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Riemann: the greatest
mathematician ever.



1900: Hilbert’s list of problems for the XX
centaury:
the first part of the eighth problem: The
Riemann Hypothesis

2000: Clay Institute: problems for
millennium.





15 years old Gauss conjectured:

π(x) := ]{p − prime, p < x}

π(x) ∼
∫ x

2

du
ln(u)

:= Li(x)

Remark:

Li(x) = γ + ln(ln(x)) +
∞∑

n=1

(ln(x))n

nn!

γ ≈ 0.577216 is the Euler–Mascheroni constant
γ = limn→∞

(∑n
k=1

1
k − ln(n)

)
.



Euler’s Gold Formula

ζ(s) :=
∞∑

n=1

1
ns =

∏
p

(
1− 1

ps

)−1

This formula is valid only for <[s] > 1.
There are no zeros of ζ(s) for <[s] > 1.
1 is neither prime nor composite.



Euler has derived expressions giving values of
zeta for even arguments (Bn are Bernoulli
numbers):

ζ(2m) =
|B2m|π2m

2(2m)!

ζ(−m) = − Bm+1

m + 1
R.Apery (1998): ζ(3) is irrational.
W.I. Zudilin (2001): One of the numbers:

ζ(5), ζ(7) ζ(9), ζ(11)

is irrational.



The path leading to the proof of the Gauss
conjecture was outlined by Riemann in the
paper: “Ueber die Anzal der Primzahlen unter
einer gegebenen Gr -osse” (Monatsberichte der
Berliner Akademie, November 1859). First
Riemann has continued analytically ζ(s) to
the whole complex plane with exception of
s = 1: at s = 1 ζ(s) has a pole.









Riemann has shown that the integral (s 6= 1):

ζ(s) =
Γ(−s)

2πi

∫ +∞

+∞

(−x)s

ex − 1
dx
x

where the contour:
6

-
���� -
�

is equal to
∑∞

n=1 1/n
s on the right of the line

<[s] = 1.



Trivial zeros: s = −2,−4,−6, . . . i.e.
ζ(−2n) = 0. Besides that there exist
infinity of zeros ρ = σ + it in the
critical strip 0 ≤ <[ρ] = σ ≤ 1. If ρ
is zero, then also ρ and 1− ρ are
zeros. Zeros are located symmetrically
around the critical line <[s] = 1

2.



The Riemann hypothesis
All non-trivial zeros are lying on the
critical line

s =
1
2

+ it

i.e. are of the form ρ = 1
2 + iγ

von Mangoldt(1905):
N(T ) = T

2π ln
( T

2πe

)
+ 7

8 +O(ln(T ))
Hardy (1914) There is infinitely many zeros of ζ(s)
on the critical line.





ζ(ρi) = 0 i = 1, 2, . . . , 26

1 1
2 + i14.134725142 14 1

2 + i60.831778525
2 1

2 + i21.022039639 15 1
2 + i65.112544048

3 1
2 + i25.010857580 16 1

2 + i67.079810529
4 1

2 + i30.424876126 17 1
2 + i69.546401711

5 1
2 + i32.935061588 18 1

2 + i72.067157674
6 1

2 + i37.586178159 19 1
2 + i75.704690699

7 1
2 + i40.918719012 20 1

2 + i77.144840069
8 1

2 + i43.327073281 21 1
2 + i79.337375020

9 1
2 + i48.005150881 22 1

2 + i82.910380854
10 1

2 + i49.773832478 23 1
2 + i84.735492981

11 1
2 + i52.970321478 24 1

2 + i87.425274613
12 1

2 + i56.446247697 25 1
2 + i88.809111208

13 1
2 + i59.347044003 26 1

2 + i92.491899271





Next Riemann obtained the exact formula
for π(x). Let

R(x) =
∞∑

m=1

µ(m)

m
Li(x1/m)

where µ(n) is the Möbius function:

µ(n) =


1 for n = 1
0 when p2|n
(−1)r when n = p1p2 . . . pr



Then

π(x) = R(x)−
∑
ρ

R(xρ) (∗)

where the sum runs over zeros of ζ(s), i.e.
ζ(ρ) = 0.

π(x) ≈ Li(x)

Littlewood has proved that Li(x)− π(x)

changes infinitely many times sign. Here is
the computer illustration of the formula (*):



π(x) = R(x)−
∑
ρ

R(xρ) (∗)

gdzie suma przebiega po wszystkich zerach
ζ(s), tzn. ζ(ρ) = 0. Pochodna tego wzoru
to suma δ zlokalizowanych na liczbach
pierwszych.
Wząr (*) moňna sprawdziŁ na komputerze

π(x) ≈ Li(x) π(x) = Li(x)+O(ln(x)
√

x)

Z grubsza n-ta liczba pierwsza i Li−1(n)

maję 1
2 tych samych cyfr.



x π(x) Li(x) Li(x)− π(x)
102 25 30 5
103 168 178 10
104 1229 1246 17
105 9592 9630 38
106 78498 78628 130
107 664579 664918 339
108 5761455 5762209 754
109 50847534 50849235 1701
1010 455052511 455055615 3104
1011 4118054813 4118066401 11588
1012 37607912018 37607950281 38263
1013 346065536839 346065645810 108971
1014 3204941750802 3204942065692 314890



x π(x) Li(x)− π(x)

1015 29844570422669 1052619
1016 279238341033925 3214632
1017 2623557157654233 7956589
1018 24739954287740860 21949555
1019 234057667276344607 99877775
1020 2220819602560918840 222744647
1021 21127269486018731928 597394250
1022 201467286689315906290 1932355520
1023 1925320391606803968923 7250186752
1024 18435599767349200867866 17146872832
1025 176846309399143769411680 55160980939



Jacques Salomon Hadamard (1865 – 1963)
and Charles-Jean -tienne Gustave Nicolas,
Baron de la VallÚe Poussin (1866 – 1962)
proved in 1896 the PNT: there are no zeros
of ζ(s) on the line 1 + it.



J.P. Gram(1903): 15 zeros are on the critical line

...

A.Turing (1953): 1104 zeros are on the critical line
(“in an optimistic hope that a zero would be found off critical line”)

...

D.H. Lehmer (1956): 25000 zeros are on the critical
line

...

S. Wedeniwski: 2.5× 1011 zeros are on the critical
line: s = 1

2 + it |t| < 29, 538, 618, 432.236
X. Gourdon(2004): 1013 zeros are on the critical line.



How to prove the
Riemann Hypothesis?



Mertens hypothesis:

M(x) =
∑
n<x

µ(n)

If |M(x)| <
√

x then Riemann hypothesis is
fulfilled.
Littlewood: RH is equivalent to the:

M(x) = O(x1/2)





A.M. Odłyżko and H.J.J. te Riele in 1985
have disproved Mertens hypothesis. They
have calculated first 2000 zeros of ζ(s) with
accuracy 100-105 digits – It took 40 hours
on the CDC CYBER 750 + 10 hours on the
Cray-1.
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RH is equivalent to

|π(x)−Li(x)| ≤ 1
8π
√

x ln(x) for all x ≥ 2657.

Criteria for RH involving integrals
RH is true ⇔∫ ∞

0

1− 12t2

(1 + 4t2)3

∫ ∞
1
2

ln(|ζ(σ + it)|dσdt = π
3− γ
32

.

RH is true ⇔
∫
<(s)=1

2

ln(|ζ(s)|)
|s|2

|ds| = 0.



Lagarias (2000): An Elementary
Problem Equivalent to the Riemann
Hypothesis: RH is equivalent to the
inequalities:

σ(n) ≡
∑
d |n

d ≤ Hn +exp(Hn) log(Hn)

for each n = 1, 2, . . .. Here Hn are
n-th harmonic numbers Hn =

∑n
j=1

1
j .





The de Bruijn-Newmana constant (1950,
1976):

ξ(iz) =
1
2

(
z2 − 1

4

)
π−

z
2−

1
4 Γ

(
z
2

+
1
4

)
ζ

(
z +

1
2

)
RH ⇔ all zeros of ξ(iz) are real.

Φ(t) =
∞∑

n=1

(2π2n4e9t − 3πn2e5t)e−πn2e4t

t ≥ 0. Then ξ is a Fourier transform of Φ:

1
8
ξ
(z
2

)
=

∫ ∞
0

Φ(t) cos(zt)dt



Larger class: H(z , λ) is the Fourier
transform of Φ(t)eλt2 and
H(z , 0) = 1

8ξ(12z) N. G. De Bruijn
proved that (1950):
1. H(z , λ) has only real zeros for
λ ≥ 1

2
2. If H(z , λ) has only real zeros for
some λ′, then H(z , λ) has only real
zeros for each λ′ > λ.



Ch. Newman (1976) has proved that there
exists such parameter λ1, that H(z , λ1) has
at least one non-real zero. Thus there exists
such constant Λ in the interval
−∞ < Λ < 1

2, that H(z , λ) has real zeros
⇔ λ > Λ. Riemann Hypothesis is equivalent
to Λ ≤ 0.
Newman believes Λ ≥ 0.



Csordas et al (360 digits) (1988)− 50 < Λ

...

te Riele (250 digitsr) (1991) −5 < Λ
...

Odyzko (2000) − 2.7 · 10−9 < Λ

k = 1020 +71810732, γk+1−γk < 0.000145

“ if RH is true, it is barely true”



Maybe RH is
undecidable

(P. Cohen, Fields medallist 1966)



|!



B. van der Pol
Bulletin of the AMS 53 (1947), pp. 976-981

ζ(12 + it)
1
2 + it

=

∫ ∞
−∞

(
e−x/2bexc − ex/2

)
e−ixtdx

paper, scissors, rotor, source of light,
photocell, sinusoidal current of variable
frequency.





der Pol1.png





The Poly’a– Hilbert
Conjecture: “ζ(12 + i Ĥ) = 0”

RH is true, because complex parts of
the non-trivial zeros correspond to

eigenvalues of the positive self-adjoint
operator. Was proposed around 1910,

first published in 1973.

letter of G. Polya (1887-1985) to
Odlyzko from January 1982:







Montgomery (1973):Assume RH: ρ = 1
2 + iγ.

∑
0<γ,γ′≤T

2πα
ln T≤γ−γ

′≤2πβ
ln T

1 =

∫ β

α

(
1−

(
sinπu
πu

)2
)

du

F. Dyson recognized in the above formula
the same dependence as in the behavior of
the differences between pairs of eigenvalues
of random Hermitian matrices.



A. Odlyzko performed computer experiments

The 1020-th zero of the Riemann zeta
function and 70 million of its neighbors,

thousands of hours on Cray-1 i Cray X-MP
The 1020-th zero of the Riemann zeta

function and 175 million of its neighbors,
1992 revision of 1989

The 1021-st zero of the Riemann zeta
function,

The 1022-nd zero of the Riemann zeta
function, (∼ 109 zeros)



Odlyzko (1987): δn = (γn+1 − γn) ln(γn/(2π))
2π

1
N

∑
1≤n≤N,

k≥0
δn+δn+1+...+δn+k∈[α,β]

1 ∼
∫ β

α

(
1−

(
sinπu
πu

)2
)

du





The results confirmed the GUE (Gaussian
unitary ensemble) distribution: the gaps
between imaginary parts of consecutive
nontrivial zeros of ζ(s) display the same
behavior as the differences between pairs of
eigenvalues of random Hermitian matrices.
P. Sarnak wrote: “At the phenomenological
level this is perhaps the most striking
discovery about the zeta function since
Riemann.”





Ĥ =
1
2

(xp + px)

I Ĥ has the classical counterpart
describing a chaotic, unstable and
bounded dynamics.

I The dynamics of the Riemann does
not have reversal time symmetry.

I And the Riemann dynamics is
one-dimensional



The number of levels of Ĥ < E :

N(E ) =
E
2π

(
ln
(

E
2π

)
− 1
)

+
7
8

+. . .

N(T ) =
T
2π

ln
(

T
2πe

)
+
7
8

+O(ln(T ))

ψE(x) ∼ const
|x |1/2−iE ζ

(
1
2
− iE

)











M. Shlesinger has investigated a very special
one-dimensional random walk which can be
linked with the RH. The probability of
jumping to other sites with steps having a
displacement of ±l sites involves directly the
Möbius function:

p(±l) =
1
2
C
(

1
l 1+β

± µ(l)
l 1+β−ε

)
, β > 0,

where C = 1
ζ(1+β)+ 1

ζ(1+β)

is a normalization

factor.



Some general properties of the "structure function"
λ(k) being the Fourier of the probabilities p(l):
λ(k) =

∑
l e

iklp(l), enabled Shlesinger to locate the
complex zeros inside the critical strip, however the
result of J. Hadamard and Ch. J. de la
Vallée–Poussin that ζ(1 + it) 6= 0 can not be
recovered by this method. What is interesting the
existence of off critical line zeros is not in
contradiction with behavior of λ(k) following from
the laws of probability.







Dynamics of point particle bouncing
inside the circular billiard

T (β, ψ) = (β + π − 2ψ, ψ)



Survival probability P(t) that the particle will
not escape till time t:

tP(t) =
1
8π

∞∑
n=1

n(φ(n)− µ(n))

×
[
g
(
2π
n
− θ′ − ε

)
+ g (θ′ − ε)

]
φ(n) Euler’s totient function: the number of
positive integers m ≤ n that are relatively
prime to n: gcd(m, n) = 1

g(x) =

{
x2 x > 0
0 x ≤ 0



Then they proved that RH is
equivalent to

lim
ε→0

lim
t→∞

εδ(tP1(t)− 2/ε) = 0

be true for every δ > −1/2.



The functional equation can be written in
non–symmetrical form:

2Γ(s) cos
(
π

2
s
)
ζ(s) = (2π)sζ(1− s).

The Kramers–Wannier duality relation for the
partition function Z (J) of the two dimensional Ising
model with parameter J expressed in units of kT

Z (J) = 2N(cosh(J))2N(tanh(J))NZ (J̃),

where N denotes the number of spins and J̃ is related
to J via e−2J̃ = tanh(J),



The Lee–Yang circle theorem on the zeros of the
partition function. Let Z (β, z) denote the grand –
canonical partition function. Phase transitions are
connected with the singularities of the derivatives of
Z (β, z), and they appear when Z (β, z) = 0. The
Lee–Yang theorem asserts that in the
thermodynamical limit, when the sum for partition
function involves infinite number of terms, all zeros
of Z (β, z) for a class of spin models are pure
imaginary and lie in the complex plane of the
magnetic field z on the unit circle: |z | = 1.
s = 1

2 + it can be mapped into the unit circle
s → u = s/(1− s) = (1

2 + it)/(1
2 − it) : |u| = 1.









In 1975 S.M. Voronin proved theorem on the
universality of the Riemann ζ(s) function:
Let 0 < r < 1/4 and f (s) be a complex
function continuous for |s| ≤ r and
analytical in the interior of the disk. If
f (s) 6= 0, then for every ε > 0 there exists
real number T = T (ε, f ) such that:

max
|s|≤r

∣∣∣∣f (s)− ζ
(

s +

(
3
4

+ i T
))∣∣∣∣ < ε.





J. Derbyshire “Prime Obsession” (2001) pp. 357-358:
JD: Andrew, you have gazed on more non-trivial
zeros of the Riemann zeta function than any person
alive. What do you think about this darn
Hypothesis? Is it true, or not?
AO: Either it’s true, or else it isn’t.
JD: Oh, come on, Andrew. You must have some
feeling for an answer. Give me a probability. Eighty
percent it’s true, twenty percent it’s false? Or what?
AO: Either it’s true, or else it isn’t.


