
Evaluating Feynman integrals by uniformly transendental di�erential equations

Evaluating Feynman integrals by uniformly

transendental di�erential equations

Vladimir A. Smirnov

Skobeltsyn Institute of Nulear Physis of Mosow State University

and Humboldt-Universit�at Berlin

DESY Zeuthen, November, 2015



Evaluating Feynman integrals by uniformly transendental di�erential equations

Based on ollaboration with Johannes Henn, Bernhard

Mistlberger and Alexander Smirnov



Evaluating Feynman integrals by uniformly transendental di�erential equations

Based on ollaboration with Johannes Henn, Bernhard

Mistlberger and Alexander Smirnov

Introdution. The method of di�erential equations



Evaluating Feynman integrals by uniformly transendental di�erential equations

Based on ollaboration with Johannes Henn, Bernhard

Mistlberger and Alexander Smirnov

Introdution. The method of di�erential equations

Evaluating non-planar on-shell three-loop four-point

massless integrals



Evaluating Feynman integrals by uniformly transendental di�erential equations

Based on ollaboration with Johannes Henn, Bernhard

Mistlberger and Alexander Smirnov

Introdution. The method of di�erential equations

Evaluating non-planar on-shell three-loop four-point

massless integrals

Evaluating planar three-loop vertex integrals



Evaluating Feynman integrals by uniformly transendental di�erential equations

Based on ollaboration with Johannes Henn, Bernhard

Mistlberger and Alexander Smirnov

Introdution. The method of di�erential equations

Evaluating non-planar on-shell three-loop four-point

massless integrals

Evaluating planar three-loop vertex integrals

MPL(1)



Evaluating Feynman integrals by uniformly transendental di�erential equations

Based on ollaboration with Johannes Henn, Bernhard

Mistlberger and Alexander Smirnov

Introdution. The method of di�erential equations

Evaluating non-planar on-shell three-loop four-point

massless integrals

Evaluating planar three-loop vertex integrals

MPL(1)

Conlusion



Evaluating Feynman integrals by uniformly transendental di�erential equations

Introdution. The method of di�erential equations

[A.V. Kotikov'91, E. Remiddi'97, T. Gehrmann &

E. Remiddi'00, J. Henn'13℄



Evaluating Feynman integrals by uniformly transendental di�erential equations

Introdution. The method of di�erential equations

[A.V. Kotikov'91, E. Remiddi'97, T. Gehrmann &

E. Remiddi'00, J. Henn'13℄

Gehrmann & Remiddi: a method to evaluate master integrals.

It is assumed that the problem of redution to master integrals

is solved.



Evaluating Feynman integrals by uniformly transendental di�erential equations

Introdution. The method of di�erential equations

[A.V. Kotikov'91, E. Remiddi'97, T. Gehrmann &

E. Remiddi'00, J. Henn'13℄

Gehrmann & Remiddi: a method to evaluate master integrals.

It is assumed that the problem of redution to master integrals

is solved.

Henn: use uniform transendental (UT) bases!



Evaluating Feynman integrals by uniformly transendental di�erential equations

Introdution. The method of di�erential equations

[A.V. Kotikov'91, E. Remiddi'97, T. Gehrmann &

E. Remiddi'00, J. Henn'13℄

Gehrmann & Remiddi: a method to evaluate master integrals.

It is assumed that the problem of redution to master integrals

is solved.

Henn: use uniform transendental (UT) bases!

A lot of appliations [J.M. Henn, A.V. Smirnov, V.A. Smirnov,

K. Melnikov, F. Caola, R. Boniani, V. Del Dua, H. Frellesvig,

F. Moriello, M. Argeri, S. Di Vita, P. Mastrolia, E. Mirabella,

J. Shlenk, U. Shubert, L. Tanredi, T. Gehrmann, A. von

Manteu�el, E. Weihs, F. Dulat, B. Mistlberger, R. N. Lee,...℄
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Take some derivatives of given master integrals in masses

or/and kinemati invariants

(or, in an auxiliary parameter [C. Papadopoulos℄)

Express them in terms of Feynman integrals of the given

family with shifted indies

Apply an IBP redution to express these integrals in terms

of master integrals to obtain a system of di�erential

equations

Solve DE
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Let f = (f
1

, . . . , f
N

) be primary master integrals (MI) for a

given family of dimensionally regularized (with D = 4− 2ǫ)
Feynman integrals.

Let x = (x
1

, . . . , x
n

) be kinematial variables and/or masses,

or some new variables introdued to `get rid of square roots'.

DE:

∂
i

f (ǫ, x) = A

i

(ǫ, x)f (ǫ, x) ,

where ∂
i

= ∂
∂x

i

, and eah A

i

is an N × N matrix.
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Introdution. The method of di�erential equations

Henn (2013): turn to a new basis where DE take the form

∂
i

f (ǫ, x) = ǫA
i

(x)f (ǫ, x) .

In the di�erential form,

d f (ǫ, x) = ǫ (d Ã(x)) f (x , ǫ) ,

where

Ã =
∑

k

Ãα
k

log(α
k

) .

and Ãα
k

are onstant matries. The arguments of the

logarithms α
i

(letters) are funtions of x . Elements of suh

basis turn out to be uniformly transendental (UT).

Let us all it epsilon form.
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The ase of two sales, i.e. with one variable in the DE, i.e.

n = 1.

One tries to ahieve the following form of DE:

f

′(ǫ, x) = ǫ
∑

k

a

k

x − x

(k)
f (ǫ, x) .

where x

(k)
is the set of singular points of the DE and N × N

matries a

k

are independent of x and ǫ.

For example, if x

k

= 0,−1, 1 then results for elements of suh

a basis are expressed in terms of HPL.
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How to turn to a UT basis?

In simple situations where integrals an be expressed in

terms of gamma funtions, just adjust indies properly

Use Feynman parametrization

Replae propagators by delta funtions and analyze

whether the resulting expression is UT.

An approah using Magnus and Dyson series expansion

[M. Argeri, S. Di Vita, P. Mastrolia, E. Mirabella,

J. Shlenk, U. Shubert, L. Tanredi'14℄
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Introdution. The method of di�erential equations

A part of the proedure is algorithmially desribed in

[T. Gehrmann, A. von Manteu�el, L. Tanredi and

E. Weihs'14℄

Construting UT elements of the basis at the level of

integrand [Z. Bern, E. Herrmann, S. Litsey, J. Stankowiz

and J. Trnka'14℄

An algorithmial desription in the ase of one variable

[R.N. Lee'14℄
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Motivation: three-loop amplitudes of N = 8 supergravity and

N = 4 super-Yang-Mills theory [Z. Bern, J. J. Carraso,

L. J. Dixon, H. Johansson, D. A. Kosower and R. Roiban'07℄
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The kinematis: p
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Partial results:

master integrals for D apart from the top setor [R.N. Lee'14℄

K

4

as a part of C [J. Henn, A.&V. Smirnov'13℄

p1
1

9

p2

2

p3

10

p4

3

7

4

5

8

6

p1
3

7
9

p2

4

p3

8
10

p4

Results expressed in terms of HPL

H

a

1

,a
2

,...,a
n

(x), a
i

= 1, 0,−1,

[E. Remiddi and J.A.M. Vermaseren'00℄
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Evaluating non-planar on-shell three-loop four-point massless integrals

IBP redution by FIRE and by a private ode by Bernhard

Mistlberger.

In all the ases, initial DE are transformed into

∂
x

f (x , ǫ) = ǫ

[
a

x

+
b

1+ x

]

f (x , ǫ) .

where a and b are onstant matries.
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Evaluating non-planar on-shell three-loop four-point massless integrals

Boundary onditions.

Three singular points, at x = 0, x = −1, and x = ∞,

orresponding to the limits s → 0, u → 0, and t → 0,

respetively.

For planar diagrams A and E, the ondition of the absene of

singularities at u = 0 served as a very powerful boundary

ondition. As a result, only simple information about integrals

expressed in terms of gamma funtions �xed ompletely the

solution of the DE.

There is no this ondition in the non-planar ases beause

non-planar diagrams have singularities in all the three hannels.
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Evaluating non-planar on-shell three-loop four-point massless integrals

Studying limits, s → 0, t → 0, u → 0.

Typial ontributions to the asymptoti expansion in the limit

x = t/x → 0:

hard-hard-hard ontribution,

ollinear-ollinear-ollinear ontribution,

ultrasoft-ollinear-ollinear ontribution.

The ode asy.m

[A. Pak and A. Smirnov'10, B. Jantzen, A.S. and V.S.'12℄

(whih is now inluded into FIESTA [A.S.'09-15℄)

→ expression of ontributions of regions

[M. Beneke & V. S.'12℄ in terms of parametri integrals.
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Three last elements of the basis

−ǫ6s(s + t)(2sF
1,1,0,1,1,1,1,1,1,1,0,0,0,0,0)− sF

1,1,1,1,1,1,1,1,1,1,0,0,0,0,−1

)

−F

1,1,0,0,1,1,1,1,1,1,0,0,0,0,0) + F

1,1,1,1,1,1,1,1,1,1,0,0,−1,0,−1

)) ,

ǫ6st(3F
1,1,0,0,1,1,1,1,1,1,0,0,0,0,0)− 2F

1,1,1,0,1,1,1,1,1,1,0,0,0,0,−1

)

−F

1,1,1,1,1,1,1,1,1,1,0,0,−1,0,−1

)) ,

ǫ6s(−3

2

s

2

F

1,1,0,1,1,1,1,1,1,1,0,0,0,0,0) +
3

2

s

2

F

1,1,1,1,1,1,1,1,1,1,0,0,0,0,−1

)

−9

4

sF

1,1,0,1,1,1,1,1,1,1,0,0,0,0,−1

) +
5

4

sF

1,1,1,0,1,1,1,1,1,1,0,0,0,0,−1

)

−2sF

1,1,1,1,1,1,1,1,1,1,0,0,−1,0,−1

) +
3

2

sF

1,1,1,1,1,1,1,1,1,1,0,0,0,0,−2

)

−5F

1,1,1,−1,1,1,1,1,1,1,0,0,0,0,−1

) + 4F

1,1,1,0,1,1,1,1,1,1,0,0,−1,0,−1

)

+3F

1,1,1,0,1,1,1,1,1,1,0,0,0,0,−2

)− 2F

1,1,1,1,1,1,1,1,1,1,0,0,−1,0,−2

)) .
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Our analytial result for element 28 is

-(1/3) - (I ep \[Pi℄)/2 + (10 ep^2 \[Pi℄^2)/9 +

23/24 I ep^3 \[Pi℄^3 - (271 ep^4 \[Pi℄^4)/4320 - (

10201 I ep^5 \[Pi℄^5)/2880 - (23819 ep^6 \[Pi℄^6)/20160 +

1/2 ep H[{-1}, x℄ - 7/24 ep^3 \[Pi℄^2 H[{-1}, x℄ -

35/12 I ep^4 \[Pi℄^3 H[{-1}, x℄ - 3809/960 ep^5 \[Pi℄^4 H[{-1}, x℄ -

1157/72 I ep^6 \[Pi℄^5 H[{-1}, x℄ + 1/2 ep H[{0}, x℄ +

1/2 I ep^2 \[Pi℄ H[{0}, x℄ - 61/24 ep^3 \[Pi℄^2 H[{0}, x℄ +

27/8 I ep^4 \[Pi℄^3 H[{0}, x℄ - 103/576 ep^5 \[Pi℄^4 H[{0}, x℄ + (

58537 I ep^6 \[Pi℄^5 H[{0}, x℄)/2880 +

9/2 I ep^3 \[Pi℄ H[{-1, -1}, x℄ -

35/12 ep^4 \[Pi℄^2 H[{-1, -1}, x℄ -

683/24 I ep^5 \[Pi℄^3 H[{-1, -1}, x℄ +

3361/240 ep^6 \[Pi℄^4 H[{-1, -1}, x℄ - 1/2 ep^2 H[{-1, 0}, x℄ -

5/2 I ep^3 \[Pi℄ H[{-1, 0}, x℄ + 77/24 ep^4 \[Pi℄^2 H[{-1, 0}, x℄ +

395/24 I ep^5 \[Pi℄^3 H[{-1, 0}, x℄ + (

739 ep^6 \[Pi℄^4 H[{-1, 0}, x℄)/2880 - 1/2 ep^2 H[{0, -1}, x℄ -

97/24 ep^4 \[Pi℄^2 H[{0, -1}, x℄ +

77/4 I ep^5 \[Pi℄^3 H[{0, -1}, x℄ + (1/2880)

18691 ep^6 \[Pi℄^4 H[{0, -1}, x℄ - 5/2 I ep^3 \[Pi℄ H[{0, 0}, x℄ +

79/12 ep^4 \[Pi℄^2 H[{0, 0}, x℄ -

445/24 I ep^5 \[Pi℄^3 H[{0, 0}, x℄ +

73/240 ep^6 \[Pi℄^4 H[{0, 0}, x℄ - 9/2 ep^3 H[{-1, -1, -1}, x℄ +...
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Evaluating planar three-loop vertex integrals

[J. Henn, A. Smirnov and V. Smirnov'15℄

[J. Henn, A. Smirnov,V. Smirnov & M. Steinhauser'16℄

Numerial evaluation of planar and non-planar three-loop

threshold integrals with FIESTA [P. Marquard, J.H. Pilum,

D. Seidel and M. Steinhauser'14℄

(evaluating NRQCD/QCD mathing oe�ients)
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F

a

1

,...,a
12

=

∫ ∫ ∫
d

D

k

1

d

D

k

2

d

D

k

3

[m2 − (k
1

+ p

1

)2]a1[m2 − (k
2

+ p

1

)2]a2

× 1

[m2 − (k
3

+ p

1

)2]a3 [m2 − (k
3

+ p

2

)2]a4[m2 − (k
2

+ p

2

)2]a5

× 1

[m2 − (k
1

+ p

2

)2]a6 [−k

2

1

]a7 [−(k
1

− k

2

)2]a8 [−(k
2

− k

3

)2]a9

× 1

[−(k
1

− k

3

)2]a10 [−k

2

2

]−a11[−k

2

3

]−a12

at p

2

1

= m

2, p2
2

= m

2

at general s ≡ q

2 = (p
1

− p

2

)2

or at threshold, s = 4m

2

.
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F

a

1

,...,a
12

=

∫ ∫ ∫
d

D

k

1

d

D

k

2

d

D

k

3

[m2 − (k
1

+ p

1

)2]a1[m2 − (k
2

+ p

1

)2]a2

× 1

[m2 − (k
3

+ p

1

)2]a3 [m2 − (k
3

+ p

2

)2]a4[m2 − (k
2

+ p

2

)2]a5

× 1

[m2 − (k
1

+ p

2

)2]a6 [−k

2

1

]a7 [−(k
1

− k

2

)2]a8 [−(k
2

− k

3

)2]a9

× 1

[−(k
1

− k

3

)2]a10 [−k

2

2

]−a11[−k

2

3

]−a12

at p

2

1

= m

2, p2
2

= m

2

at general s ≡ q

2 = (p
1

− p

2

)2

or at threshold, s = 4m

2

.

Eah index an be positive but the total number of positive

indies annot be more than 9. This family of integrals an be

represented as the union of eight subfamilies.
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p1

1

7
-p 2

q

4

2

8
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9
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6

(1)

p1

1

7 -p 2
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q
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8
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9
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(2)
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7
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q
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8 49
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(3)
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1
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(5)
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90 master integrals for general q

2

and 51 threshold master

integrals

F

0,0,0,1,1,1,0,0,0,0,0,0,F0,0,0,0,1,1,0,0,0,1,0,1,F0,0,0,0,1,1,0,0,1,1,0,0,F0,0,1,0,0,0,0,1,0,1,1,0,

F

0,0,1,0,0,1,0,1,1,0,0,0,F0,0,1,0,0,1,0,1,2,0,0,0,F0,0,1,0,1,1,0,0,0,1,0,0,F0,0,0,0,0,1,0,1,0,1,1,1,

F

0,0,1,0,0,1,0,1,0,1,1,0,F0,0,1,0,0,1,0,1,0,1,2,0,F0,0,1,0,0,1,0,1,0,2,1,0,F0,0,1,0,0,1,0,1,1,0,0,1,

F

0,0,1,0,0,1,0,1,1,0,1,0,F0,0,1,0,0,1,0,1,1,0,2,0,F0,0,1,0,0,1,0,2,1,0,1,0,F0,0,1,0,1,1,0,0,0,1,0,1,

F

0,0,1,0,1,1,0,0,1,1,0,0,F0,0,1,0,1,1,0,0,1,2,0,0,F0,1,1,0,0,0,1,1,0,1,0,0,F0,0,1,0,0,1,0,1,0,1,1,1,

F

0,0,1,0,0,1,0,1,1,1,1,0,F0,0,1,0,1,1,0,1,0,1,1,0,F0,0,1,0,1,1,0,1,0,1,2,0,F0,0,1,0,1,2,0,1,0,1,1,0,

F

0,0,1,0,1,2,0,0,1,1,1,0,F0,0,1,1,0,1,0,1,1,0,2,0,F0,0,1,1,0,1,1,1,1,0,0,0,F0,1,1,0,0,1,0,1,0,1,0,1,

F

0,1,1,0,0,1,0,1,0,2,0,1,F0,1,1,0,0,1,0,2,0,1,0,1,F0,1,1,0,0,2,0,1,0,1,0,1,F0,1,1,0,0,1,1,1,0,1,0,0,

F

0,1,1,0,1,0,1,0,1,1,0,0,F0,1,1,0,1,0,1,1,0,1,0,0,F0,1,1,0,1,1,0,0,1,0,0,1,F0,1,1,0,1,1,0,0,1,1,0,0,

F

0,0,1,0,1,1,0,1,0,1,1,1,F0,0,2,0,1,1,0,1,0,1,1,1,F0,0,1,1,1,1,0,1,0,1,1,0,F0,0,1,1,1,1,0,1,0,1,2,0,

F

0,1,1,0,1,0,1,1,1,0,0,1,F0,1,1,0,1,1,0,1,0,1,0,1,F0,1,1,0,1,1,0,1,0,1,0,2,F0,1,1,0,1,1,0,1,0,2,0,1,

F

0,1,1,0,1,1,0,2,0,1,0,1,F0,1,1,0,1,1,1,1,0,1,0,0,F0,1,1,0,1,1,1,1,0,2,0,0,F0,1,1,1,1,1,0,1,0,1,0,0,

F

1,1,1,0,0,0,0,1,0,1,1,1,F0,1,1,0,1,1,1,1,1,0,0,1,F0,1,1,0,1,1,1,1,1,1,0,1 .
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Evaluating planar three-loop vertex integrals

It is onvenient to introdue the variable

s

m

2

= −(1− x)2

x

The values x = 1 and x = −1 orrespond to s = 0 and

s = 4m

2

.

DE

f

′(ǫ, x) = ǫ Ã′(x) f (x , ǫ) ,

where Ã =
∑

k

Ãα
k

log(α
k

) and the letters α
k

are

x , 1+ x , 1− x , 1+ x + x

2.
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90 elements of this basis f (x) are

{F
0,0,0,3,3,3,0,0,0,0,0,0 , ε

x

2 − 1

x

F

0,0,2,1,3,3,0,0,0,0,0,0, . . .

ε6
(1− x

2)2

x

2

F

1,0,1,1,1,1,1,1,1,0,0,0 , (1− 2ε)ε4F
1,2,1,0,0,0,1,1,1,0,0,1}
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90 elements of this basis f (x) are

{F
0,0,0,3,3,3,0,0,0,0,0,0 , ε

x

2 − 1

x

F

0,0,2,1,3,3,0,0,0,0,0,0, . . .

ε6
(1− x

2)2

x

2

F

1,0,1,1,1,1,1,1,1,0,0,0 , (1− 2ε)ε4F
1,2,1,0,0,0,1,1,1,0,0,1}

A solution in an epsilon-expansion with oe�ients written in

terms of multiple (Gonharov) polylogarithms (MPL)

G (a
1

, . . . , a
n

; z) =

∫
z

0

dt

t − a

1

G (a
2

, . . . , a
n

; t)

with indies a

i

taken from the seven-letters alphabet

{0, r
1

, r
3

,−1, r
4

, r
2

, 1} with

r

1,2 =
1

2

(

1±
√
3 i

)

, r

3,4 =
1

2

(

−1±
√
3 i

)

.
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A typial expression for analytial results for the elements of

the basis

ep^4*(-24*G[{-1}, 1℄*G[{0}, x℄*G[{0, -1}, 1℄ +

24*G[{0, -1}, 1℄*G[{0, -1}, x℄ - 23*G[{0, -1}, 1℄*G[{0, 0}, x℄ -

12*G[{-1}, 1℄*G[{0}, x℄*G[{0, 1}, 1℄ + 12*G[{0, -1}, x℄*G[{0, 1}, 1℄ -

(23*G[{0, 0}, x℄*G[{0, 1}, 1℄)/2 + 12*G[{0, -1}, 1℄*G[{0, 1}, x℄ +

6*G[{0, 1}, 1℄*G[{0, 1}, x℄ + 12*G[{0, -1}, 1℄*G[{1, 0}, x℄ +

6*G[{0, 1}, 1℄*G[{1, 0}, x℄ - 9*G[{0, -1}, 1℄*G[{r1, 0}, x℄ -

(9*G[{0, 1}, 1℄*G[{r1, 0}, x℄)/2 - 9*G[{0, -1}, 1℄*G[{r2, 0}, x℄ -

(9*G[{0, 1}, 1℄*G[{r2, 0}, x℄)/2 + 24*G[{0}, x℄*G[{-1, 0, -1}, 1℄ +

12*G[{0}, x℄*G[{-1, 0, 1}, 1℄ + 24*G[{0}, x℄*G[{0, -1, -1}, 1℄ +

24*G[{-1}, x℄*G[{0, 0, -1}, 1℄ - 48*G[{0}, x℄*G[{0, 0, -1}, 1℄ +

48*G[{1}, x℄*G[{0, 0, -1}, 1℄ - 18*G[{r1}, x℄*G[{0, 0, -1}, 1℄ -

18*G[{r2}, x℄*G[{0, 0, -1}, 1℄ + 24*G[{-1}, x℄*G[{0, 0, 1}, 1℄ -

(57*G[{0}, x℄*G[{0, 0, 1}, 1℄)/2 + 24*G[{1}, x℄*G[{0, 0, 1}, 1℄ -

(21*G[{r1}, x℄*G[{0, 0, 1}, 1℄)/2 - (21*G[{r2}, x℄*G[{0, 0, 1}, 1℄)/2 -

6*G[{0}, x℄*G[{0, 1, 1}, 1℄ - 24*G[{-1, -1, 0, 0}, x℄ +

36*G[{-1, 0, 0, 0}, x℄ - 24*G[{-1, 1, 0, 0}, x℄ +

24*G[{0, -1, -1, 0}, x℄ + 2*G[{0, -1, 0, 0}, x℄ + 12*G[{0, -1, 1, 0}, x℄ -

23*G[{0, 0, -1, 0}, x℄ - (23*G[{0, 0, 1, 0}, x℄)/2 +

12*G[{0, 1, -1, 0}, x℄ + (11*G[{0, 1, 0, 0}, x℄)/2 +

6*G[{0, 1, 1, 0}, x℄ - 24*G[{1, -1, 0, 0}, x℄ + 12*G[{1, 0, -1, 0}, x℄ +

15*G[{1, 0, 0, 0}, x℄ + 6*G[{1, 0, 1, 0}, x℄ - 12*G[{1, 1, 0, 0}, x℄ -

9*G[{r1, 0, -1, 0}, x℄ + 6*G[{r1, 0, 0, 0}, x℄ -

(9*G[{r1, 0, 1, 0}, x℄)/2 + (3*G[{r1, 1, 0, 0}, x℄)/2 -

9*G[{r2, 0, -1, 0}, x℄ + 6*G[{r2, 0, 0, 0}, x℄ -

(9*G[{r2, 0, 1, 0}, x℄)/2 + (3*G[{r2, 1, 0, 0}, x℄)/2 +

(3*G[{0}, x℄*Zeta[3℄)/2 - (3*G[{r1}, x℄*Zeta[3℄)/2 -

(3*G[{r2}, x℄*Zeta[3℄)/2 -

(3*(16*G[{0, -1}, 1℄^2 + 8*G[{0, -1}, 1℄*G[{0, 1}, 1℄ +...
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To obtain analytial results for the 51 threshold master

integrals use threshold expansion

F (a
1

, . . . , a
12

; q2,m2) ∼
∞∑

n=n

0

3∑

j=0

(4m2 − q

2)n−jǫ
F

n,j(a1, . . . , a12; q
2) .
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To obtain analytial results for the 51 threshold master

integrals use threshold expansion

F (a
1

, . . . , a
12

; q2,m2) ∼
∞∑

n=n

0

3∑

j=0

(4m2 − q

2)n−jǫ
F

n,j(a1, . . . , a12; q
2) .

Threshold master integrals are one-sale integrals

F

0,0(a1, . . . , a12;m
2) de�ned with q

2

set to 4m

2

.

We annot just set q

2 = 4m

2

, i.e. x = −1 in our basis

beause of 1/(x + 1) and 1/(x + 1)2 in some oe�ients.

Expand `naively' in x + 1 the orresponding integrals.

Introdue one more (13th) index for the order of this

derivative in s, i.e. deal with the family

F

′(a
1

, . . . , a
12

, a
13

) =

(
∂

∂s

)−a

13

F (a
1

, . . . , a
12

)

∣
∣
∣
∣
∣
s=4m

2

where the derivative is understood in the naive sense.
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Evaluating planar three-loop vertex integrals

Using IBP relations for integrals at general q and expanding all

the terms naively in q

2

at q

2 = 4m

2 → 15 IBP relations.

A naive di�erentiation in s of all the terms of the naive

expansion [P.A. Baikov and V.A. Smirnov'2000℄ → one more

relation.

Then F

′(a
1

, . . . , a
12

, a
13

) are redued to master integrals

(with FIRE).

They are all with a

13

= 0, i.e diretly orrespond to the 51

master threshold integrals.
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′(y) = A

0

+ yA

1

+ y

2

A

2

+ . . ..



Evaluating Feynman integrals by uniformly transendental di�erential equations

Evaluating planar three-loop vertex integrals

Mathing at threshold

x = y − 1, y → 0:

f

′(ǫ, y) = ǫ
Ã

′(y)

y

f (ǫ, y) ,

where Ã

′(y) = A

0

+ yA

1

+ y

2

A

2

+ . . ..

In the language of di�erential equations, the naive part of the

expansion near y = 0 orresponds to zero eigenvalues of the

matrix A

0

while eigenvalues proportional to ε orrespond to

other ontributions.
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To obtain expansions near y = 0 of the elements of the basis

in higher orders in y , we use a trik from the theory of

di�erential equations (presented, e.g., in [Wasov's book℄).

Construt a polynomial P = 1+
∑

r=1

P

r

y

r

suh that the DE

for the funtion g de�ned by f = Pg takes the form

yg

′(y) = A

0

g(y) (with A

0

is independent of y).

Then the solution of this equation is just g = y

A

0

g

0

with a

boundary value g

0

.

We implemented this algorithm and onstruted P

r

up to

r = 5.
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Evaluating planar three-loop vertex integrals

Equating the part of our analyti results for the basis without

log(x + 1) and the naive part of the threshold expansion

expressed in terms of the 51 threshold MI.

Solving these equations → oe�ients of the epsilon

expansion of the MI up to some order written in terms of MPL

G (a
1

, . . . , a
n

; 1) with a

1

6= 1 and a

i

taken from the alphabet

{0, r
1

, r
3

,−1, r
4

, r
2

, 1}.
Examples of our results

[J. Henn, A. Smirnov and V. Smirnov'15℄
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F

0,0,1,0,1,1,0,1,0,1,1,1 = −27

2

log(2)G
R

(0, 0, r
2

,−1)− 181ζ(5)

32

− 21

2

log

2(2)ζ(3)

+
115π2ζ(3)

48

− 12Li

5

(
1

2

)

− 12 log(2)Li
4

(
1

2

)

− 2 log

5(2)

5

+
1

6

π2 log
3(2)

−81

8

G

R

(0, 0, r
4

, 1) log(2) +
277

960

π4 log(2) ,

F

0,0,1,1,1,1,0,1,0,1,1,0 = −27

4

log(2)G
R

(0, 0, r
2

,−1)− 341ζ(5)

64

− 21

4

log

2(2)ζ(3)

+
211π2ζ(3)

96

− 6Li

5

(
1

2

)

− 6 log(2)Li
4

(
1

2

)

− log

5(2)

5

+
1
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π2 log
3(2)− 81

16

G

R

(0, 0, r
4

, 1) log(2) +
277π4 log(2)

1920
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4

log(2)G
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(0, 0, r
2

,−1)− 341ζ(5)

64

− 21

4

log

2(2)ζ(3)

+
211π2ζ(3)
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− 6Li

5

(
1

2

)

− 6 log(2)Li
4

(
1
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)

− log

5(2)

5

+
1

12

π2 log
3(2)− 81

16

G

R

(0, 0, r
4

, 1) log(2) +
277π4 log(2)

1920

.

where

G (a
1

, . . . , a
n

; 1) = G

R

(a
1

, . . . , a
n

) + iG

I

(a
1

, . . . , a
n

)
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Construting bases for G

R

(a
1

, . . . , a
n

) and G

I

(a
1

, . . . , a
n

).

A linear basis in this set of onstants up to weight 3

[D. Broadhurst'98℄ in terms of Cl

2

(π/3), log(2), log(3), π, ζ(3)
and Li

n

of some arguments.

Bases for the alphabet with letters 0, 1,−1 [D. Broadhurst'96℄

Bases for the multiple Deligne values, i.e. for the the alphabet

with letters 0,−1, r
2

[D. Broadhurst'98℄

Constants present in results for Feynman integrals up to

weight 5 were disussed in

[Fleisher and M. Kalmykov'99, Davydyhev M. Kalmykov'00,

M. Kalmykov and B. Kniehl'10℄.
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For example,

G

I

(r
2

) = −π

3

, G

R

(−1) = log(2) ,

G

R

(0, 0, 1) = −ζ(3) , G

R

(0, 0, 0, 1) = −π4

90

,

G

R

(0, 0, 0, 0, 1) = −ζ(5) ,

G

R

(0, 0, 1, 1,−1) = −2Li

5

(
1

2

)

− 2Li

4

(
1

2

)

log(2)− π2ζ(3)

96

+
151ζ(5)

64

− log

5(2)

15

+
1

18

π2

log

3(2)− 1

96

π4

log(2) .
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MPL

G (a
1

, . . . , a
n

; z) =

∫
z

0

dt

t − a

1

G (a
2

, . . . , a
n

; t)

In the speial ase where a

i

= 0 for all i one has by de�nition

G (0, . . . , 0; z) =
1

n!
ln

n

z .

If a

w

6= 0, then

G (ρa
1

, . . . , ρa
w

; ρz) = G (a
1

, . . . , a
w

; z)

so that one an express them in terms of G (. . . ; 1).
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The MPL an be represented as multiple nested sums

Li

m

1

,...,m
k

(x
1

, . . . , x
k

) =

∞∑

n

k

=1

n

k

−1

∑

n

k−1

=1

. . .

n

2

−1∑

n

1

=1

x

n

1

1

n

m

1

1

. . .
x

n

k

k

n

m

k

k

= Z

m

k

,...,m
1

(∞; x
k

, . . . , x
1

)

= (−1)k G




0, . . . , 0
︸ ︷︷ ︸

m

k

−1

,
1

x

k

, . . . , 0, . . . , 0
︸ ︷︷ ︸

m

1

−1

,
1

x

1

. . . x
k

; 1



 .
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. . .
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n

1
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n

1

1

n

m

1

1

. . .
x

n

k

k

n

m

k

k

= Z

m

k

,...,m
1

(∞; x
k

, . . . , x
1

)

= (−1)k G




0, . . . , 0
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m

k

−1

,
1

x

k

, . . . , 0, . . . , 0
︸ ︷︷ ︸

m

1

−1

,
1

x

1

. . . x
k

; 1



 .

Sine the arguments of the Li- and Z -funtions involved have

the form x

i

= λp

i

for p

i

= 0, . . . , 5 we introdue an auxiliary

funtion

L

m

1

,...,m
k

(p
1

, . . . , p
k

) = Li

m

1

,...,m
k

(λp

1 , . . . , λp

k ) .
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; 1) satisfy various relations.

We start with using shu�e, stu�e, regularization and

distribution relations following Zhao [J. Zhao'07℄.

Shu�e relations

G (a
1

, . . . , a
w

1

; z)G (b
1

, . . . , b
w

2

; z) =
∑

∈a⊎b

G (
1

, . . . , 
w

1

+w

2

; z) ,
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distribution relations following Zhao [J. Zhao'07℄.

Shu�e relations

G (a
1

, . . . , a
w

1

; z)G (b
1

, . . . , b
w

2

; z) =
∑

∈a⊎b

G (
1

, . . . , 
w

1

+w

2

; z) ,

Stu�e relations

L

a

1

,...,a
w

1

(p
1

, . . . , p
w

1

) L
b

1

,...,b
w

2

(q
1

, . . . , q
w

2

)

=
∑

∈a∗b

L



1

,...,
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(r
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, . . . , r
n

)
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,...,b
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=
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1

,...,
n

(r
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, . . . , r
n

)

They are written for a

1

≥ 2, b
1

≥ 2 for a given weight

w =
∑

a

i

+
∑

b

i

and then are translated into the language of

G (a
1

, . . . , a
w

; 1).
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The numbers L
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(0) orrespond to the variable T introdued

by Zagier in the ase of MZV

[K. Ihara, M. Kaneko & D. Zagier'06℄

and used by Zhao [J. Zhao'07℄ in the ase of MPL at n-th

roots of unity.

(Regularized double shu�e relations.)

Singular terms are anelled in the di�erene.
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a

1

,...,a
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, . . . , x
k

) = d

a

1

+...+a

k

−k

×
∑

(y
1

,...,y
k

): yd
j

=x

j

,j=1,...,k

Li

a

1

,...,a
k

(y
1

, . . . , y
k

)

for d = 2 and d = 3.
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turn to the real and imaginary parts and use also the omplex

onjugation relations
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with r

∗
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= r

2

, r ∗
3
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In our ase, n = 6, we use these four types of relations, then

turn to the real and imaginary parts and use also the omplex

onjugation relations

G (a∗
1

, . . . , a∗
n

; 1) = G (a
1

, . . . , a
n

; 1)∗

with r

∗

1

= r

2

, r ∗
3

= r

4

.

We solved these relations up to weight 6 reursively with the

respet to the weight.

The total number of relations grows fast when the weight is

inreased. At weight 6, we have 654452 equations for the real

parts and 654937 equations for the imaginary parts of

G (a
1

, . . . , a
n

; 1).
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The relations for the 6× 7

w−1

numbers G

R

(a
1

, . . . , a
w

; 1) or
G

I

(a
1

, . . . , a
w

; 1) are linear equations. We solved them for

w = 1, 2, . . . , 6 with a ode written in Mathematia.

It turns out, however, that the resulting onstants,

independent in the sense of these relations, are still Q-linearly

dependent, i.e. one an linearly express some of them in terms

of a smaller set of the onstants and produts of onstants of

lower weights.

We revealed additional relations using PSLQ algorithm

[H.R.P. Ferguson, D.H. Bailey, and S. Arno℄

and gina [C. Bauer, A. Frink and R. Krekel℄ to evaluate

MPLs with a big auray (up to 4000 digits).
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The dimensions of the bases

w D̄

R

(w) D

R

(w) D̄

I

(w) D

I

(w) PSLQ

R

PSLQ

I

1 2 2 1 1

2 1 5 1 3

3 3 12 2 9 2

4 5 30 5 25 2 6

5 13 76 11 68 11 17

6 25 195 25 182 39 49
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Our basis for the real parts of G (a
1

, . . . , a
4

; 1) onsists of 5
onstants of weight 4

{GR[0, 0, r2, -1℄, GR[0, 0, r4, 1℄, GR[r2, 1, 1, -1℄,

GR[r2, 1, 1, r3℄, GR[r2, 1, r2, -1℄}

and 25 produts of onstants of lower weights

{GR[-1℄^4, GI[r2℄^2 GR[-1℄^2, GI[r2℄^4, GR[-1℄^3 GR[r4℄,

GI[r2℄^2 GR[-1℄ GR[r4℄, GR[-1℄^2 GR[r4℄^2, GI[r2℄^2 GR[r4℄^2,

GR[-1℄ GR[r4℄^3, GR[r4℄^4, GI[r2℄ GI[0, r2℄ GR[-1℄,

GI[r2℄ GI[0, r2℄ GR[r4℄, GI[0, r2℄^2, GR[-1℄^2 GR[r2, -1℄,

GI[r2℄^2 GR[r2, -1℄, GR[-1℄ GR[r4℄ GR[r2, -1℄, GR[r4℄^2 GR[r2, -1℄,

GR[r2, -1℄^2, GR[-1℄ GR[0, 0, 1℄, GR[r4℄ GR[0, 0, 1℄,

GI[r2℄ GI[0, 1, r4℄, GI[r2℄ GI[0, r2, -1℄, GR[-1℄ GR[r2, 1, -1℄,

GR[r4℄ GR[r2, 1, -1℄, GR[-1℄ GR[r2, 1, r3℄, GR[r4℄ GR[r2, 1, r3℄}



Evaluating Feynman integrals by uniformly transendental di�erential equations
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Our basis for the imaginary parts of G (a
1

, . . . , a
4

; 1) onsists
of 5 onstants of weight 4

{GI[0, 0, 0, r2℄, GI[0, 1, 1, r4℄, GI[0, 1, r2, -1℄, GI[0, 1, r2, r3℄,

GI[0, r2, 1, -1℄}

and 20 produts of onstants of lower weights

{GI[r2℄ GR[-1℄^3, GI[r2℄^3 GR[-1℄, GI[r2℄ GR[-1℄^2 GR[r4℄,

GI[r2℄^3 GR[r4℄, GI[r2℄ GR[-1℄ GR[r4℄^2, GI[r2℄ GR[r4℄^3,

GI[0, r2℄ GR[-1℄^2, GI[r2℄^2 GI[0, r2℄, GI[0, r2℄ GR[-1℄ GR[r4℄,

GI[0, r2℄ GR[r4℄^2, GI[r2℄ GR[-1℄ GR[r2, -1℄,

GI[r2℄ GR[r4℄ GR[r2, -1℄, GI[0, r2℄ GR[r2, -1℄, GI[r2℄ GR[0, 0, 1℄,

GI[0, 1, r4℄ GR[-1℄, GI[0, 1, r4℄ GR[r4℄, GI[0, r2, -1℄ GR[-1℄,

GI[0, r2, -1℄ GR[r4℄, GI[r2℄ GR[r2, 1, -1℄, GI[r2℄ GR[r2, 1, r3℄}
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Our basis for the real parts of G (a
1

, . . . , a
5

; 1) onsists of 13
onstants of weight 5

{GR[0, 0, 0, 0, 1℄, GR[0, 0, 1, 1, -1℄, GR[0, 0, 1, 1, r4℄,

GR[0, 0, 1, r2, -1℄, GR[0, 0, 1, r2, r3℄, GR[0, 0, 1, r2, r4℄,

GR[0, 0, r2, 1, -1℄, GR[r2, 1, 1, -1, r2℄, GR[r2, 1, 1, 1, -1℄,

GR[r2, 1, 1, 1, r3℄, GR[r2, 1, 1, r2, -1℄, GR[r2, 1, 1, r2, r3℄,

GR[r2, 1, 1, r4, -1℄}

and 63 produts of onstants of lower weights

{GR[-1℄^5, GI[r2℄^2 GR[-1℄^3, GI[r2℄^4 GR[-1℄, GR[-1℄^4 GR[r4℄,

GI[r2℄^2 GR[-1℄^2 GR[r4℄, GI[r2℄^4 GR[r4℄, GR[-1℄^3 GR[r4℄^2,

GI[r2℄^2 GR[-1℄ GR[r4℄^2, GR[-1℄^2 GR[r4℄^3, GI[r2℄^2 GR[r4℄^3,

GR[-1℄ GR[r4℄^4, GR[r4℄^5, GI[r2℄ GI[0, r2℄ GR[-1℄^2,

GI[r2℄^3 GI[0, r2℄, GI[r2℄ GI[0, r2℄ GR[-1℄ GR[r4℄,

GI[r2℄ GI[0, r2℄ GR[r4℄^2, GI[0, r2℄^2 GR[-1℄, GI[0, r2℄^2 GR[r4℄,

GR[-1℄^3 GR[r2, -1℄, GI[r2℄^2 GR[-1℄ GR[r2, -1℄,

GR[-1℄^2 GR[r4℄ GR[r2, -1℄, GI[r2℄^2 GR[r4℄ GR[r2, -1℄,

GR[-1℄ GR[r4℄^2 GR[r2, -1℄, GR[r4℄^3 GR[r2, -1℄,

GI[r2℄ GI[0, r2℄ GR[r2, -1℄, GR[-1℄ GR[r2, -1℄^2,

GR[r4℄ GR[r2, -1℄^2, GR[-1℄^2 GR[0, 0, 1℄, GI[r2℄^2 GR[0, 0, 1℄,

GR[-1℄ GR[r4℄ GR[0, 0, 1℄, GR[r4℄^2 GR[0, 0, 1℄,

GR[r2, -1℄ GR[0, 0, 1℄, GI[r2℄ GI[0, 1, r4℄ GR[-1℄,

GI[r2℄ GI[0, 1, r4℄ GR[r4℄, GI[0, r2℄ GI[0, 1, r4℄,

GI[r2℄ GI[0, r2, -1℄ GR[-1℄, GI[r2℄ GI[0, r2, -1℄ GR[r4℄,

GI[0, r2℄ GI[0, r2, -1℄, GR[-1℄^2 GR[r2, 1, -1℄,

GI[r2℄^2 GR[r2, 1, -1℄, GR[-1℄ GR[r4℄ GR[r2, 1, -1℄,

GR[r4℄^2 GR[r2, 1, -1℄, GR[r2, -1℄ GR[r2, 1, -1℄,

GR[-1℄^2 GR[r2, 1, r3℄, GI[r2℄^2 GR[r2, 1, r3℄,

GR[-1℄ GR[r4℄ GR[r2, 1, r3℄, GR[r4℄^2 GR[r2, 1, r3℄,

GR[r2, -1℄ GR[r2, 1, r3℄, GI[r2℄ GI[0, 0, 0, r2℄,

GR[-1℄ GR[0, 0, r2, -1℄, GR[r4℄ GR[0, 0, r2, -1℄,

GR[-1℄ GR[0, 0, r4, 1℄, GR[r4℄ GR[0, 0, r4, 1℄,

GI[r2℄ GI[0, 1, 1, r4℄, GI[r2℄ GI[0, 1, r2, -1℄,

GI[r2℄ GI[0, 1, r2, r3℄, GI[r2℄ GI[0, r2, 1, -1℄,

GR[-1℄ GR[r2, 1, 1, -1℄, GR[r4℄ GR[r2, 1, 1, -1℄,

GR[-1℄ GR[r2, 1, 1, r3℄, GR[r4℄ GR[r2, 1, 1, r3℄,

GR[-1℄ GR[r2, 1, r2, -1℄, GR[r4℄ GR[r2, 1, r2, -1℄}
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Our basis for the imaginary parts of G (a
1

, . . . , a
5

; 1) onsists
of 11 onstants of weight 5

{GI[0, 0, 0, 1, r2℄, GI[0, 0, 0, 1, r4℄, GI[0, 0, 0, r2, -1℄,

GI[0, 1, 1, -1, r2℄, GI[0, 1, 1, -1, r4℄, GI[0, 1, 1, 1, r4℄,

GI[0, 1, 1, r2, r3℄, GI[0, 1, 1, r4, -1℄, GI[0, 1, 1, r4, r1℄,

GI[0, 1, r2, r3, r2℄, GI[0, r2, 1, 1, -1℄}

and 57 produts of onstants of lower weights

{GI[r2℄ GR[-1℄^4, GI[r2℄^3 GR[-1℄^2, GI[r2℄^5, GI[r2℄ GR[-1℄^3 GR[r4℄,

GI[r2℄^3 GR[-1℄ GR[r4℄, GI[r2℄ GR[-1℄^2 GR[r4℄^2, GI[r2℄^3 GR[r4℄^2,

GI[r2℄ GR[-1℄ GR[r4℄^3, GI[r2℄ GR[r4℄^4, GI[0, r2℄ GR[-1℄^3,

GI[r2℄^2 GI[0, r2℄ GR[-1℄, GI[0, r2℄ GR[-1℄^2 GR[r4℄,

GI[r2℄^2 GI[0, r2℄ GR[r4℄, GI[0, r2℄ GR[-1℄ GR[r4℄^2,

GI[0, r2℄ GR[r4℄^3, GI[r2℄ GI[0, r2℄^2, GI[r2℄ GR[-1℄^2 GR[r2, -1℄,

GI[r2℄^3 GR[r2, -1℄, GI[r2℄ GR[-1℄ GR[r4℄ GR[r2, -1℄,

GI[r2℄ GR[r4℄^2 GR[r2, -1℄, GI[0, r2℄ GR[-1℄ GR[r2, -1℄,

GI[0, r2℄ GR[r4℄ GR[r2, -1℄, GI[r2℄ GR[r2, -1℄^2,

GI[r2℄ GR[-1℄ GR[0, 0, 1℄, GI[r2℄ GR[r4℄ GR[0, 0, 1℄,

GI[0, r2℄ GR[0, 0, 1℄, GI[0, 1, r4℄ GR[-1℄^2, GI[r2℄^2 GI[0, 1, r4℄,

GI[0, 1, r4℄ GR[-1℄ GR[r4℄, GI[0, 1, r4℄ GR[r4℄^2,

GI[0, 1, r4℄ GR[r2, -1℄, GI[0, r2, -1℄ GR[-1℄^2,

GI[r2℄^2 GI[0, r2, -1℄, GI[0, r2, -1℄ GR[-1℄ GR[r4℄,

GI[0, r2, -1℄ GR[r4℄^2, GI[0, r2, -1℄ GR[r2, -1℄,

GI[r2℄ GR[-1℄ GR[r2, 1, -1℄, GI[r2℄ GR[r4℄ GR[r2, 1, -1℄,

GI[0, r2℄ GR[r2, 1, -1℄, GI[r2℄ GR[-1℄ GR[r2, 1, r3℄,

GI[r2℄ GR[r4℄ GR[r2, 1, r3℄, GI[0, r2℄ GR[r2, 1, r3℄,

GI[0, 0, 0, r2℄ GR[-1℄, GI[0, 0, 0, r2℄ GR[r4℄,

GI[r2℄ GR[0, 0, r2, -1℄, GI[r2℄ GR[0, 0, r4, 1℄,

GI[0, 1, 1, r4℄ GR[-1℄, GI[0, 1, 1, r4℄ GR[r4℄,

GI[0, 1, r2, -1℄ GR[-1℄, GI[0, 1, r2, -1℄ GR[r4℄,

GI[0, 1, r2, r3℄ GR[-1℄, GI[0, 1, r2, r3℄ GR[r4℄,

GI[0, r2, 1, -1℄ GR[-1℄, GI[0, r2, 1, -1℄ GR[r4℄,

GI[r2℄ GR[r2, 1, 1, -1℄, GI[r2℄ GR[r2, 1, 1, r3℄,

GI[r2℄ GR[r2, 1, r2, -1℄}
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MPL(1)

Our basis for the real parts of G (a
1

, . . . , a
6

; 1) onsists of 25
onstants of weight 6 and 170 produts of onstants of lower

weights

Our basis for the imaginary parts of G (a
1

, . . . , a
6

; 1) onsists
of less than 74 onstants of weight 6 and 157 produts of

onstants of lower weights
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where F (n) is a Fibonai number [D. Broadhurst'14℄.
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The dimensions of the spaes generated by real and

imaginary parts of MPL of a given weight are,

respetively, (F
2w+2

+ F

w+1

)/2, and (F
2w+2

− F

w+1

)/2,
where F (n) is a Fibonai number [D. Broadhurst'14℄.

Broadhurst expliitly desribed, at any w , parts of

onjetured bases onsisting of G (a
1

, . . . , a
6

; 1) using only

letters 0,−1, r
4

.

Zhao: if n is non-standard, i.e. has at least two prime

fators, then the number of MPL at nth roots of unity

oinides with the upper bounds of the motivi theory.

These upper bounds for the motivi fundamental group

were omputed by Deligne and Gonharov. The numbers

of the orresponding generators oinide at n = 6 with

our numbers.
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Conlusion

A lot of suessful appliations of the new strategy of the

method of DE. A lot of pending projets.

An expliit algorithmi desription by Lee in the ase of

one variable.

A publi omputer ode of this and future algorithms?

Similar algorithms in the ase of two and more variables?

In some ases, the epsilon form is impossible. Ellipti

funtions appear. A linear dependene on ǫ instead of the

rhs proportional to ǫ?

to be ontinued
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Conlusion

Lee [R.N. Lee'14℄: transition to UT basis in three steps (in the

ase of one variable).

Redution to a Fuhsian form where the singularities at

all the points x

(k)
(inluding x = ∞) are simple poles.

Normalizing eigenvalues of the matries whih are

oe�ients the Fuhsian singularities when one tries to

make them proportional to ǫ.

Providing a linear dependene on ǫ.
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At eah of the three steps, one is looking for a proper linear

transformation of the urrent basis. The �rst two steps are

based on the so-alled balane transformation

B(P, x
1

, x
2

|x) = P+ 

x − x

2

x − x

1

P ,

where  is a onstant, P, P are the two omplementary

projetors, i.e. P
2 = P and P = I− P.
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Conlusion

At eah of the three steps, one is looking for a proper linear

transformation of the urrent basis. The �rst two steps are

based on the so-alled balane transformation

B(P, x
1

, x
2

|x) = P+ 

x − x

2

x − x

1

P ,

where  is a onstant, P, P are the two omplementary

projetors, i.e. P
2 = P and P = I− P.

The idea of using a balane transformation is that with its

help one an take are of one singular point x

1

(by providing a

Fuhsian singularity or by normalizing eigenvalues

orresponding to a given singular point) and not to spoil these

properties at a seond singular point, x

2

.
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