Higgs + jet at NNLO QCD

Markus Schulze

in collaboration with R. Boughezal, F. Caola, K. Melnikov, F. Petriello

The Higgs Boson: from discovery...

The Higgs Boson: ... to precision measurements

Good control of theoretical predictions is required to search for small deviations

The Higgs Boson: ... to precision measurements

Observable	Expected Error (experiment \oplus theory	y)
LHC at 14 TeV with 300 fb^{-1}		
$\sigma(gg) \cdot BR(\gamma\gamma)$	$0.06 \oplus 0.13$	
$\sigma(WW) \cdot BR(\gamma\gamma)$	$0.15 \oplus 0.10$	
$\sigma(gg) \cdot BR(ZZ)$	$0.08 \oplus 0.08$	
$\sigma(gg) \cdot BR(WW)$	$0.09 \oplus 0.11$	
$\sigma(WW) \cdot BR(WW)$	$0.27 \oplus 0.10$	
$\sigma(gg) \cdot BR(\tau^+\tau^-)$	$0.11 \oplus 0.13$	
$\sigma(WW) \cdot BR(\tau^+\tau^-)$	$0.15 \oplus 0.10$	
$\sigma(Wh) \cdot BR(b\bar{b})$	$0.25 \oplus 0.20$	
$\sigma(Wh) \cdot BR(\gamma\gamma)$	$0.24 \oplus 0.10$	
$\sigma(Zh) \cdot BR(b\bar{b})$	$0.25 \oplus 0.20$	
$\sigma(Zh) \cdot BR(\gamma\gamma)$	$0.24 \oplus 0.10$	
$\sigma(t\bar{t}h) \cdot BR(b\bar{b})$	$0.25 \oplus 0.20$	
$\sigma(t\bar{t}h) \cdot BR(\gamma\gamma)$	$0.42 \oplus 0.10$	
$\sigma(WW) \cdot BR(invisible)$	$0.2 \oplus 0.24$	MID
	_ 480 8	M. Peskir

Typical size of BSM physics:

$$g = g_{\rm SM} \left(1 + \mathcal{O}(v^2 / {\rm TeV}^2) \right)$$

The Higgs Cross Section: what do we know

Gluon fusion: $\sim 10\%$

- NNLO QCD (inclusive and differential)
- NLO EW
- QCD resummations
- approximate NNNLO
- mixed QCD-EW
- I/mt,mb corrections
- H+Ij, H+2j @ NLO
- VBF: $\sim 1\%$
- NNLO QCD (inclusive only)
- NLO EW
- •VBF+Ij @ NLO
- Higgs-Strahlung: $\sim 1\%$
- NNLO QCD (differential)
- NLO EW
- •VH+Ij @ NLO
- ttH: $\sim 10\%$
- NLO QCD, including PS matching
- + PDFs + MC tools + ...

Very good theoretical control IS IT ENOUGH?

Higgs plus jet: need for improvement

Experimental analyses for $pp \rightarrow H \rightarrow WW$: binned according to jet multiplicity (different systematics)

- Signal/background ratio for H+1, H+2 jets: $\sim 10\%$
- Significance in the H+ljet bin smaller, but not much smaller, than significance in the H+0 jet bin
- LARGE THEORY ERROR

Selection	Nobs	N _{bkg}	N _{sig}	N _{WW}	N_{VV}	$N_{t\bar{t}}$	N _t	N_{Z/γ^*}	N_{W+jets}
$N_{\text{jet}} = 1$ $N_{b\text{-jet}} = 0$	9527 4320	9460 ± 40 4240 ± 30	97 ± 1 85 ± 1	1660 ± 10 1460 ± 10	270 ± 10 220 ± 10	4980 ± 30 1270 ± 10	1600 ± 20 460 ± 10	760 ± 20 670 ± 10	195 ± 5 160 ± 4
$Z \rightarrow \tau \tau$ veto	4138	4020 ± 30	84 ± 1	1420 ± 10	220 ± 10	1220 ± 10	440 ± 10	580 ± 10	155 ± 4
$m_{\ell\ell} < 50$	880	830 ± 10	03 ± 1	270 ± 4	69 ± 3	210 ± 6	80 ± 4	149 ± 5	46 ± 2
$ \Delta \phi_{\ell\ell} < 1.8$	128	030 ± 10	39±1	250 ± 4	60 ± 4	204 ± 6	70 ± 4	28 ± 3	34 ± 2

Higgs plus jet: need for improvement

The H+I jet bin: large NLO K-factor and large theoretical uncertainty

Higgs plus jet: need for improvement

The 0-jet bin: jet-veto resummation

[Banfi et al. (2012), Tackmann et al. (2012)] [1-jet bin: Liu and Petriello (2012, 2013)]

NNLL resummation for ln(pt/mh)

Challenging part: appearance of non-resummable (?) jet-algorithm dependence

Uncertainty can be reduced by improving f.o. H+jets predictions

Higgs plus 1 jet at NNLO

Anatomy of a NNLO computation

RV

[Gehrmann et al. (2011)]

Del Duca et al., Dixon et al. (2004)] [Badger]

Individual ingredients known for a while. What prevented from doing the computation?

A (generic) procedure to extract IR poles from RV and RR was unknown until very recently

What about existing NNLO results?

Until very recently, all NNLO computations relied on SPECIFIC PROPERTIES OF THE PROCESS UNDER CONSIDERATION

- Sector decomposition: simple enough phase space Higgs, Drell-Yan, dijets in e⁺e⁻ [Anastasiou, Melnikov, Petriello; Melnikov, Petriello]
- e⁺e⁻ antenna subtraction: no partons in the initial state dijets and trijets in e⁺e⁻ [Gehrmann-De Ridder, Gehrmann, Glover et al.]
- qT resummation: no colored particles in the final state Higgs, Drell-Yan, dibosons and WH [Catani, Cieri, De Florian, Ferrera, Grazzini]

None of these methods would work for H+jet

• Most recent progress: pp → ttbar [Bä

 $gg \rightarrow di-jet$

gg → H+jet

[Bärnreuther, Czakon, Fiedler, Mitov]

[Currie,Gehrmann-De Ridder, Gehrmann, Glover, Pires]

[Boughezal,Caola,Petriello,Melnikov,M.S.] [Chen,Gehrmann,Glover,Jaquier]

A successful strategy for simpler processes: Sector decomposition

[Binoth, Heinrich; Anastasiou, Melnikov, Petriello (2004)]

Basic idea: clever parametrization of the PS which makes IR SINGULARITIES MANIFEST:

$$\int |M|^2 d\Phi \rightarrow$$

$$\int [|M|^2 x] \{dy\} \frac{dx}{x^{1+\epsilon}} = -\frac{1}{\epsilon} F(0) + \int dx \frac{F(x) - F(0)}{x} + \dots$$

$$F(x) = \int [|M|^2 x] \{dy\}$$

Remap singular denominators on the hypercube Singularities are extracted before integration

A toy example: simple parametrization

NLO: I sector

A toy example: sector decomposition

NNLO: overlapping divergences — sector decomposition

$$\begin{split} & |M|^2 \sim \frac{1}{s_{ijk}} = \frac{1}{s_{ij} + s_{ik} + s_{jk}} \\ & \int |M|^2 d\Phi \sim \int \frac{dx_1 dx_2}{x_1^{1+\epsilon} x_2^{1+\epsilon} (x_1 + x_2)^{\epsilon}} F(\vec{x}; \{y\}) \{dy\} \end{split}$$

• Sector I:
$$x_1 > x_2 \to x_2 = zx_1$$

$$\int |M|^2 d\Phi \sim \int \frac{dx_1 dz}{x_1^{1+3\epsilon} z^{1+\epsilon} (1+z)^{\epsilon}} F(\vec{x}; \{y\}) \{dy\}$$

• Sector II: $x_1 < x_2 \to x_1 = tx_2$

$$\int |M|^2 d\Phi \sim \int \frac{dt dx_2}{t^{1+\epsilon} x_2^{1+3\epsilon} (1+t)^{\epsilon}} F(\vec{x}; \{y\}) \{dy\}$$

[Czakon (2010)]

Sector decomposition: pro et contra

Subtraction and integrated subtraction terms are for free (no need for analytic PS integrations)

Powerful tool for fully differential NNLO computations:

- dijet production at LEP [Anastasiou, Melnikov, Petriello (2004)]
- Higgs production at hadron colliders [Anastasiou, Melnikov, Petriello (2005)]
- DY production at hadron colliders [Melnikov, Petriello (2006)]

BUT

Parametrization become challenging for more complicated processes

Parametrization known only for ONE COLLINEAR DIRECTION

As it is, highly process-dependent framework

Higgs plus jet: singularity structure

Much more complicated singularity structure. Collinear:

Potential troubles: $s_{1g}, s_{2g}, s_{3g}, s_{gg}, s_{1gg}, s_{2gg}, s_{3gg}$ and combinations

Finding a 'good' global parametrization is (very) hard

Sector-improved subtraction scheme

HOWEVER: collinear sing. cannot occur all together [Czakon (2010)]

Can we make use of it, i.e. can we single out different collinear directions?

YES, just use the Frixione-Kunszt-Signer (FKS) partitioning [Czakon (2010)]

$$1 = \sum \Delta^{g_1||i,g_2||j}$$

 $\Delta_s^{g_1||i,g_2||j} \to 0 \text{ when } g_1||p_l, g_2||p_m, l \neq i, m \neq j$

No matter how complicated the process is, it can be reduced to the sum of individual contributions. For each of them, we know a sector decomposition-friendly PS parametrization

Sector-improved subtraction and H+j

Worked-out details for RV: [Boughezal, Melnikov, Petriello (2011)]

(Although we need a slight generalization)

Three collinear partitions (same of NLO)

Phase-space is simple (same of NLO), but amplitudes have non trivial branch-cuts

 $RV_{i} = \int \{dy\} \frac{dx_{1}}{x_{1}^{1+2\epsilon}} \frac{dx_{2}}{x_{2}^{1+\epsilon}} \left(F_{i,1} + (x_{1}^{2}x_{2})^{-\epsilon}F_{i,2} + x_{1}^{-2\epsilon}F_{i,3}\right) = \int \{dy\} \left[\frac{A}{\epsilon^{4}} + \frac{B}{\epsilon^{3}} + \frac{C}{\epsilon^{2}} + \frac{D}{\epsilon} + E\right]$

Sector-improved subtraction and H+j: building blocks

Recall the general structure: $F(x) = \int [|M|^2 x] \{dy\}$

$$\int |M|^2 d\phi = \frac{F(0)}{\epsilon} + \int dx \frac{F(x) - F(0)}{x} + \dots$$

We need to provide

- $F(\vec{x}; \{y\})$: fully-resolved matrix element (RR and RV)
- $\lim_{x_i \to 0} F(\vec{x}; \{y\})$: matrix element in a singular configuration $\lim_{x_i \to 0} F(\vec{x}; \{y\})$: reduced (=lower multiplicity) matrix element times universal eikonals / splitting functions [Catani, Grazzini (1998, 2000); Kosower, Uwer (1999)]

At the end: ~ 170 different limits contribute

H+j: building blocks

Because of gluon spin correlations, we are forced to work in full CDR

Apart from eikonals/splitting functions, we require

- tree-level H+3j [Del Duca et al., Dixon et al. (2004), Badger]
- tree-level H+2j [Badger et al. (2011)] up to $\mathcal{O}(\epsilon^2)$
- tree-level H+Ij up to $\mathcal{O}(\epsilon)$
- one-loop H+2j [Badger et al. (2011)]
- one-loop H+Ij up to $\mathcal{O}(\epsilon^2)$ (although see [Weinzierl (2011)])
- two-loop H+Ij [Gehrmann et al. (2011)]
- renormalization, collinear subtractions

Amplitudes are evaluated near to singular configurations: have to be very stable (and possibly fast) → ANALYTIC RESULTS, SPINOR-HELICITY FORMALISM

EXTREMELY GRATEFUL TO MCFM FOR PROVIDING EXCELLENT AMPLITUDES ALREADY AS A FORTRAN CODE!

H+j: spinor-helicity in higher dimension

Because of gluon spin correlations, we are forced to work in full CDR

To get $\mathcal{O}(\epsilon^2)$ tree- and loop-level amplitudes: Dimensional reconstruction: $\mathcal{O}(\epsilon)$ and $\mathcal{O}(\epsilon^2)$ from spinor-helicity in higher dimensions

Scalar-like gluons with polarization vectors pointing in the D=5,6 subspaces

Similar to what is done for I-loop in D-dimensional unitarity

- although slightly more tricky if quarks are around $[\bar{u}\gamma^{\mu}\hat{p}_{1}...\hat{p}_{n}\gamma^{\mu}v \text{ (I-loop) vs } \bar{u}\gamma^{\mu}\hat{p}_{1}...\hat{p}_{k}v \text{ (here)]}$
- and analytic-friendly

WE GET COMPACT AND STABLE RESULTS ALSO FOR FULL AMPLITUDES IN D-DIMENSIONS

• Recent proposal for 4-D framework: [Czakon (2014)]

Higgs plus I jet at NNLO: results (gg only)

Checks: generic

Two entirely independent computations (JHU/ANL-Northwestern)

Phase space parametrization and partitioning

- correct D-dimensional PS volume in each partition
- rotational invariance in D-dimensions (spin-correlations)

Amplitudes

tree-level amplitudes tested against MadGraph

pol

- loop-amplitudes implementation checked against original MCFM
- singular limits (see below)
- D-dimensional helicity amplitudes checked against brute-force computation for $\sum |M|^2$

Checks: limits and scaling

Subtraction terms should match the full amplitude in singular limits

Non-trivial since subtraction terms computed from reduced matrix element and eikonals/splitting functions

Correct scaling is the ultimate test for limits

Checks: poles cancellation

 $1/\epsilon$ poles, summing individual contributions

Checks: poles cancellation

NUMERICAL CANCELLATION between renormalization and coll. couterterms, RR, RV, VV

H+j @ NNLO (gg only)

- Partonic cross section for gg \rightarrow Hj @ LO, NLO, NNLO
- Realistic jet algorithm, k_T with R=0.5, p_T > 30 GeV
- Hadronic cross-section pp \rightarrow Hj using latest NNPDF sets
- Scale variation in the range $m_H/2 < \mu < 2 m_H, m_H = 125 \text{ GeV}$

TeV LHC by ``convoluting" them with appropriate parton distribution functions. Results to the right use NNPDFs and scale choices $m_{\mu}/2$, m_{μ} and $2m_{\mu}$.

Outlook

Differential distributions

Partonic Channels: LO

gg is by far the most important
qg is relevant as well
qqb is negligible

Partonic Channels: NLO

Again, gg and qg are the most relevant

qg: 1/ɛ pole cancellation

qg: 1/ɛ pole cancellation

2015-01-20 resout.mat	1
res["gg",RR, "41_51_1",158.561685434591,1] = 28.2005 +pm 0.0109291;	
cn1["gg",RR,"41_51_1",158.501085434591,1] = 242.030 +per 232; res["ag",RR,"41_51_1",158.597954357813,1] = 30.7134 +pm 0.0152638;	
chi["gg",RR,"41_51_1",158.597954357813,1] = 187.173 +per 232;	
res["gg",RR,"41_51_2",158.561685434591,1] = 24.4622 +pm 0.00689315;	
res["gg",RR, "41_51_2", 158.597954357813,1] = 30.8317 +pm 0.00942827;	
chi["gg",RR,"41_51_2",158.597954357813,1] = 205.704 +per 232;	
res["gg",RR,"41_51_3",158.561685434591,1] = 7.11847 +pm 0.00327893; chi["oo" RR "41 51 3" 158.561685434591.11 = 256.377 +per 232;	
res["gg",RR, "41_51_3", 158.597954357813,1] = 6.76568 +pm 0.00431435;	
chi["gg",RR,"41_51_3",158.597954357813,1] = 144.093 +per 232;	
res["gg",RR,"41_51_4",158.561685434591,1] = 19.8235 +pm 0.000/3994; chi["aa",RR,"41_51_4",158.561685434591,1] = 232.628 +per 232:	
res["gg",RR,"41_51_4",158.597954357813,1] = 21.7672 +pm 0.00937938;	
chi["gg",RR,"41_51_4",158.597954357813,1] = 167.277 +per 232;	
chi["aa",RR,"41_51_5",158.561685434591.11 = 336.731 +per 232:	
res["gg",RR,"41_51_5",158.597954357813,1] = 30.6725 +pm 0.00957417;	
chi["gg",RR,"41_51_5",158.597954357813,1] = 183.307 +per 232;	
chi["qq",RR,"42_52_1",158.561685434591,1] = 233.875 +per 232;	
res["gg",RR,"42_52_1",158.597954357813,1] = 30.7161 +pm 0.0149965;	
chi["gg",RR,"42_52_1",158.597954357813,1] = 189.722 +per 232; res["ao"_RR_"42_52_2"_158.561685434591.11 = 24.4703 +om_0.00685507;	
chi["gg",RR,"42_52_2",158.561685434591,1] = 248.229 +per 232;	
res["gg",RR,"42_52_2",158.597954357813,1] = 30.8613 +pm 0.00946075;	
chi["gg",RR,"42_52_2",158.597954357813,1] = 135.736 +per 232; res["aa",RR,"42_52_3",158.561685434591.1] = 7.12061 +om 0.00319171;	
chi["gg",RR,"42_52_3",158.561685434591,1] = 209.858 +per 232;	
res["gg",RR,"42_52_3",158.597954357813,1] = 6.77575 +pm 0.00440335; chi["ao" RR "42_52_3" 158.597954357813,11 = 145_932 +per 232;	
res["gg",RR,"42_52_4",158.561685434591,1] = 19.8042 +pm 0.00655943;	
chi["gg",RR, "42_52_4", 158.561685434591,1] = 249.369 +per 232;	
chi["aq",RR,"42_52_4",158.597954357813,1] = 21.7082 +pm 0.0092327; chi["aq",RR,"42_52_4",158.597954357813,1] = 148.328 +per 232;	
res["gg",RR,"42_52_5",158.561685434591,1] = 24.3501 +pm 0.00677375;	
chi["gg",RR,"42_52_5",158.561685434591,1] = 315.81 +per 232;	
chi["gg",RR, "42_52_5", 158.597954357813,1] = 214.484 +per 232;	
res["gg",RR, "43_53_1", 158.561685434591,1] = -51.3557 +pm 0.0154002;	
chi["gg",RR,"43_53_1",158.501685434591,1] = /0.6019 +per 194; res["aa".RR."43_53_1".158.597954357813.11 = -68.7809 +om 0.0176418:	
chi["gg",RR,"43_53_1",158.597954357813,1] = 66.6925 +per 232;	
res["gg",RR, "43_53_2", 158.561685434591,1] = -16.4564 +pm 0.00517921;	
res["aq",RR,"43_53_2",158.597954357813,1] = -20.2274 +pm 0.00692469;	
chi["gg",RR,"43_53_2",158.597954357813,1] = 72.8884 +per 232;	
res["gg",RR, "43_53_3", 158.561685434591,1] = 5.21675 +pm 0.00200678;	
res["aq",RR,"43_53_3",158.597954357813,1] = 5.886 +pm 0.00261583;	
chi["gg",RR,"43_53_3",158.597954357813,1] = 78.9383 +per 232;	
res["gg",RR,"43_53_4",158.561685434591,1] = 13.0496 +pm 0.00320781; cbi["aa" RR, "43_53_4",158.561685434591,1] = 310.591 +page 232;	
res["qq",RR, "43_53_4",158.597954357813,1] = 15.8691 +pm 0.00410071;	
chi["gg",RR,"43_53_4",158.597954357813,1] = 163.633 +per 232;	
res["gg",RR,"43_53_5",158.561685434591,1] = -16.7254 +pm 0.00532763; chi["aa",RR,"43_53_5",158.561685434591,11 = 83.6479 +per 232;	
res["gg",RR, "43_53_5", 158.597954357813,1] = -20.6872 +pm 0.00718287;	
chi["gg",RR, "43_53_5", 158.597954357813, 1] = 80.56 +per 232;	
res["gg",KK,"41_52",158.561685434591,1] = 95.3223 +pm 0.023395;	

cern.ch/user/m/maschulz/projects/HplusJet-current-code-workcopy_Frank/clusterdata/Fabrizio_all/4markus/resout.mat

2015-01-20	resout.mat 1
res["gg' chi["gg'	2015-01-20 resout.mat
res["gg"	chi["qq",RR,"41 52",158.561685434591,1] = 450.494 +per 232;
res["aa'	res["gg",RR,"41_52",158.597954357813,1] = 118.705 +pm 0.0302725;
chi["gg'	chi["gg",RR,"41_52",158.597954357813,1] = 213.653 +per 232;
res["gg'	res["gg",RR,"41_53",IS8.561685434591,1] = 100.752 +pm 0.0202643;
chi["gg'	cn1[3g],kk, 41_33, 138.501083434351,1] = 314.495 +per 232; res["ao" 88 "41_53",158.597954357813.1] = 177.189 +pm .0280775
res['gg'	chi['gq',RR, '41 53', 158.597954357813,1] = 286.924 +per 232;
res["gg"	res["gg",RR,"42_51",158.561685434591,1] = 95.3278 +pm 0.0236082;
chi["gg'	chi["gg",RR,"42_51",158.561685434591,1] = 368.332 +per 232;
res["gg'	res["gg",RR,"42_51",158.597954357813,1] = 118.778 +pm 0.0323539;
chi["gg'	ch1["gg",RR,"42_51",I58.597954357813,1] = 189.434 + per 232;
res["gg'	res['gg',kK,'42_33',L38.501083444591,1] = 100.03 +pm 0.021100; /hi['mm' BB '42_53']158.56158134501 11 = 302.297 +new 233-
chi["gg"	res["gg", RR, "42_53", 158, 597954357813.1] = 127,216 +pm 0.0281171;
res['gg'	chi["qq",RR,"42_53",158.597954357813,1] = 258.078 +per 232;
res['gg	res["gg",RR,"43_51",158.561685434591,1] = -96.3657 +pm 0.0261815;
chi["qq'	chi["gg",RR,"43_51",158.561685434591,1] = 100.783 +per 232;
res["gg'	res["gg",RR, "43_51",158.597954357813,1] = -115.1 +pm 0.0342269;
chi["gg'	Ch1["gg",RR,"43_51",I58.597954357813,I] = 113.278 +per 222; metling",RP_"43_57",I58.597954357813,I] = 0.673737,mm 0.0737906.
res["gg'	res[gg ,kk, 43_22 ,L38.501003434591,1] = "90.3733 +ph 0.277090; /bi['mon" RB "43_52" ,IS8.561655434591 11 = 117.785 +ner 232
ch1["gg"	res["ag", RR, "43 52", 158, 597954357813.1] = -115.11 +pm 0.0328446:
chi['aa'	chi["gg",RR,"43_52",158.597954357813,1] = 91.1634 +per 232;
res["gg	res["gg",RR,"41_51a1",158.561685434591,1] = -0.292904 +pm 0.000103563;
chi["qq'	chi["gg",RR,"41_51a1",158.561685434591,1] = 179.209 +per 73;
res["gg'	res["gg",RR,"41_51a1",158.597954357813,1] = -0.492038 +pm 0.000176325;
chi["gg'	$cn1[3g], kk, '41_{13}1a1', 158_{5}3/35435/a13, 1] = 24.712 + per 7.3;$
res["gg'	res[gg ,mm, 41_11a2 ,150.50100343451,1] = "0.100303 TPH 7.2124"10 "05; chi["mm" RB "d1 51a2" 158 561685034591,1] = 45.0217 Hpr 73:
chi["gg"	res["qq",RR,"41 51a2",158.597954357813,1] = -0.288374 +pm 9.94553*10^-05;
chi["gg	chi["gg",RR,"41_51a2",158.597954357813,1] = 76.0545 +per 73;
res["gg'	res["gg",RR,"41_51a3",158.561685434591,1] = -0.165539 +pm 0.00014218;
chi["gg'	chi["gg", RR, "41_51a3", 158.561685434591, 1] = 42.4338 +per 73;
res ["gg'	res['gg',kK,'41143',150.59/9543578131] = "0.200018 +pm 0.000232/92; /bi['mom' 00 'd1 513]' 158 5070543578131] = 28 0436 .mor 73.
chi["gg'	res["gg", RR, "1 51a4", 158,561685434591,1] = -0.339595 +pm 0.000267117:
res["gg"	chi["gg",RR,"41_51a4",158.561685434591,1] = 37.1747 +per 73;
res["gg	res["gg",RR,"41_51a4",158.597954357813,1] = -0.577727 +pm 0.000449465;
chi["gg'	chi["gg",RR,"41_51a4",158.597954357813,1] = 25.9371 +per 73;
res["gg'	res["gg",RR,"41_51a5",158.561685434591,1] = -0.167463 +pm 6.78533*10^-05;
chi["gg'	спі["gg",кк, "41_5185",158.501085434591,1] = 51.77/0 +per 73; res["no".88."41_5185",158.597954357813.11 = -0.287134 ±ом.0.000112442+
res["gg	chi["gg",RR, "41 51a5",158,597954357813,1] = 68.7331 +ber 73:
nilgg	res["gg",RR, "42_52a1", 158.561685434591,1] = -0.293104 +pm 0.000112409;
hi["qq'	chi["gg",RR,"42_52a1",158.561685434591,1] = 101.304 +per 73;
es["gg	res["gg",RR,"42_52a1",158.597954357813,1] = -0.491917 +pm 0.000174414;
hi["gg'	cn1["gg",RR,"42_52a1",158.597954357813,1] = 29.2911 +per 73;
es["gg'	res["gg",кк,"42_5282",158,501085434591,1] = -0.1081/4 +рМ 6.91/44*10"-05; cbi["ma" PB_"42_5282",158_561685434591,11 = 84_4443_ince73;
hi["gg'	cmi["gg",RK,"42_2282",100.0010804434091,1] = 04.4447 +per /3; res["no".RR "42_5282" 158.507954357813.11 = 0.28876 inm 0.000105700.
es["gg	chi["qq",RR, "42 52a2",158.597954357813,1] = 41.8051 +ber 73:
n1["gg"	res["gg",RR,"42_52a3",158.561685434591,1] = -0.165795 +pm 0.000139633;
hi["gg	chi["gg",RR,"42_52a3",158.561685434591,1] = 31.5844 +per 73;
es["gg'	res["gg",RR,"42_52a3",158.597954357813,1] = -0.280808 +pm 0.000236416;
hi["gg'	ch1["gg",RR,"42_52a3",158.597954357813,1] = 30.4122 +per 73;
es ["gg'	res["gg",RR,"42_5284",158,501085434591,1] = -0.33944 +pm 0.000250804; chi["aa" PB_"42_5284",158_561685434501,11 = 35_7418, aas 73.
i["gg'	res["aa", RR, "42_52a4", 158, 597954357813, 11 = -0. 577282 +om 0. 000438429
s["ggʻ	chi["ao",RR,"42 52a4",158,597954357813,11 = 26.0008 +ber 73:
en ch ()	res["gg",RR,"42_52a5",158.561685434591,1] = -0.167362 +pm 6.88819*10^-05;
cern.ch/us	chi["gg",RR,"42_52a5",158.561685434591,1] = 68.6776 +per 73;

2015-01-20	resout.mat 1	I
res["gg' chi["gg'	2015-01-20 resout mat	2
res ["gg'	chi["aa", RR, "41 52", 158, 561685434591,11 = 450, 494 +per 232:	
res["gg"	res["gg",	
chi["gg'	chi["gg", 2015-01-20 resout.mat	3
res["gg	res["gg"] chi["gg"] res["gg",RR,"42 52a5",158.597954357813.1] = -0.287414 +pm 0.000104181;	
chi["gg"	res["gg"] chi["gg",RR,"42_52a5",158.597954357813,1] = 34.3649 +per 73;	
chi["gg'	chi["gg"] res["gg",RR,"43_53a1",158.561685434591,1] = -0.018336 +pm 1.85351*10^-05	;
res ["gg	res["gg" res["gg", RR, "43_53a1", 158.507054357813,1] = -0.0365854 +pm 3.40856*10^-0	5;
res["gg"	res["gg"] chi["gg",RR,"43_53a1",158.597954357813,1] = 19.731 +per 73;	
chi["gg'	chi["gg"] res["gg",RR,"43_53a2",158.561685434591,1] = -0.0331151 +pm 1.71751*10^-0	5;
res["gg'	res["gg"] ch1["gg",RR,"43_5322",158.501085434591,1] = 18.0983 +per 73; ch1["aa" res["ag",RR,"43_5322",158.597954357813.1] = -0.0661353 +pm 3.33316*10^-0	5:
res["gg"	res["gg"] chi["gg",RR,"43_53a2",158.597954357813,1] = 31.6959 +per 73;	-,
chi["gg'	chi["gg"] res["gg",RR,"43_53a3",158.561685434591,1] = -0.038826 +pm 4.11531*10^-05	;
res["gg	res["gg"] ch1["gg",RR,"43_5333",158.501085434591,1] = 24.1393 +per 73; ch1["no" res["gg",RR,"43_53a3",158.597954357813.11 = -0.0775878 +pm 7.16953*10^-0	5:
chi["gg' res["gg'	res["gg" chi["gg",RR,"43_53a3",158.597954357813,1] = 15.774 +per 73;	-,
chi["gg'	chi["gg"] res["gg",RR,"43_53a4",158.561685434591,1] = -0.0854699 +pm 4.49844*10^-0	5;
res["gg	res["gg"] res["gg", RR, "43_5344", 158.507054357813.1] = 44.0402 +per 73; rhi["gg"] res["gg", RR, "43_53a4", 158.597954357813.1] = -0.170763 +pm 8.99105*10^-05	:
chi["gg' res["gg'	res["gg" chi["gg",RR,"43_53a4",158.597954357813,1] = 29.7929 +per 73;	,
chi["gg'	chi["gg" res["gg",RR,"43_53a5",158.561685434591,1] = -0.0314403 +pm 2.05752*10^-0	5;
res ["gg'	res["gg"] Ch1["gg",RR,"43_5385",158.561885434591,1] = 23.0501 +per /3; ch1["aa" res["aa",RR,"43_5385",158.597954357813.11 = -0.0627994 +nm 3.94194*10^-0	5.
chi["gg'	res["gg"] chi["gg",RR,"43_53a5",158.597954357813,1] = 17.7994 +per 73;	-,
chi["gg'	chi["gg" res["gg",RR,"41_52a",158.561685434591,1] = -0.679399 +pm 0.000190394;	
res ["gg'	res["gg"] Ch1["gg",RR,"41_528",158.561685434591,1] = 147.555 +per 73;	
chi["gg'	res["gg" chi["gg",RR,"41_52a",158.597954357813,1] = 44.8935 +per 73;	
chi["gg'	chi["gg"] res["gg",RR,"41_53a",158.561685434591,1] = -0.684335 +pm 0.000204411;	
res ["gg	res["gg"] Chi["gg",RR,"41_53a",158.561685434591,1] = 104.314 +per 73; chi["aa" res["aa" RR."41_53a",158.597954357813.11 = -1.1797 +rm 0.000356059;	
chi["gg' res["gg'	res["gg"] chi["gg",RR,"41_53a",158.597954357813,1] = 48.0612 +per 73;	
chi["gg'	chi["gg" res["gg",RR,"42_51a",158.561685434591,1] = -0.67942 +pm 0.00018825;	
res ["gg'	res["gg"] Ch1["gg",RR,"42_51a",158.561685434591,1] = 115.584 +per 73; chi["ga" res["ga".RR,"42_51a",158.597954357813.11 = -1.16924 +pm 0.000332845;	
chi["gg'	res["gg"] chi["gg",RR,"42_51a",158.597954357813,1] = 49.7576 +per 73;	
chi["gg'	chi["gg"] res["gg",RR,"42_53a",158.561685434591,1] = -0.684905 +pm 0.00020588;	
res["gg'	res["gg"] ch1["gg",RR,"42_53a",158.501085434591,1] = 82.9709 +per 73; ch1["gg"] res["gg",RR,"42_53a",158.597954357813,1] = -1.17881 +om 0.000340971;	
chi["gg"	res["gg" chi["gg",RR,"42_53a",158.597954357813,1] = 80.4725 +per 73;	
chi["gg'	chi["gg"] res["gg",RR,"43_51a",158.561685434591,1] = -0.150793 +pm 3.5578*10^-05;	
res["gg	res["gg", cn1["gg",RR,"43_51a",158.501085434591,1] = 93.2675 +per 73; ch1["gg", res["gg",RR,"43_51a",158.597954357813.11 = -0.301271 +om 5.40988*10^-05:	
ch1["gg"	res["gg"] chi["gg",RR,"43_51a",158.597954357813,1] = 63.0678 +per 73;	
chi["gg'	chi["gg"] res["gg",RR,"43_52a",158.561685434591,1] = -0.150726 +pm 3.02382*10^-05;	
res ["gg'	res["gg"] ch1["gg",RR,"43_52a",158.501085434591,1] = 58.8110 +per /3; ch1["gg"] res["gg",RR,"43_52a",158.597954357813,1] = -0.301201 +pm 5.719*10^-05;	
chi["gg' res["aa'	res["gg"] chi["gg",RR,"43_52a",158.597954357813,1] = 40.4686 +per 73;	
chi["gg'	chi["gg"] res["gg",RV,"41",158.561685434591,1] = -100.098 +pm 0.0242532;	
res["gg	res["gg", RV, "41",158.501005434591,1] = 303.230 +per 232; chi["aa" res["aa", RV, "41",158.597954357813.11 = -119.08 +cm 0.0319817:	
ch1['gg' res['aa'	res["gg" chi["gg",RV,"41",158.597954357813,1] = 164.186 +per 232;	
chi["gg'	chi["gg" res["gg", RV, "42", 158.561685434591, 1] = -100.181 +pm 0.0243629;	
res ["gg'	res["gg", cn1["gg", kv, "42", 158.501085434591, 1] = 246.156 +per 252; ch1["gg", res["gg", RV, "42", 158.597954357813.11 = -119.039 +om 0.0335599:	
chi["gg' res["aa	res["gg" chi["gg",RV,"42",158.597954357813,1] = 192.912 +per 232;	
rest gg	chi["gg"] res["gg", RV, "43", 158.561685434591, 1] = 91.2597 +pm 0.0242307;	
cern.ch/us	res["gg", res["gg", RV, "43", 158.501085434591, 1] = 86.2124 +per 232; res["gg", RV, "43", 158.597954357813.11 = 118.33 +om 0.0322452:	
	chi["gg",RV, "43",158.597954357813,1] = 44.2709 +per 232;	

2015-01-20	D	resout.mat	1			
res["gg"						
res["gg'	2015-01-20	resout.mat		2		
chi["gg'	chi["gg",R	R, "41_52", 158.561685434591,1] = 450.494 +per	232;			
res["gg'	chi["gg"					
res["gg"	res["gg"	2015-01-20	resout.mat		3	
chi["aa'	chi["gg"	res["gg",RR,"42_52a5",158.597954357813,1] :	= -0.287414 +pm 0.000104181;		1	
res["gg'	res["gg"	chi["gg",RR, "42_52a5", 158.597954357813,1] :	= 34.3649 +per 73;		1	
chi["gg'	cni["gg"	chi["qq",RR, "43_53a1",158.561685434591,1] :	= 18.0952 +per 73:		1	
res["gg"	chi["gg"	res["gg",RR, "43_53a1", 158.597954357813, 1] =	= -0.0365854 +pm 3.40856*10^-05;		1	
res["gg	res["gg"	chi["gg",RR,"43_53a1",158.597954357813,1] =	= 19.731 +per 73;		1	
chi["gg'	chi["gg"	res["gg",RR, "43_53a2", 158.561685434591,1] =	= -0.0331151 +pm 1.71751*10^-05;		1	
res["gg	res["gg"	chi["gg",RR, "43_53a2", 158.561685434591,1] = res["no",RR, "43_53a2", 158.597954357813,11 =	= 18.0983 +per /3; = .0.0661353 +nm 3.33316+10^-05:		1	
chi["gg'	res["gg"	chi["gg",RR, "43 53a2", 158.597954357813, 1]	= 31.6959 +per 73;		1	
chi['aa'	chi["gg"	res["gg",RR, "43_53a3", 158.561685434591, 1]	= -0.038826 +pm 4.11531*10^-05;		1	
res["qq'	res["gg"	chi["gg",RR, "43_53a3", 158.561685434591,1]	= 24.1393 +per 73;		1	
chi["gg'	chi["gg"	res["gg",RR, "43_53a3", 158.597954357813, 1] =	= -0.07/5878 +pm /.10953*10*-05; = 15.774 +per 73;		1	
res["gg'	chi["aa"	res["gg",RR, "43_53a4", 158.561685434591,1]	= -0.0854699 +pm 4.49844*10^-05;		1	
res["gg"	res["gg"	chi["gg",RR,"43_53a4",158.561685434591,1] :	= 44.0402 +per 73;		1	
chi["gg'	chi["gg"	res["gg",RR, "43_53a4", 158.597954357813,1] :	= -0.170763 +pm 8.99105*10^-05;		1	
res["gg	res["gg"	ch1["gg",RR, "43_53a4", 158.59/95435/814.11 : res["aa", RR, "43_53a5", 158.5616854345	= 24.7424 +n#r 71		1	
chi["gg'	res["ag"	chi["qq",RR, "43_53a5", 158.5616854345 201	5-01-20	resout.mat		677
chi["aa"	chi["gg"	res["gg",RR, "43_53a5", 158.5979543578	["ar" NL . "cv" .168.965870231710.0	1 = 3.62 +ner 73:		
res["gg'	res["gg"	chi["gg",RR, "43_53a5", 158.5979543578 res	["qr",NL, "cv",170.688238203678,0] = 6.5347*10^-04 +p	m 2.8417*10^-07;	
chi["gg'	chi["gg"	chi["aa" RR, "41_52a", 158, 56168543459 chi	["qr",NL,"cv",170.688238203678,0] = 4.04 +per 73;		
res["gg'	chi["gg"	res["gg",RR, "41_52a",158.59795435781 res	["qr",NL,"cv",171.615361583662,0] = 7.3705*10^-04 +p	m 3.1820*10^-07;	
chi["gg"	res["gg"	chi["gg",RR, "41_52a", 158.59795435781 Chi	["qr",NL,"cv",171.615361583662,0 ["ac" NL "cv" 173.610956111460.0)] = 3.62 +per 73; 11 = 0.3066+10^-04 +m	m 3 0730+10^_07+	
chi["qq'	chi["gg"	res["gg",RR,"41_53a",158.56168543459 chi	["ar".NL, "cv".173.610956111460.0)] = 2.95 +per 73;	3.3730.10 -07,	
res["gg'	res["gg"	chi["gg",RR, "41_53a",158.56168543459 res	["qr",NL, "cv",175.809469208384,0] = 1.1656*10^-03 +p	m 4.9242*10^-07;	
chi["gg'	res["gg"	chi["gg",RR, "41_53a",158.59795435781 chi	["qr",NL,"cv",175.809469208384,0] = 2.62 +per 73;		
chi["aa'	chi["gg"	res["gg",RR, "42_51a", 158.56168543459 res	["qr",NL,"cv",174.683676611297,0)] = 1.0425*10^-03 +p	m 4.4261*10^-07;	
res["gg	res["gg"	chi["gg",RR, "42_51a", 158.56168543459 res	["ar".NL, "cv".178.230830714039.0)] = 1.4495*10^-03 +p	m 6.0268*10^-07:	
chi["gg'	chi["gg".	chi["aa" PP "42 51a",158 59795435781 chi	["qr",NL, "cv",178.230830714039,0] = 2.31 +per 73;		
res["gg	chi["gg"	res["gg",RR, "42_53a",158.56168543459 res	["qr",NL,"cv",172.588920137493,0] = 8.2917*10^-04 +p	m 3.5590+10^-07;	
chi["gg"	res["gg"	chi["gg",RR, "42_53a", 158.56168543459 chi	["qr",NL,"cv",172.588920137493,0	<pre>)] = 2.66 +per 73; 1 = 1.7017*10^.03 +n</pre>	m 7 3251+10^_07.	
chi["gg'	chi["gg"	res["gg",RR, "42_53a", 158.59795435781 chi	['ar".NL, "cv".180.898474692577.0)] = 2.52 +per 73;	17.5201.18 -07;	
res["gg'	res["gg"	cn1["gg",RR, "42_538",158.59795435781 rec["aa" PP_"43_51a" 158_56168543459 res	["qr",NL, "cv",179.532246265021,0] = 1.6126*10^-03 +p	m 6.6407+10^-07;	
chi["gg'	res["gg"	chi["gg",RR, "43_51a",158.56168543459 chi	["qr",NL,"cv",179.532246265021,0] = 2.16 +per 73;		
chi["aa'	chi["gg"	res["gg",RR, "43_51a", 158.59795435781 res	["qr",NL,"cv",185.423730353662,0	[] = 2.4402*10^-03 +p	m 9.7027*10^-07;	
res["gg'	res["gg"	chi["gg",RR, "43_51a", 158.59795435781 res	['ar".NL, "cv".176.990919472596.0)] = 1.3009*10^-03 +p	m 5.4495*10^-07:	
chi["gg'	res["gg"	chi["aa", RR, "43_52a", 158, 56168543459 chi	["qr",NL,"cv",176.990919472596,0] = 2.49 +per 73;		
res["gg'	chi["aa"	res["gg",RR, "43 52a",158.59795435781 res	["qr",NL,"cv",183.840106186584,0] = 2.2038+10^-03 +p	m 8.8517+10^-07;	
res["gg"	res["gg"	chi["gg",RR,"43_52a",158.59795435781 Chi	["qr",NL,"cv",183.840106186584,0	<pre>)] = 2.18 +per 73; 1 = 2.0830*10^.03 +n</pre>	* 1 1695 * 10^ . 06 ·	
chi["gg'	chi["gg"	res["gg",RV, "41",158.561685434591,1] chi	["ar".NL."cv".188.840136054697.0)] = 2.19 +per 73;	1.1005-10-00;	
res["gg	res["gg"]	res["aa", RV, "41", 158, 597954357813, 11 res	["qr",NL,"cv",187.088689245335,0] = 2.6995*10^-03 +p	m 1.0624*10^-06;	
chi["gg'	res["gg"	chi["gg",RV, "41",158.597954357813,1] chi	["qr",NL,"cv",187.088689245335,0] = 2.29 +per 73;		
chil'aa	chi["gg"	res["gg",RV, "42",158.561685434591,1] res	["qr",NL,"cv",182.333118403074,0	[] = 1.9883*10^-03 +p	m 8.0404*10^-07;	
res["gg	res["gg".	chi["gg",RV, "42",158.561685434591,1] Chi	['ar", NL, 'cv", 192, 625726874296, 0	<pre>/] = 2.41 +per /3;)] = 3.6383*10^-03 +n</pre>	m 1.3825*10^-06:	
chi["gg'	res["aa"	chi["aa", RV, "42", 158, 59795435/813, 1] chi	["qr",NL, "cv",192.625726874286,0] = 2.09 +per 73;		
res["gg'	chi["aa"	res["gg",RV, "43",158.561685434591,1] res	["qr",NL,"cv",190.683735092958,0] = 3.2962*10^-03 +p	m 1.2686*10^-06;	
care chúr	res["gg"	chi["gg",RV,"43",158.561685434591,1] Chi	["qr",NL,"cv",190.683735092958,0] = 2.08 +per 73;	* 1 6424+10A 0F	
Jernichyde	chi["gg".	res["gg",RV, "43",158.597954357813,1] res	["ar",NL,"cv",196.833197763193,0	<pre>i] = 4.4205*10^-03 +p i] = 2.33 +per 73:</pre>	n 1.0434+10 00;	
		cn1[-gg",KV, "43",158.59/95435/813,1]		, and the rat		

Conclusions

- Colorful $2 \rightarrow 2$ NNLO phenomenology is a reality
- Our calculation is a prototype of a generic NNLO QCD computation
 - most generic singularity structure (ini-ini, ini-fin, fin-fin)
 - large number of Feynman diagrams
 - gg: maximal presence of spin correlations
 - *qg*: no phase space symmetries
- Robust test of theoretical framework
- Computation completed for all relevant partonic channels
- Two independent calculations, implementations and codes
- Differential distributions and dynamic scale available
- To-do: Higgs decay, pdf variations, jet-vetoed cross section, α-parameter, 4-D framework (t'Hooft-Veltman scheme)

Quality of effective gluon-Higgs coupling

[Buschmann,Goncalves,Kuttimalai,Schönherr,Krauss,Plehn]

