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* Why do we compute!

* What do we want to compute!

 How do we compute!

* What do we find!



Motivation
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Motivation

»  Higgs couplings are a gateway to

bossible BSM scenarios

» Measuring deviations from the

standard model prediction can

indicate new physics

» This requires hig
standard mode]

nly accurate

predictions
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The gluon fusion cross section

. QCD CONTRIBUTIONS BY INITIAL STATE CHANNEL

* [he dominant Higgs production
mode at the LHC is gluon fusion 95.5%

gg initial state

%2y oe)s jenu Bb

TOTAL NNLO: QCD vs EW
QCD corrections 95%

» Loop-induced process

TOTAL NNLO:

NLO matrix elements |
44% |
T

P

\

* The Higgs boson Is light compared to the top quark

The top loop can be integrated out — effective theor%"_



Ihe gluon fusion cross section

The tree-level coupling of the gluons to the Higgs Is described by a
dimension five operator

1
L= Loen FEo OnlglC; G
Operators with higher dimension can be included in the computation

This leads to a systematic expansion of the gluon fusion cross section In
the top mass

Sub-leading corrections in the top-mass are known at NNLO

[Harlander, Ozeren; Pak, Rogal, Steinhauser; Ball, Del Duca,
Marzani, Forte, Vicini; Harlander, Mantler, Marzani, Ozeren]|

In the following | will only talk about the leading term In the effective
theory



Ihe gluon fusion cross section

The gluon fusion cross-section Iin perturbation theory s

T

g(pp—> H+ X) = TZ/: dzl o (—)

<

VWe compute the inclusive partonic cross section

The partonic cross section Is a function of

”L2 ”l%z

h o
h— —— T
S Ecm

In perturbation theory the partonic cross section can be expanded

B () 0,67 0(2) + o267 NO(2) 4+ o2 PO (.
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The gluon fusion cross section

»  Diagrammatic contributions at NNNLO
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double virtual real

real virtual squared

double real virtual triple real



[ he triple virtual

* The triple virtual is directly related to the three loop QCD form
factor

« The QCD form factor is well known

 at one loop

sEEO o |OOPS [Gonsalves; Kramer, Lampe; Gehrmann, Huber, Maitre]

o [Baikov, Chetyrkin, Smirnov, Smirnov, Steinhauser;
at three |OO|DS Gehrmann, Glover, Huber, Ikizlerli, Studerus]

* The pure loop contributions are not a problem In the calculation
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Ihe gluon fusion cross section

All other contributions involve the real
emission of additional particles into the | sgTTTTTTTETTTTTTIRE”
final state

Need to do phase space integrals

double virtual real

real virtual squared

double real virtual triple real



Unrtarity

Optical theorem:

X - f YK

Discontinuities of loop integrals are phase space integrals

Discontinuities of loop integrals are given by Cutkosky's rule:

1
D2 — m?2 + ie

» 0T (p* —m?) = 0(p” —m*)0(p°)



Reverse unitarity

Optical theorem:

X - YK

The optical theorem can be read ‘backwards’

This way, phase space Integrals can be expressed as unitarity cuts of loop

mtegrals [ Anastasiou, Melnikov; Anastasiou, Dixon, Melnikov, Petriello]

VWe can compute loop Integrals with cuts instead of phase space integrals

This makes the rich technology developed for loop integrals available
12



IBPs and master integrals

Loop Integrals are In general not independent but related by
Integration-by-parts identities (IBPs)

The IBPs form a system of equations for a given class of loop
integrals

The system can be solved algorithmically expressing all integrals
through a small basis set of integrals (master integrals)

QARSI s v 4 e

y
<

:; (6= 1)(2¢ — 1)(3¢ — 2)(3¢ — 1)(6¢ — 5)(6¢ — 1)>@<
e*(e + 1)(2¢ — 3) .
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IBPs and master integrals

IBP reductions greatly reduce complexity
Double-virtual real contributions:

682 /3802 integrals before reduction

/2 integrals after reduction

4
4

:= (6= 1)(2¢ — 1)(3¢ — 2)(3¢ — 1)(6¢ — 5)(6¢ — 1)>@<
e*(e + 1)(2¢ — 3) .
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IBPs and differential equations

Having access to IBP technology allows us to derive differential
equations for master integrals

The derivative of a master integral w.r.t. kinematic invariants can be
expressed as a linear combination of master integrals

L eads to a coupled system of linear differential equations for the

master integrals

1 7 i At e 2
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“1-2
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Differential equations and boundaries

Integrating the differential equations for the master integrals yields
general solutions

These general solutions need to be fixed using boundary conditions
Natural boundary condition for the problem at
ARt

This corresponds to the soft limit of the process



| he threshold expansion

[t I1s possible to systematically expand the cross section at threshold
This yields

the soft-virtual approximation for the cross-section

boundary conditions for the differential equation

Around threshold the cross section can be approximated by a
pOWer series

o =y =G A= Fen = OB

|/



The soft-virtual approximation

» All required integrals can be computed analytically

22 three-loop integrals

3 double-virtual real integrals

/ real-virtual squared integrals

|0 double-real virtual integrals

8 triple real integrals

- Addrtionally

T
IE
IE

Nifelem

RREE=

flESC-

oop splitting functions

oop beta functions

oop Wilson coefficient

[Baikov, Chetyrkin, Smirnov, Smirnov, Steinhauser;

|18

Gehrmann, Glover, Huber, Ikizlerli, Studerus]
[Duhr, Gehrmann; L1, Zhu]

[ Anastasiou, Duhr, FD, Herzog, Mistlberger; Kilgore]

[Anastasiou, Duhr, FD, Herzog, Mistlberger;
L1, von Manteufel, Schabinger, Zhu]

[Anastasiou, Duhr, FD, Mistlberger]|

[Moch, Vogt, Vermaseren]

[Tarasov, Vladimirov, Zharkov; Larin, Vermaseren]

[Chetyrkin, Kniehl, Steinhauser; Schroder,
Steinhauser; Chetyrkin, Kuhn, Sturm]



'he master integrals
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I he integrals

«  We want to compute all the integrals analytically

* Every integral Is individually divergent and gives rise to up to six poles In
dimensional regularisation

»  Many integrals are trivial to compute:
1 : 1
b ['(4 — 4€)T'(2 — 3e)
(1 —26)2T'(4 — 66)T(1 — €)

IR 400
= firsls (2 = @Gl (—28C2 — 40 —> € + (—144¢; — 196¢3

3 3
DR 4
— G5 v (2523 — 800¢s — 1008(3 — 910, — 1302¢5 + 4576) €

9219
2

- (882<;§ 1 1176¢5C3 — 5600(3 — 4640(5 — 4680(4 — 6076(s —

(e + 8192()) e EOE
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I he integrals

» Other Integrals not so much
Lk

E 1IN — GelitE — Sl — ¢
NZ = F(5 = GE)F(Q i 6)4 19,1(6) —|—.’Zg,2(€)}
A

o0 Il
I9,1(€) = / dtl dtQ / d:El de de t%—4€ (1 i tl)e—l t%_%
0 0

X xl_e (1 T :131)2_46 x%—i’)e (1 = ZUQ)_E 2133_6 (1 S5 t2$3)1_36 (1 S5 tgai‘zaﬁg)e

3e—3
X (tlt%xlazgajg Es t%$2$3 +T1loX1Xo + t1toxy F ToXoks + Lo+t 1) 3

)

50 1
Tg2(€) = /0 dty dito /0 dzy dxo dzsti ™ (1 + e f o

l—=c 2—4e 1—3¢

X Ty (1 = CEl) To (1 = 2132) 5 .CIS‘3_€ (1 —+ t2$3)1_3€ (1 =F tg:Eg:Eg)e

3e—3
DS (tlt%ajlxgajg + t%:lflilfgafg A S A A5y BB S )dh Al TEe = e =F CUl) ;
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Iwo computational problems

wo computational problems that need to be solved

Phase space integrals for the boundary conditions need to be
computed analytically

Differential equations need to be solved in terms of some useful
functions

* What connects these two problems?

 How do we solve them!

D)
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. What do we want to compute? ¢

* Why do we compute!

 How do we compute!

* What do we find!



Multiple polylogarithms

|arge classes of loop integrals can be expressed In terms of multiple
bolylogarithms

O
G(al,...,an;z):/ Ela: a0 | Li, (2 / —Lln 1 (
0

t—CLl

The classical polylogarithms, HPLs, 2dHPLs, cyclotomic
polylogarithms, etc are special cases of the multiple polylogarithms

The classical polylogarithms satisty various complicated functional

identities 2

—Liy(z) —log(z) log(1 — z) = Liz(1 — 2) 7;3

For the multiple polylogarithms these identities are in general not
known

D



Multiple polylogarithms

Not knowing the functional identrties Is a problem

Even If the physics of a result is very simple, the analytical expression
might be very complicated

The simplicity of the answer might be hidden behind the various
functional equations

Famous example:

The two-loop hexagon remainder function iIn N=4 SYM as
computed by Del Duca, Duhr and Smirnov i1s a | / page
expression

After Goncharov, Spradlin,Vergu and Volovich simplified it using

functional identities it can be written in 4 lines
05



Multiple polylogarithms

Not knowing the functional identities Is a problem

Too complicated results are not just a formal or aesthetic problem
Without using functional identities there might be huge cancellation
between divergent sub-pieces of the result even though the

complete result is finite

Too complicated results are not useable for phenomenology

because numerical implementations are not feasible

Need functional identities to express result in a simple basis

26



Multiple polylogarithms

Not knowing the functional identities Is a problem

The integrand might not be Iin the right form to perform the
integration

Result can only be obtained If functional identities between

holylogarithms are known

b



Number theory

Multiple polylogarithms are a very active field of research in pure
mathematics

Mathematicians have discovered algebraic structures that underly
the polylogarithms

When we usually think of functional identities we think of

complicated functional equations that are obtained by performing
intricate variable transformations of the integral representations

’7T2

—Lis(z) — log(z) log(1l — 2) = Lix(1 — 2) 7

28



Number theory

Mathematicians have conjectured that all functional equations
between polylogarithms follow from a simple algebraic structure

All functional equations between polylogarithms can be obtained

from pure combinatorics

The algebraic structure that governs the polylogarithms is called a

Hopf algebra

b



Hopft algebras

What is a Hopf algebra!’

[t I1s an algebra: A vector space with an operation that allows us to

combine two elements into one (multiplication)

[t is also a coalgebra: A vector space with an operation that allows

us to break an element into two elements (comultiplication)

Disclaimer: The following explanation is very handwaving and omits
many mathematical details

30



Hopt algebras

An example of the algebra part of a Hopf algebra is the shuffle algebra
of the multiple polylogarithms

Shuffle product: Takes two sets and intersperses them in all possible ways
while keeping the ordering of the elements of each set among themselves

ab LU cd= abced + acbd + acdb + cabd + cadb + adab

Analogy: Riffle shuffling two
Slideks of'cards.

log(z)log(1l — x)
— —@(0,1,z) — G(1,0, x)

Gl



Hopft algebras

« The shuffle algebra Is not the only Hopf algebra that is carried by
the multiple polylogarithms

* |n fact the multiple polylogarithms carry three Hopf algebra
Structures

Goncharov’s Hopf algebra

Multiplication
the "coproduct”

/ompatible\
Shuffle algebra Stuffle algebra

Shuffle product Stuffle product

Deconcatenation Deconcatenation
from rterated

integral representation

from nested sum representation

£



Hopt algebras

The comultiplication of the Hopf algebra for polylogarithms is the
coproduct

[t splits a word In all possible ways

A(abed) = abed ® 1+ abc @ d + ab ® cd + a ® bed + 1 ® abed

We can rterate this splitting until we have broken the word into
products of single letters

[Goncharov;
Dubhr]

s



-unctional equations

[Goncharov;

» The coproduct can be applied to polylogarithms Duhr]

»  The word is here the list of indices {a, } of a polylogarithm
G(ai,...,an;z)

Examples:
A(logx) =1®logz +logz ® 1

log"® ()
!

A(Liz(z)) =1 ® Lig(x) — log(1 — ) ® log(z) + 1 ® Lis(x)

A(Li,(x)) =1 ® Li,(x) + 2_: Dt a2 &

B2l



-unctional equations

The coproduct can be used to derive functional equations for
polylogarithms

The coproduct is applied to the polylogarithm to split it into simpler
pleces

The functional identities for these simpler pieces might be known

I not, the coproduct is repeatedly applied until only ordinary
logarithms are left

Es



cxample

1! Lis ( (10’_52;) )
Assume you want to calculate; / dx
0 z(1 — )

Using the coproduct it is possible to derive the following functional
identity:

Lis <(1“_$$)> —G(0,1:2) - G (o, 1_:‘_a;g;>

e 11 1 = X
G (1, ,x)+G( & a,:v)

Now all the integrations are trivial:

Sl
G(al,...,an;z):/ Glag, . asi
0

t—a1

36



I he integrals

Lo A = GENE = Sl — ¢ Ton(e) + T 2(6)}

. 2 5 == o)
2/
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50 1
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DS (tlt%ajlxgajg + t%:lflilfgafg A S A A5y BB S )dh Al TEe = e =F CUl) ;
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Number theory

Number theory helps us here
The integral can be done one step at a time

VWe use the coproduct to derive the needed functional identities at
each step

Integrate over one variable at a time using the basic definrtion of the
multiple polylogarithms

e
G(al,...,an;z):/ G(ag,...,an;t)
0

t—a1

Number theory gives us a way to solve the integrals algorithmically

. [ Brown]



Number theory

The previous integral can be computed one step at a time

In the process one finds
functional identrties like:

Such identities can not be
found In the literature

No one wants to derive them
using Integral transformations

Number theory and the
coproduct give you a simple
way to obtain them on the fly
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I he integrals

* When the smoke clears, one finds:

- 5T g 1

Nl = =5 — =+ (- 1206 +2784) + 5 — 120¢s + 12845 + 31968
: € € € €
. A ]

[ e (2520 Ca + 1284 (5 — 2088 Cy — 216864) + 15720 Cs + 1920 5 (3
: €

— 26964 ¢4 — 2088 (3 — 23976 (o + 795744 + 6(82520 (6 + 9600 ¢3

— 168204 (5 — 20544 (5 (3 + 43848 (4 — 23976 (3 + 162648 (o — 2449440)
+ O(€?).
» [hanks to these modern techniques we were able to compute all
boundary conditions analytically

»  We obtain the soft-virtual approximation of the gluon fusion cross
section at N3LO

40



Differential equations

T we want to calculate the cross section for general kinematics we
need more than just the first two terms in the expansion

VWe want to solve the differential equations for the master integrals
in a closed form

General form of the system of differential equations

Oiis = ilalas @)z

Can describe very general functions

In simple cases It Is possible to go to a less general, canonical, form
0 1
s o
i — | g,
7 L= g
2l

[Henn]




Differential equations

In this form the solutions are of the simple form

gi($)=9?+€f4ij/da: (gj(x) | gj(x)) e

T 1l —x

Directly related to the integral representation of the multiple

bolylogarithms

o
G(al,...,an;z):/ Gl{ay S
0

t—a1

20
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. What do we want to compute? ¢

* Why do we compute!

. How do we compute it? ¢

* What do we find!
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Jgg/pPb

LAC @ 13TeV |

MSTWO08 68cl
H=HR=HF=Mp
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Truncation order
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o/pb
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HLO = NLO

LHC @ 13TeV
pp-h+X gluon fusion
MSTWO08 68cl
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Comparison with ggF-Wg study
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o/pb

Threshold resummation

LHC @ 13TeV
pp-h+X gluon fusion

NNNLO MSTWOS 68cl
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Conclusions

Ve have finished the first ever complete calculation of a hadron
collider process at N3LO in QCD

VWe can provide the first reliable phenomenological predictions at
N3LO from 30 orders in the threshold expansion

We find a 2% correction compared to NNLO at @ = mp /2
Dramatic reduction of the scale dependence
VWe will have an updated prediction of the LHC soon

In the future: Drell-Yan, Differential cross sections, etc.
54
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