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Introduction

The path to physics at the Planck scale
�

�

�

�
String Paradigm: the closer we look the more symmetric the world looks

M–THEORY ∼ STRINGS← SUGRA← SUSY← SM,
�

�

�

�
Emergence Paradigm: the less close you look the simpler it looks

ETHER ∼ Planck medium→ low energy effective QFT→ SM.

The “true world” seen from far away: unlike in renormalized QFT, here the
relationship between bare and renormalized parameters obtains a physical
meaning (Landau 1955, Wilson 1971, · · · )
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LHC Higgs mass scan by ATLAS and CMS
Higgs finally found as expected, so what?

�

�

�

�
, LHC ⇒ the SM completion
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The Higgs mass determined by ATLAS and CMS agrees perfectly with the indirect
bounds obtained from combined LEP, SLD and Tevatron precision measurements
of the weak mixing parameter

Plot of the LEP Electroweak Working Group: S. Schael et al. 2005, superimposed
with the LHC result.

Higgs mass found in very special mass range 125.5 ± 1.5 GeV
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Common Folklore: hierarchy problem requires SUSY extension of the SM (no
quadratic divergences)

Do we need new physics? Stability bound of Higgs potential in SM:

SM Higgs remains perturbative up to scale Λ if it is light enough (upper
bound=avoiding Landau pole) and Higgs potential remains stable (λ > 0) if Higgs
mass is not too light [parameters used: mt = 175[150 − 200] GeV ; αs = 0.118]

Riesselmann, Hambye 1996
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Key object of our interest: the Higgs potential

�

�

�

�
V = m2

2 H2 + λ
24H4

r Higgs mechanism

v when m2 changes sign and λ stays positive⇒first order phase transition

v vacuum jumps from v = 0 to v , 0

Note: the bare Lagrangian is the true Lagrangian (renormalization is just
reshuffling terms) the change in sign of the bare mass is what determines the
phase

r Hierarchy problem is a problem concerning the relationship between bare

and renormalized parameters

l bare parameters are not accessible to experiment so who cares?
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l SM as a low energy effective theory i.e. it is the long range tail
of a physical bare cutoff theory

Remark: there is no way to to avoid UV regularization in QFT: reason likely is that
the cutoff is real (e.g a lattice sitting at MPlanck)

Our paradigm: at Planck scale a bare cutoff system exists (“the ether”) with
Λ = MPlanck as a real physical cutoff

r low energy expansion in E/Λ lets us see a renormalizable effective QFT: the SM

r in this scenario the relation between bare and renormalized parameters
are physical ones

r all so called UV singularities (actually finite now) must be taken serious
including quadratic divergences etc.
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Low energy effective QFT of a cutoff system

The low energy expansion I:

G(p,Λ) =
∑
n,`

cn,`

( p
Λ

)n
(
ln

p2

Λ2

)`

{
Λ
∂

∂Λ
+ β(· · · )

∂

∂g
+ δ(· · · ) m

∂

∂m
− N γ(· · · )

}
G(p,Λ) = ∆ΛG(p,Λ)

inhomogeneous response equation to change of cut–off (very complicated)

Low energy effective: drop power suppressed terms

Gpreasymptotic(p,Λ) =
∑
`

c0,`

(
ln

p2

Λ2

)`
+ O(p2/Λ2)
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{
Λ
∂

∂Λ
+ β(· · · )

∂

∂g
+ δ(· · · ) m

∂

∂m
− N γ(· · · )

}
Gpreasymptotic(p,Λ) ≡ 0

satisfies homogeneous PDE = RG with respect to scale Λ (means Λ is not cut-off
any more, just scale parameter)

Low energy effective theory usually near IR fixed point of RG

β(g)

g

g∗
−

→ ←

QCD

a) β(g)

gg∗
+

→ ←

QED
b)

RG fixed points are zeros of the β–function: a) UV fixed points, b) IR fixed points

v Crucial point: cutoff ΛPl is physical i.e. a finite number and by a finite renormal-
ization (renormalizing parameters and fields only) by change of scale pi → κ pi
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i.e. momenta in units of Λ rescaled to momenta in units of MS scale µ i.e.
κ = Λ/µ.

v the preasymptotic theory is a local relativistic QFT

v Key observation: elementary particle interactions have rather weak coupling
such that perturbation theory works in general
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The low energy expansion II:

dimension operator scaling behavior

· ∞–many
· irrelevant

↑ · operators
no

data d = 6 (2φ)2, (ψ̄ψ)2, · · · (E/ΛPl)2

| d = 5 ψ̄σµνFµνψ, · · · (E/ΛPl)

| d = 4 (∂φ)2, φ4, (Fµν)2, · · · ln(E/ΛPl)
experimental d = 3 φ3, ψ̄ψ (ΛPl/E)

data d = 2 φ2, (Aµ)2 (ΛPl/E)2

↓ d = 1 φ (ΛPl/E)3
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Up to date and for a long time to come there is and will be no direct experimental
information on O(E/ΛPl) effects (but bounds on absence of such terms).

l what we observe as the SM is a physical reparametrization (renormalization) of
the preasymptotic bare theory

l one of the impacts of the very high Planck scale is that the local renormalizable
QFT structure of the SM is presumably valid up to 1017 GeV This also justifies the
application of the SM RG up to high scales.

l infinite tower of dim > 4 irrelevant operators not seen at low energy (simplicity
of LEET )

l problems are the dim < 4 relevant operators , in particular the mass terms,

require “tuning to criticality” . In the symmetric phase of the SM, where there is
only one mass (the others are forbidden by the known chiral and gauge
symmetries), the one in front of the Higgs doublet filed, the fine tuning has the
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form

m2
0 = m2 + δm2 ; δm2 =

Λ2

16π2 C

with a coefficient typically C = O(1). To keep the renormalized mass at some small
value, which can be seen at low energy, m2

0 has to be adjusted to compensate the

huge number δm2 such that about 35 digits must be adjusted in order to get the
observed value around the electroweak scale.

�

�

�

�
Our Hierarchy Problem!

In the following we consider the SM as a strictly renormalizable theory, reg-
ularized as usual by dimensional regularization in D = 4 − ε space-time
dimensions, such that the MS parametrization and the corresponding RG
can be used in the well known form.
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Matching conditions

Notation: mi0 bare, mi the MS and Mi the on-shell masses; µ0 bare µ MS scale
parameters

Reg = 2
ε
− γ + ln 4π + ln µ2

0 UV regulator term in bare quantities

v bare→MS : Reg→ ln µ2

r MS renormalization scheme is the favorite choice to study the scale
dependence of the theory i.e. need MS values of input parameters

r physical values of parameters determined by physical processes i.e in on-shell
renormalization scheme primarily

What we need:
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l relationship between bare and on-shell renormalized parameters

m2
b0

def
= M2

b + δM2
b for bosons m f 0

def
= M f + δM f for fermions

l relationship between bare and MS renormalized parameters

m2
b0

def
= m2

b + δM2
b

∣∣∣
MS = M2

b + δM2
b

∣∣∣
OS ; δM2

b

∣∣∣
MS =

(
δM2

b

∣∣∣
OS

)
UV sing

l relationship between MS and on-shell renormalized parameters

m2
b = M2

b + δM2
b

∣∣∣
OS − δM2

b

∣∣∣
MS = M2

b +
(
δM2

b

∣∣∣
OS

)
Reg=ln µ2 .

m2
b = M2

b + δM2
b |Reg=ln µ2 for bosons m f = M f + δM f |Reg=ln µ2 for fermions
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Similar relations apply for the coupling constants g, g′, λ and y f , which, however,
usually are fixed using the mass-coupling relations in terms of the masses and the
Higgs VEV v, which is determined by the Fermi constant v = (

√
2Gµ)−1/2.

MZ = 91.1876(21) GeV, MW = 80.385(15) GeV, Mt = 173.5(1.0) GeV,

GF = 1.16637 × 10−5 GeV−2 , α−1 = 137.035999 , αs(M2
Z) = 0.1184(7) .

For the Higgs mass we adopt

MH = 125.5 ± 1.5 GeV,

in accord with latest ATLAS and CMS reports. Furthermore, we take the effective
fine-structure constant at the Z boson mass scale to be α−1(M2

Z) = 127.944 . All
light-fermion masses M f ( f , t) give negligible effects and do not play any role in
our consideration. The top quark mass given above is taken to be the pole mass.
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SM RG evolution to the Planck scale
Using RG coefficient function calculations by

Jones, Machacek&Vaughn, Tarasov&Vladimirov, Vermasseren&vanRitbergen,
Melnikov&van Ritbergen, Czakon, Chetyrkin et al, Steinhauser et al, Bednyakov et
al.

Recent application to SM vacuum stability

Shaposhnikov et al, Degrassi et al, Maina, Hamada et al, ...

Solve SM coupled system of RG equations:

v for gauge couplings g3 = (4παs)1/2, g2 = g and g1 = g
′

v for the Yukawa coupling yt (other Yukawa couplings negligible)

v for the Higgs potential parameters λ and ln m2

with MS initial values obtained by evaluating the matching conditions
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Note: all dimensionless couplings satisfy the same RG equations in the broken
and in the unbroken phase

The MS Higgs VEV square is then obtained by v2(µ2) = 6m2(µ2)
λ(µ2) and the other

masses by the relations

The RG equation for v2(µ2) follows from the RG equations for masses and
massless coupling constants using one of the relations

v2(µ2) = 4
m2

W(µ2)
g2(µ2)

= 4
m2

Z(µ2) − m2
W(µ2)

g′2(µ2)
= 2

m2
f (µ

2)

y2
f (µ

2)
= 3

m2
H(µ2)
λ(µ2)

.

As a key relation we will use F.J., Kalmykov, Veretin 2003

µ2 d
dµ2v

2(µ2) = 3 µ2 d
dµ2

m2
H(µ2)
λ(µ2)

 ≡ v2(µ2)
[
γm2 −

βλ
λ

]
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γm2 ≡ µ2 d
dµ2 ln m2 , βλ ≡ µ

2 d
dµ2λ , γyq ≡ µ

2 d
dµ2 ln yq ,

The proper MS definition of a running fermion mass is

m f (µ2) =
1
√

2
v(µ2) y f (µ2) .

RG for top quark mass

µ2 d
dµ2 ln m2

t = γt(αs, α) ; γt(αs, α) = γQCD
t + γEW

t ; γEW
t = γyt +

1
2
γm2 −

1
2
βλ
λ
,

Similar for other masses.

Note: RG equations calculated in the broken phase are indeed as it should be
identical to the ones in the symmetric phase. However, this is true if and only if
tadpole terms are taken into account F.J., Kalmykov, Veretin 2003
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Left: the SM dimensionless couplings in the MS scheme as a function of the
renormalization scale. The input parameter uncertainties as given above are

exhibited by the line thickness. The green band corresponds to Higgs masses in
the range [124-127] GeV. Right: the running MS masses. The shadowed regions

show parameter uncertainties , mainly due to the uncertainty in αs, for a Higgs
mass of 124 GeV, higher bands, and for 127 GeV, lower bands. The range also

determines the green band for the Higgs mass evolution.
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Non-zero dimensional MS running parameters: m, v =
√

6/λm and
GF = 1/(

√
2 v2). Error bands include SM parameter uncertainties and a Higgs

mass range 125.5 ± 1.5 GeV which essentially determines the widths of the bands.

l perturbation expansion works up to the Planck scale!
no Landau pole or other singularities

l Higgs coupling decreases up to the zero of βλ at µλ ∼ 3.5 × 1017 GeV,
where it is small but still positive and then increases up to µ = MPlanck
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V What rules the β-functions:

Naively:

r U(1)Y screening (IR free), S U(2)L , S U(3)c antiscreening (UV free) [asymptotic
freedom (AF)] �

�

�

�
Right – as expected

r Yukawa and Higgs: screening (IR free, like QED)�

�

�

�
Wrong!!! – transmutation from IR free to AF

At the Z boson mass scale: g1 ' 0.350, g2 ' 0.653, g3 ' 1.220, yt ' 0.935 and
λ ' 0.796

Leading (one-loop) β-functions at µ = MZ:
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v gauge couplings:

β1 =
41
6
g3

1 c ' 0.00185 ; β2 = −
19
6
g2

2 c ' −0.00558 ; β3 = −7 g3
3 c ' −0.08045 ,

with c = 1
16 π2

v top Yukawa coupling:

βyt = (
9
2
y3

t −
17
12
g2

1 yt −
9
4
g2

2 yt − 8 g2
3 yt) c

' 0.02328 − 0.00103 − 0.00568 − 0.07046

' −0.05389

not only depends on yt, but also on mixed terms with the gauge couplings g′, g and
g3 which have a negative sign.

In fact the QCD correction is the leading contribution and determines the behavior.
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Notice the critical balance between the dominant strong and the top Yukawa
couplings: QCD dominance requires g3 >

3
4 yt in the gaugeless limit.

v the Higgs self-coupling

βλ = (4 λ2 − 3 g2
1 λ − 9 λ g2

2 + 12 y2
t λ +

9
4
g4

1 +
9
2
g2

1 g
2
2 +

27
4
g4

2 − 36 y4
t ) c

' 0.01606 − 0.00185 − 0.01935 + 0.05287 + 0.00021 + 0.00149 + 0.00777 − 0.17407

' −0.11687

dominated by yt contribution and not by λ coupling itself. At leading order it is not
subject to QCD corrections. Here, the yt dominance condition reads λ < 3 (

√
5−1)
2 y2

t
in the gaugeless limit.
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The β-functions for gauge, top Yukawa and Higgs self-coupling.

r running top Yukawa QCD takes over: IR free⇒UV free

r running Higgs self-coupling top Yukawa takes over: IR free⇒UV free

Including all known RG coefficients (EW up incl 3–loop, QCD up incl 4–loop)

à except from βλ, which exhibits a zero at about µλ ∼ 1017 GeV, all other
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β-functions do not exhibit a zero in the range from µ = MZ to µ = MPlanck.

à so apart form the U(1)Y coupling g1, which increases only moderately,
all other couplings decrease and perturbation theory is in good condition.

à at µ = MPlanck gauge couplings are all close to gi ∼ 0.5,
while yt ∼ 0.35 and λ ∼ 0.1.

l effective masses moderately increase (largest for mZ by factor 2.8): scale like
m(κ)/κ as κ = µ′/µ→ ∞,

i.e. mass effect get irrelevant as expected at high energies.

Given that mH is weakly scale dependent, what determines the mass hierarchy are
the relations

mW(µ2)
mH(µ2)

=

√
3
4
g2(µ2)
λ(µ2)

,
mZ(µ2)
mH(µ2)

=

√
3
4
g2(µ2) + g′2(µ2)

λ(µ2)
,

mt(µ2)
mH(µ2)

=

√
3
2
y2

t (µ2)
λ(µ2)

.

Since g is decreasing while g′ is increasing the Z boson mass grows most and
exceeds mH above about 8 × 104 GeV and even mt above about 7 × 1010 GeV. The
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W boson mass exceeds mH above about 5 × 106 GeV. These crossing happen in
the history of the universe some time after inflation, but long before processes like
nucleosynthesis set in. Whether they play any special role in the evolution of the
universe I don’t know.
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The issue of quadratic divergences in the SM

Hamada, Kawai, Oda 2012: coefficient of quadratic divergence has a zero not far
below the Planck scale. #

"

 

!
δm2

H =
Λ2

16π2 C1

Veltman 1978 modulo small lighter fermion contributions, one-loop coefficient
function C1 is given by

C1 =
6
v2(M2

H + M2
Z + 2M2

W − 4M2
t ) = 2 λ +

3
2
g′2 +

9
2
g2 − 12 y2

t
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Two-loop

C2 = C1 +
ln(26/33)

16π2 [18 y4
t + y

2
t (−

7
6
g′2 +

9
2
g2 − 32 g2

s)

+
77
8
g′4 +

243
8
g4 + λ (−6 y2

t + g
′2 + 3 g2) −

10
18
λ2]

⇒key point: C1 is universal and depends on dimensionless gauge, Yukawa and
Higgs self-coupling only, the RGs of which are unambiguous, similarly for the
two-loop coefficient C2 (where however results differ by different groups
[non-universal?]). The correction is numerically small, fortunately.
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The coefficient of the quadratic divergence term at one and two loops as a function
of the renormalization scale. The one-loop result essentially determines the

behavior. The coefficient exhibits a zero, for MH = 125 GeV at about µ0 ∼ 7 × 1016,
not far below µ = MPlanck. The shaded band shows the parameter uncertainties.
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Left: the coefficient of the quadratic divergence term at µ = MPlanck as a function of
MH. Right: the same as a function of Mt.

Now the SM for the given parameters makes a prediction for the bare mass
parameter in the Higgs potential:
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The EW phase transition in the SM. Left: shown is X = sign(m2
bare) × log10(|m2

bare|)
which represents m2

bare = sign(m2
bare) × 10X. The band represents the parameter

uncertainties. Right: the “jump” −∆ρvac =
λ
24 v

4
bare in units of M4

Planck.

q in the broken phase m2
bare =

1
2 m2

H bare, which is calculable!
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à at the zero of the coefficient function the counterterm δm2 = m2
bare − m2 = 0

(m the MS mass) vanishes and the bare mass changes sign

à this represents a phase transition which triggers the Higgs mechanism

and likely plays an important role for cosmic inflation

à at the transition point µ0 we have

�

�

�

�
vbare = v(µ2

0) ,

where v(µ2) is the MS renormalized VEV

à the jump, too small to be seen in this plot, thus agrees with the renormalized

one: −∆ρvac =
λ(µ2

0)
24 v4(µ2

0) , and thus is O(v4) and not O(M4
Planck) .

In any case at the zero of the coefficient function there is a phase transition, which
corresponds to a restoration of the symmetry. Such transition would take place at
a scale µ ∼ 1016 to 1018 one to three orders of magnitude below the Planck scale,
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at cosmic times ∼ 0.23 × 10−38 to 10−42 sec and could have triggered inflation.
Note that at the zero of βλ at about µλ ∼ 3.5 × 1017 > µ0 the Higgs self-coupling λ
although rather small is still positive and then starts slowly increasing up to MPlanck.
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Remark on the impact on inflation

Guth, Starobinsky, Linde, Albrecht et al, Mukhanov, ...

r the “inflation term” comes in via the SM energy-momentum tensor

r adds to the r.h.s of the Friedmann equation (Ẋ = time derivative of X)

`2
(
V(φ) +

1
2
φ̇2

)

`2 = 8πG/3, MPl = (G)−1/2 is the Planck mass, G Newton’s gravitational constant

r Inflation requires an exponential growth a(t) ∝ eHt of Friedman radius a(t) of the
universe

H(t) = ȧ/a(t) the Hubble constant at cosmic time t
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r Higgs contribution to energy momentum tensor⇒contribution to energy density
and pressure

ρφ =
1
2
φ̇2 + V(φ) ; pφ =

1
2
φ̇2 − V(φ) .

r second Friedman equation ä/a = −`
2

2 (ρ + 3p)

r condition for growth ä > 0

r requires p < −ρ/3 and hence �

�

�

�
1
2φ̇

2 < V(φ)

r first Friedman equation reads ȧ2/a2 + k/a2 = `2 ρ
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may be written as #

"

 

!
H2 = `2

[
V(φ) + 1

2 φ̇
2
]
= `2 ρ

field equation �

�

�

�
φ̈ + 3Hφ̇ = −V ′(φ)

kinetic term φ̇2: controlled by Ḣ = −3
2`

2 φ̇2 = `2 ρ (q − 1)

i.e. by observationally controlled deceleration parameter q(t) = −äa/ȧ2.

“flattenization” by inflation: curvature term k/a2(t) ∼ k exp(−2Ht)→ 0 (k = 0,±1
the normalized curvature)

⇒universe looks effectively flat (k = 0) for any initial k

Inflation looks to be universal for quasi-static fields φ̇ ∼ 0 and V(φ) large positive

⇒a(t) ∝ exp(Ht) with H ' `
√

V(φ)
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This is precisely what the transition to the symmetric phase suggests:

Now, as for the Higgs potential λ remains positive and the bare mass square also
has been positive (symmetric phase) before it flipped to negative values at later
times, this definitely supports the inflation condition. As both λ and m2 for the first
time are numerically fairly well known quantitative conclusions on the inflation
patterns should be possible solely on the basis of SM properties.

The leading behavior is characterized by a free massive scalar field with potential�

�

�

�
V = m2

2 φ
2

⇒ H2 = (ȧ/a)2 = m2

6 φ
2 and φ̈ + 3H(̇φ) = m2φ

à harmonic oscillator with friction

Clearly supported by observation: Planck 2013 results
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Planck data are consistent with Gaussian primordial fluctuations. The stan-
dard models of single-field slow-roll inflation have therefore survived the
most stringent tests of Gaussianity performed to date. On the other hand,
the NG constraints obtained on different primordial bispectrum shapes (e.g.,
local, equilateral and orthogonal), after properly accounting for various con-
taminants, severely limit various classes of mechanisms for the generation
of the primordial perturbations proposed as alternatives to the standard
models of inflation. There is no evidence for primordial NG of one of these
shapes (local, equilateral and orthogonal).

shape non-linearity parameters:�

�

�

�
f loc
NL = 2.7 ± 5.8, f eq

NL = −42 ± 75, f orth
NL = −25 ± 39

(68% CL statistical)
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V Cosmological constant problem V

The cosmological constant is characterized by the equation of state

w = p/ρ = −1 , indeed Planck (2013) finds w = −1.13+0.13
−0.10 .

q A constant background field φ→ φ0 + φ would imply a dark energy term
(cosmological constant) of the right sign

r in contrast after the phase transition triggered by the change of sign in the

bare m2 the scalar VEV implies a cosmological constant contribution

�

�

�

�
− λ

24 v
4

of negative sign

r at phase transition point at scale µ0 ∼ 7 × 1016 jump in vacuum density

we have λ ∼ 0.115 and v ∼ 695 GeV⇒

�

�

�

�
λ
24 v

4 ∼ 1.1 × 109 GeV4
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converted with the factor κ = 8 πG corresponds to a

shift

�

�

�

�
∆ΛEW = κ∆ρvac ' −0.5 cm−2 in the cosmological constant Λ

l observed value is given by Λobs = κ ρcritΩΛ = 1.6517 × 10−56 cm−2

used: ΩΛ = 0.67+0.027
−0.023 (Planck 2013) the dark energy fraction of the critical energy

density ρcrit = 3 H2
0 κ
−1 = 1.878 × 10−29 h2 gr/cm3 with h = 0.67 ± 0.02 for which the

universe is flat

r the chiral phase transition of QCD implies quark condensates contributing

TµνQCD,vac = −〈0|LQCD|0〉 gµν =
{
mu ūu + md d̄d + ms s̄s + · · ·

}
gµν

to the cosmological constant, has to be reconsidered under the aspect that the
relation between bare an renormalized quantities are physical in the low energy
effective approach. Especially the gluon condensate is not well defined.
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l a mechanism to tame contributions to the dark energy is still not known to my
knowledge

l The cosmological constant and the missing cold dark matter problems persist.

l The scenario suggested by the present analysis is a Gaussian potential with
small anharmonic perturbations, since m2

bare is predicted to be large while λbare
remains small. Also the bare kinetic term is logarithmically “unrenormalized” only.

l This picture outlined should be valid in the renormalizable effective field theory

regime below about 1017 GeV . Going to higher energies details of the cutoff

system are expected to come into play, effectively in form of dimension 5 and/or

dimension 6 operators as leading corrections. These corrections are expected

to get relevant only closer to the Planck scale.
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Conclusion

q Higgs not just the Higgs: its mass MH = 125.5 ± 1.5 GeV has a very peculiar
value!!

à ATLAS and CMS results may “revolution” particle physics in an unexpected
way, namely showing that the SM has higher self-consistency (conspiracy) than
expected and previous arguments for the existence of new physics
may turn out not to be compelling

à SM as a low energy effective theory of some cutoff system at MPlanck
consolidated; crucial point MPlanck >>>> ... from what we can see!

à SM is triggering the Higgs mechanism itself as a first order phase transition at
about µ0 ∼ 1017 GeV as the hot universe cools down (the temperature sets the
energy scale via E = kB T )

à we have a handle to estimate parameters of the bare (true) effective
Lagrangian mbare = mren + δm etc
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à fully supports almost Gaussian bare Higgs potential at times of inflation as
strengthened by Planck data

à there is no non-perturbative regime once pQCD starts to work at about 2 GeV.
No strong coupling Higgs, no Landau pole or other singularities.

Folklore: normal forces get weaker with the distance

v besides gravitation, QED, Yukawa force law, scalar self-interacting fields, etc i.e.
all but non-Abelian gauge theories

v not true in “reality” [“the stronger capture the weaker” couplings] i.e.
in the SM all forces but U(1)Y are AF (get weaker when approaching the “ether”)

r low energy effective tail of large (but finite) cutoff theory: bare quantities
are finite#

"

 

!
δM2

H =
M2

Planck
16π2 C2(µ = MPlanck), with C2(µ = MPlanck) ∼ 0.2
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r before phase transition at µ0 ∼ 7 × 1016 GeV symmetric phase, very
different physics from LESM. Except from the four heavy physical Higgses and
maybe heavy Majorana neutrinos only massless fields

r Last but not least:�

�

�

�
There is no hierarchy problem in the SM!

It is true that in the relation

m2
H bare = m2

H ren + δm
2
H

both m2
H bare and δm2

H are many many orders of magnitude larger than m2
H ren .

However, in the broken phase m2
H ren ∝ v2(µ2

0) is O(v2) not O(M2
Planck), i.e. in the

broken phase the Higgs is naturally light. That the Higgs mass likely is O(MPlanck)
in the symmetric phase is what realistic inflation scenarios favor.
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In the broken phase, characterized by the non-vanishing Higgs field vacuum
expectation value (VEV) v(µ2), all the masses are determined by the well known
mass-coupling relations

m2
W(µ2) =

1
4
g2(µ2) v2(µ2) ; m2

Z(µ2) =
1
4

(g2(µ2) + g′2(µ2)) v2(µ2) ;

m2
f (µ

2) =
1
2
y2

f (µ
2) v2(µ2) ; m2

H(µ2) =
1
3
λ(µ2) v2(µ2) .

According to these well known relations why the Higgs should be of order of Λ2
Pl

while the others are small, of order v2? Higgs naturally in the ballpark of the other
particles! No naturalness problem!
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✻✻ V (H)V (H)

✲✲
HH

µ2

b
< 0µ2

s
> 0

+
v

µ2
s

m2

H

Higgs potential of the SM a) in the symmetric (µ2
s > 0)

and b) in the broken phase (µ2
b < 0). For λ = 0.5, µb = 0.1 and µs = 1.0

Masses given by curvature of the potential at the ground state need not be
correlated, and in fact are not.
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From our analysis we expect
µs = O(ΛPl),

while
mH =

√
2 µb =

√
λ/3 v = O(v).

By the way: Higgs in broken phase has nothing to do with a Mexican hat potential.
There is only one physical scalar field the Higgs itself, what is spontaneously
broken is the discrete symmetry H ↔ −H. Note that the much more interesting
and nicer Mexican hat potential necessarily implies Nambu-Goldstone bosons.

q need reconsider early pre Higgs epoch of cosmology (SM in symmetric phase
very different form known physics in broken phase)

q need to reconsider the issues relater to EW phase transition and inflation

l can SM explain baryon asymmetry?
what is dark matter?
why is the cosmological constant so small?
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δρvac =
Λ4

(16π2)2 X(µ)

Maybe X(µ) = X2(g′(µ), g(µ), g3(µ), yt(µ), λ(µ))

has a zero. Then ρvac is determined by some scale other that Λ! Examples, from
condensed matter physics illustrating this possibility are known (see e.g. G.E.
Volovik, Vacuum energy: Quantum hydrodynamics vs. quantum gravity, JETP
Lett., 82, 319-324 (2005); gr-qc/0505104)

�

�

�

�
we are at the beginning of seeing the SM in a new light
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My main theses:

vThere is no hierarchy problem of the SM

vA super symmetric or any other extension of the SM cannot be motivated by the
(non-existing) hierarchy problem

vSM running couplings trigger the Higgs mechanism at about 1017 GeV as the
universe cools down, in the broken phase the Higgs is naturally as light as other
SM particles which are generated by the Higgs mechanism

vin the early symmetric phase quadratically enhanced bare mass term in Higgs
potential triggers inflation, if Higgs to be the inflaton this enhancement
is mandatory
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à Concluding remarks à

l Conspiracy between SM couplings the new challenge

l Very delicate on initial values as we run over 16 orders of
magnitude from the EW 250 GeV scale up to the

Planck scale!

l Running couplings likely have dramatic impact on
cosmology! The existence of the world in question?

l ILC will dramatically improve on Higgs self-coupling
�

�

�

�
λ

(Higgs factory) as well as on top Yukawa
�

�

�

�
yt (tt̄ factory)
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l for running
�

�

�

�
αem and

�

�

�

�
sin2Θeff ⇔ g1 and g2 need

more low energy information like what one could get from
low energy hadron production facilities, in addition need
improving QCD issues!

'

&

$

%

Precision determination of SM parameters
more important than ever. Big challenge for the ILC

in the search for the fundamentals of physics
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? key problems
dark energy , dark matter , baryon asymmetry

persist, but may appear in new light

? does vacuum stability and the Higgs transition point persist
as my analysis suggests or do we still need new physics to
“stabilize” the picture?

! such scenario essentially rules out SUSY, GUTs and Strings
altogether!

, the SM seems to be much better than its reputation!
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Thanks you for your attention!
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