2) + é# log”(2)
—%GR(O, 0,rs,1) log(2) + %w“ log(2) ,

F0,0,1,1,1,1,0,1,0,1,1,0 = —24_7 log(2)Gr(0,0, 2, —1) — %i@) B % log*(2)(3)
+%26<(3) ~ 6Lis (%) — 6 log(2)Lia (%) - IogZ(2)

+%W2 log®(2) — %GR(O, 0, rs,1) log(2) + %
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I—Evaluating planar three-loop vertex integrals

181¢(5) 21

F0,0,1,0,1,1,0,1,0,1,1,1 = —77 log(2)Gr (0,0, r2, 1) 32 2 log*(2)¢(3)
+115+2<(3) — 12Lis (%) — 12log(2)Lis (%) - 2'%5(2) + é# log”(2)
—%GR(O, 0,rs,1) log(2) + %w“ log(2) ,

F0,0,1,1,1,1,0,1,0,1,1,0 = —24_7 log(2)Gr(0,0, 2, —1) — %i@) B % log*(2)(3)
+%26<(3) ~ 6Lis (%) — 6 log(2)Lia (%) - IogZ(2)

+%W2 log®(2) — %GR(O, 0, rs,1) log(2) + %

where

G(al,...,a,,; 1) = GR(al,...,a,,)—|—iG,(al,...,a,,)



Constructing bases for Gg(ay,

. a,,) and G,(al,

ER
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L MPL(2)

Constructing bases for Gg(ay, ..., a,) and Gi(ay, ..., an,).

A linear basis in this set of constants up to weight 3
in terms of Ch(m/3),log(2),log(3),m, ((3)
and Li, of some arguments.
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L MPL(2)

Constructing bases for Gg(ay, ..., a,) and Gi(ay, ..., an,).

A linear basis in this set of constants up to weight 3
in terms of Ch(m/3),log(2),log(3),m, ((3)
and Li, of some arguments.

Bases for the alphabet with letters 0,1, —1

Bases for the multiple Deligne values, i.e. for the the alphabet
with letters 0, —1,

Constants present in results for Feynman integrals up to
weight 5 were discussed in
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L MPL(2)

For example,

G(r) = ~3 Gr(—1) = log(2) ,
Ggr(0,0,1) = —((3), Gg(0,0,0,1)= —g—; ,
Ggr(0,0,0,0,1) = —((5),

Gr(0,0,1,1,—1) = —2Lis (%) — 2Ly (%) log(2) — m¢(3)

151¢(5) log’(2) 1 , 4
61 15 + T log(2) 7 log(2) .




Hac
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MPL

G(ay,...,anz) = / dt G(az,...,ant)
0 t_a]_

In the special case where a; = 0 for all i one has by definition

1
G(0,...,0;z)==1In"z.

n!
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L MPL(2)

MPL

G(ay,...,anz) = / dt G(az,...,ant)
0 t_a]_

In the special case where a; = 0 for all i one has by definition

1
G(0,...,0;z)==1In"z.

n!
If a, # 0, then
G(pai,...,paw; pz) = G(a,...,aw; 2)

so that one can express them in terms of G(...;1).
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L MPL(2)

The MPL can be represented as multiple nested sums

oo hg—1 na—1

Limg o m (X1, - X

ne= lnk 1—1 nl—

= Zmy....m; (00 Xky - .., X1)

1 1
= (-1)*G |0,...,0,=,...,0,...,0,———;1
w—/Xk H/—/X]_Xk

mk—l m1—1
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L MPL(2)

The MPL can be represented as multiple nested sums

o0 nyg— 1 nz—
Liml,m’mk(xl, ey X k
ne= lnk 1—1 nl—
= Zmy....m; (00 Xky - .., X1)
1 1
k .
=(-1*Glo0,...,0,=,...,0,...,0,——; 1
w—/ Xk H/—/ X]_ .. .Xk

mk—l m1—1

Since the arguments of the Li- and Z-functions involved have
the form x; = AP for p; = 0,...,5 we introduce an auxiliary
function

Lml,...,mk(pb s apk) - Liml,...,mk ()\p17 BRI )‘pk) .



G(al,. .

., an; 1) satisfy various relations.
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We start with using shuffle, stuffle, regularization and
distribution relations following Zhao
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L MPL(2)

G(ay,. .., an 1) satisfy various relations.

We start with using shuffle, stuffle, regularization and
distribution relations following Zhao

Shuffle relations

G(ai,...,aw;2)G(b1,..., by, 2 Z G(cr,- -y Cuntwss Z)

cEawb
Stuffle relations

Lal,...,awl (p17 cte ?le) Lbl,...,be(qla c qW2)

= Z Lcl,...,c,,(rb feey rn)

cEaxb

They are written for a; > 2, b; > 2 for a given weight
w =Y a;+ »_ b; and then are translated into the language of
G(ar,...,aw:; 1).



Regularization relations

{Ll(O)L31 ..... ak(q17 sy qk)}stuﬁ'le - {LI(O)L31

..... ak(qla SRR qk)}shuﬁ"le

DA
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L MPL(2)

Regularization relations

{LI(O)Lal,...,ak(qla ey qk)}stu{-ﬂe - {LI(O)Lal,...,ak(qb ey qk)}shufﬂe

The numbers L;(0) correspond to the variable T introduced
by Zagier in the case of MZV

[

and used by Zhao in the case of MPL at n-th
roots of unity.
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by Zagier in the case of MZV
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and used by Zhao in the case of MPL at n-th
roots of unity.
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L MPL(2)

Regularization relations

{LI(O)Lal,...,ak(qla ey qk)}stu{-ﬂe - {LI(O)Lal,...,ak(qb ey qk)}shufﬂe

The numbers L;(0) correspond to the variable T introduced
by Zagier in the case of MZV

[

and used by Zhao in the case of MPL at n-th
roots of unity.

(Regularized double shuffle relations.)

Singular terms are cancelled in the difference.



Distribution relations

Llal,...,ak(xb

_ Jai+...tar—k
>Xk) — d 1 k
x >

Liay,. .o (11,
(ylz'-'zyk): ydeXjajzlz'“:k

«O)»>» «F»

. >.yk)
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L MPL(2)

Distribution relations

Lial,...,ak(xla s JXk) - d31+...+ak—k

% Z Lial,...,ak(y]_, [P

(V1seyh): v =x5.0=1,00k

ford =2 and d = 3.

Vi)
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In our case, n = 6, we use these four types of relations, then
turn to the real and imaginary parts and use also the complex
conjugation relations

G(ay,...,a51)=G(ay,...,an 1)

with rf" =, rj = .



Evaluating Feynman integrals by uniformly transcendental differential equations

L MPL(2)

In our case, n = 6, we use these four types of relations, then
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We solved these relations up to weight 6 recursively with the
respect to the weight.
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In our case, n = 6, we use these four types of relations, then
turn to the real and imaginary parts and use also the complex
conjugation relations

G(ay,...,a51)=G(ay,...,an 1)

with rf" =, rj = .

We solved these relations up to weight 6 recursively with the
respect to the weight.

The total number of relations grows fast when the weight is
increased. At weight 6, we have 654452 equations for the real

parts and 654937 equations for the imaginary parts of
G(a,...,an1).
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The relations for the 6 x 77~ numbers Ggr(ay,...,an;1) or
Gi(ay, ..., ay; 1) are linear equations. We solved them for
w=1,2,...,6 with a code written in Mathematica.
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Gi(ay, ..., ay; 1) are linear equations. We solved them for
w=1,2,...,6 with a code written in Mathematica.

It turns out, however, that the resulting constants,
independent in the sense of these relations, are still Q-linearly
dependent, i.e. one can linearly express some of them in terms
of a smaller set of the constants and products of constants of
lower weights.
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L MPL(2)

The relations for the 6 x 77~ numbers Ggr(ay,...,an;1) or
Gi(ay, ..., ay; 1) are linear equations. We solved them for
w=1,2,...,6 with a code written in Mathematica.

It turns out, however, that the resulting constants,
independent in the sense of these relations, are still Q-linearly
dependent, i.e. one can linearly express some of them in terms
of a smaller set of the constants and products of constants of
lower weights.

We revealed additional relations using PSLQ algorithm

and ginac to evaluate
MPLs with a big accuracy (up to 4000 digits).
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L MPL(2)

The dimensions of the bases

w DR(W) DR(W) D/(W) D[(W PSLQR PSLQ[
1 2 2 1 1

2 1 5 1 3

3 3 12 2 9 2

4 5 30 5 25 2 6

5 13 76 11 68 11 17

6 25 195 25 182 39 49
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L MPL(2)

Our basis for the real parts of G(ay, ..., as; 1) consists of 5
constants of weight 4

{er[0, 0, r2, -11, GR[O, O, r4, 1], GR[r2, 1, 1, -1],
GR[r2, 1, 1, r3], GR[r2, 1, r2, -11}

and 25 products of constants of lower weights

{GR[-11-4, GI[r2]1-2 GR[-11~2, GI[r2]1-4, GR[-11-3 GR[r4l,

GI[r2]1~2 GR[-1] GR[r4l, GR[-11-2 GR[r4l-2, GI[r2]~2 GR[r4l-2,
GR[-1] GR[r4]1-3, GR[r4]-~4, GI[r2] GI[0, r2] GR[-11,

GI[r2] 6I[0, r2] GR[r4l, GI[0, r2]1~2, GR[-1]1~2 GR[r2, -11,
GI[r2]~2 GR[r2, -11, GR[-1] GR[r4] GR[r2, -11, GR[r41-~2 GR[r2, -11,
GR[r2, -1]1-2, GR[-1] GR[0, 0, 1], GR[r4] Gr[O, O, 1],

GI[r2] ¢rfo, 1, r4l, GI[r2] GI[0, r2, -1], GR[-1] GR[r2, 1, -1],
GR[r4] GR[r2, 1, -1], GR[-1] GR[r2, 1, r3], GR[r4] GR[r2, 1, r3]}
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L MPL(2)

Our basis for the imaginary parts of G(ay, ..., as; 1) consists
of 5 constants of weight 4

{610, 0, 0, r2], 6I[0, 1, 1, r4l, GI[0, 1, r2, -11, GI[O0, 1, r2, r3],
GIfo, r2, 1, -11}

and 20 products of constants of lower weights

{6I[r2] GR[-1]1-3, GI[r2]~3 GR[-1], GI[r2] GR[-11~2 GR[r4],

GI[r2]1~3 GR[r4l, GI[r2] GR[-1] GR[r4l1-2, GI[r2] GR[r4l-3,

GI[0, r2] GR[-11-2, GI[r2]-2 GI[0, r2], GI[O, r2] GR[-1] GR[r4l,
GI[0, r2] GR[r4l-2, GI[r2] GR[-1] GR[r2, -11,

GI[r2] GR[r4l GR[r2, -11, GI[0, r2] GR[r2, -11, GI[r2] GR[O, 0, 11,
GI[o, 1, r4] GR[-1], GI[0, 1, r4] GR[r4]l, GI[0, r2, -1] GR[-1],
GI[0, r2, -1] GR[r4], GI[r2] GR[r2, 1, -1], GI[r2] GR[r2, 1, r3]}
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Our basis for the real parts of G(ay, ..., as; 1) consists of 13
constants of weight 5

{Gr[0, 0, 0, 0, 11, GR[O, O, 1, 1, -11, GR[O, O, 1, 1, r4],
Grlo, 0, 1, r2, -11, GR[0, 0, 1, r2, r3], GR[O, O, 1, r2, r4l,
Grlo, 0, r2, 1, -11, GR[r2, 1, 1, -1, r2], GR[r2, 1, 1, 1, -1],
GR[r2, 1, 1, 1, r3], GR[r2, 1, 1, r2, -1], GR[r2, 1, 1, r2, r3],
GR[r2, 1, 1, r4, -11}

and 63 products of constants of lower weights

{GR[-11"5, GI[r2]~2 GR[-1]"3, GI[r2]~4 GR[-1l, GR[-11~4 GR[r4l,
GI[r2]~2 GR[-11~2 GR[r4l, GI[r2]~4 GR[r4l, GR[-11"3 GR[r4l-2,
GI[r2]~2 GR[-1] GR[r4]~2, GR[-11~2 GR[r4]"3, GI[r2]~2 GR[r4]-3,
GR[-1]1 GR[r4]1-4, GR[r4l~5, GI[r2] GI[0, r2] GR[-11-2,

GI[r2]1~3 GI[0, r2], GI[r2] GI[0, r2] GR[-1] GR[r4l,

GI[r2] GI[0, r2] GR[r4l~2, GI[O0, r21~2 GR[-1l, GI[0, r2]~2 GR[r4]l,
GR[-11"3 GR[r2, -11, GI[r2]1~2 GR[-1] GR[r2, -11,

GR[-11~2 GR[r4] GR[r2, -11, GI[r2]1~2 GR[r4] GR[r2, -11,

GR[-1]1 GR[r4]1~2 GR[r2, -11, GR[r41-3 GR[r2, -11,

GI[r2] GI[0, r2] GR[r2, -11, GR[-1] GR[r2, -11-2,

GR[r4] GR[r2, -11-2, GR[-1]1~2 GR[0, 0, 11, GI[r2]1-2 GR[O, O, 11,
GR[-11 GR[r4] GR[0, 0, 11, GR[r4l-2 Gr[0, 0, 11,

GR[r2, -1] GR[0, 0, 1], GI[r2] GI[O, 1, r4] GR[-1l,

GI[r2] GIfo, 1, r4] GR[ral, GI[0, r2] GI[O, 1, r4l,

GI[r2] GI[0, r2, -1] GR[-1], GI[r2] GI[0, r2, -1] GR[r4l,
GIfo, r2] GI[0, r2, -1, GR[-11~2 GR[r2, 1, -1],

GI[r2]~2 GR[r2, 1, -11, GR[-1] GR[r4] GR[r2, 1, -1,

GR[r4l1-2 GR[r2, 1, -11, GR[r2, -1l GR[r2, 1, -1l,

GR[-11-2 GR[r2, 1, r3], GI[r2]~2 GR[r2, 1, r3l,

GR[-11 GR[r4] GR[r2, 1, r3], GR[r4]1-2 GR[r2, 1, r3],

GR[r2, -1] GR[r2, 1, r3], GI[r2] GIl0, O, 0, r2l,

GR[-11 GR[O, 0, r2, -11, GR[r4] GR[O, O, r2, -11,

GR[-1]1 GR[O, 0, r4, 11, GR[r4] GR[0, O, r4, 1,

GI[r2] GI[O, 1, 1, r4l, GI[r2] GI[O, 1, r2, -1,

GI[r2] GI[O, 1, r2, r3], GI[r2] GI[O, r2, 1, -11,

GR[-11 GR[r2, 1, 1, -11, GR[r4] GRIr2, 1, 1, -1,

GR[-11 GR[r2, 1, 1, r3], GR[r4] GR[r2, 1, 1, r3],

GR[-11 GR[r2, 1, r2, -1l, GR[r4] GR[r2, 1, r2, -11}
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Our basis for the imaginary parts of G(ay, ..., as; 1) consists
of 11 constants of weight 5

{c1lo, 0, 0, 1, r21, GI[0, 0, 0, 1, r4l, GI[0, 0, 0, r2, -1l,
GIfo, 1, 1, -1, r21, GIfo, t, 1, -1, r4l, GIfo, 1, 1, 1, r4l,
Grfo, t, t, r2, r3l, GI[o, 1, 1, r4, -11, GI[O, 1, 1, r4, ril,
GIfo, 1, r2, r3, r2l, GI[0, r2, 1, t, -11}

and 57 products of constants of lower weights

{GI[r2] GR[-1]1~4, GI[r2]~3 GR[-11-2, GI[r2]"5, GI[r2] GR[-1]-3 GR[r4l,
GI[r2]~3 GR[-1] GR[r4], GI[r2] GR[-1]1"2 GR[r4]~2, GI[r2]~3 GR[r4]-2,
GI[r2] GR[-1] GR[r4]"3, GI[r2] GR[r4]l~4, GI[0, r2] GR[-1]1"3,

GI[r2]1~2 GI[0, r2] GR[-1], GI[0, r2] GR[-1]1"2 GR[r4l,

GI[r2]1~2 GI[0, r2] GR[r4l, GI[0, r2] GR[-1] GR[r41-2,

GI[0, r2] GR[r41-3, GI[r2] GI[0, r2]~2, GI[r2] GR[-11-2 GR[r2, -1],

GI[r2]1~3 GR[r2, -1], GI[r2] GR[-1] GR[r4] GR[r2, -1,

GI[r2] GR[r4l~2 GR[r2, -11, GI[0, r2] GR[-1] GR[r2, -1],

GI[0, r2] GR[r4l GR[r2, -11, GI[r2] GR[r2, -11-2,

GI[r2] GR[-1] GR[O, 0, 1], GI[r2] GR[r4] GR[O, O, 1I,

Grfo, r2] Grlo, o, 11, GI[0, 1, r4] GR[-1]1"2, GI[r2]~2 GI[oO, 1, r4l,

GIfo, 1, r4] GR[-1] GR[ral, GI[0, 1, r4] GR[r4l-2,

Grfo, 1, r4] GR[r2, -11, GI[0, r2, -1] GR[-1]1"2,

GI[r2]~2 GI[0, r2, -11, GI[0, r2, -1] GR[-1] GR[r4],

GI[o, r2, -1] GR[r4l~2, GI[0, r2, -1l GR[r2, -1],

GI[r2] GR[-1] GR[r2, 1, -1], GI[r2] GR[r4] GR[r2, 1, -1],

GIfo, r2] GRr2, 1, -11, GI[r2] GR[-1] GR[r2, 1, r3l,

GI[r2] GR[r4] GR[r2, 1, r3l, GI[0, r2] GR[r2, 1, r3l,

Grfo, o, 0, r2l GR[-11, GI[0, 0, 0, r2] GR[r4l,

GIlr2] GR[0, 0, r2, -11, GI[r2] GR[0, O, r4, 1],

Grfo, 1, 1, r4l GR[-11, GI[0, 1, 1, r4] GR[r4l,

Grfo, 1, r2, -11 GR[-11, GI[0, 1, r2, -1] GR[r4l,

Grfo, 1, r2, ra] GR[-11, GI[0, 1, r2, r3] GR[r4l,

Grfo, r2, 1, -11 GR[-11, GI[0, r2, 1, -1] GR[r4l,

GI[r2] GR[r2, 1, 1, -1], GI[r2] GR[r2, 1, 1, r3l,

GI[r2] GR[r2, 1, r2, -1]}
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L MPL(2)

Our basis for the real parts of G(ay, ..., as; 1) consists of 25
constants of weight 6 and 170 products of constants of lower
weights

Our basis for the imaginary parts of G(ay, ..., as; 1) consists
of less than 74 constants of weight 6 and 157 products of
constants of lower weights
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L MPL(2)

m The dimensions of the spaces generated by real and
imaginary parts of MPL of a given weight are,
respectively, (Fay12 + Fuwi1)/2, and (Fopi2 — Fua1)/2,
where F(n) is a Fibonacci number

m Broadhurst explicitly described, at any w, parts of
conjectured bases consisting of G(ay, ..., a; 1) using only
letters 0, —1, ry.

m Zhao: if nis non-standard, i.e. has at least two prime
factors, then the number of MPL at nth roots of unity
coincides with the upper bounds of the motivic theory.
These upper bounds for the motivic fundamental group
were computed by Deligne and Goncharov. The numbers
of the corresponding generators coincide at n = 6 with
our numbers.
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L Conclusion

m A lot of successful applications of the new strategy of the
method of DE. A lot of pending projects.

m An explicit algorithmic description by Lee in the case of
one variable.

m A public computer code of this and future algorithms?
m Similar algorithms in the case of two and more variables?

m In some cases, the epsilon form is impossible. Elliptic
functions appear. A linear dependence on ¢ instead of the
rhs proportional to €?

to be continued
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L Conclusion

Lee : transition to UT basis in three steps (in the
case of one variable).
m Reduction to a Fuchsian form where the singularities at
all the points x(¥) (including x = c0) are simple poles.
m Normalizing eigenvalues of the matrices which are

coefficients the Fuchsian singularities when one tries to
make them proportional to e.

m Providing a linear dependence on .
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based on the so-called balance transformation
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where ¢ is a constant, P, PP are the two complementary
projectors, i.e. P2 =Pand P=1— P.
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L Conclusion

At each of the three steps, one is looking for a proper linear
transformation of the current basis. The first two steps are
based on the so-called balance transformation

X — Xo

B(]P)7X17X2|X):@+C ]P)>

X — X1

where ¢ is a constant, P, PP are the two complementary
projectors, i.e. P2 =Pand P=1— P.

The idea of using a balance transformation is that with its
help one can take care of one singular point x; (by providing a
Fuchsian singularity or by normalizing eigenvalues
corresponding to a given singular point) and not to spoil these
properties at a second singular point, x,.
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