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Comparison tests our ability to describe the short-distance
regime of QCD

Provides information on the region of validity of the perturbative
weak-coupling approach

Allows us to determine the strong coupling αs
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Combination of tree-level improved gauge action and HISQ
action

ms phys. value; ml = ms/20 corresponding to mπ ∼ 160MeV

Energy calculated in units of r0 Sommer’93

r2
dE0(r)

dr
|r=r0 = 1.65
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Calculation for a wide range of gauge couplings.
(β = 6.664, 6.740, 6.800, 6.880, 6.950, 7.030, 7.150, 7.280 ;
corresponds to lattice spacings 3.994/r0 ≤ a−1 ≤ 6.991/r0)
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Calculation for a wide range of gauge couplings. Need to
normalize the results calculated at different lattice spacings to a
common value at a certain distance (0.954 at r = r0)

Corrected for lattice artifacts:

- Replace r by improved distance rI = (4πCL(r))
−1

Necco Sommer’01

CL(r) =

∫
d3k

(2π)3
D00(k0 = 0,~k)ei

~k~r

(D00 is the tree-level gluon propagator)

- Fit lattice data to the form const− a/r + σr + a′(1/r − 1/rI)
and subtract the last term from the lattice data
Aubin et al.’04, Booth et al.’92

Both methods lead to the same results, within errors
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gluons)
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Virtual emissions that change the color state of the pair
(Ultrasoft gluons). This kind of contributions were identified a
long time ago Appelquist Dine Muzinich’78

When calculated in perturbation theory infrared divergences are
found, starting at three loops

After selective resummation of certain type of diagrams
(organize the expansion around the Coulombic state),
logarithmic contributions are generated
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Conveniently calculated in an effective theory framework.
Disentangle soft effects at the scale 1/r from ultrasoft ones at
the scale αs/r

QCD −→ NRQCD
1
r
≫

αs
r
≫ΛQCD

−→ pNRQCD

potential Non-Relativistic QCD exploits the hierarchy of scales
Brambilla Pineda Soto Vairo’99
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pNRQCD can be organized as a (multipole) expansion in r (and
1/m)

L =

∫

d
3
r Tr



















S
†
[i∂0 − Vs(r;µ)] S + O

†
[iD0 − Vo(r;µ)] O



















+

+VA(r;µ)Tr
{

O
†
r · gES + S

†
r · gEO

}

+

+
VB(r;µ)

2
Tr

{

O
†
r · gEO + O

†
Or · gE

}

−
1

4
F

a
µνF

µν a



Xavier Garcia i Tormo DESY Zeuthen - October 25 2012 – 11 / 28

pNRQCD can be organized as a (multipole) expansion in r (and
1/m)

L =

∫

d
3
r Tr



















S
†
[i∂0 − Vs(r;µ)] S + O

†
[iD0 − Vo(r;µ)] O



















+

+VA(r;µ)Tr
{

O
†
r · gES + S

†
r · gEO

}

+

+
VB(r;µ)

2
Tr

{

O
†
r · gEO + O

†
Or · gE

}

−
1

4
F

a
µνF

µν a

Potentials appear as Wilson coefficients in the EFT
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}

Require regularization. Scheme dependent
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■ The logarithmic contribution at three loops in the static energy can be
deduced from the leading ultrasoft contribution Brambilla Pineda Soto Vairo’99, Kniehl

Penin’99, the logarithmic terms at four loops from the sub-leading
contribution Brambilla X.G.T. Soto Vairo’06 (using as ingredient NLO result for 〈EE〉 from Eidemüller Jamin’97)
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Vs(r, µ) = −
CF

r
αs(1/r)

{

1 + (a1 + 2γEβ0)
αs(1/r)

4π

+

[

a2 +

(
π2

3
+ 4γ2E

)

β2
0 + γE (4a1β0 + 2β1)

](
αs(1/r)

4π

)2

+

[
16π2

3
C3
A ln rµ+ ã3

] (
αs(1/r)

4π

)3

+

[

aL24 ln2 rµ+

(

aL4 +
16

9
π2C3

Aβ0(−5 + 6 ln 2)

)

ln rµ

+ã4

](
αs(1/r)

4π
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





µ
d

dµ
Vs = −

2

3

αsCF

π

(

1 + 6
αs

π
B
)

V 2
A (Vo − Vs)

3 r2

µ
d

dµ
Vo =
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Pineda Soto’00, Brambilla X.G.T. Soto Vairo’09, Pineda Stahlhofen’11
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pNRQCD can also be used to perform the resummation of the ultrasoft
logarithms, via solving the renormalization group equations

Vs(µ) = Vs(1/r) + 2
N2
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γ
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−
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+
γ
(1)
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γ
(0)
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)[
αs(µ)

π
−

αs(1/r)

π

]}

Pineda Soto ’00 Brambilla X.G.T. Soto Vairo ’09
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The result for E0(r) is obtained by adding the potential and the ultrasoft
contribution δUS

δUS = CF
C3
A

24

1

r

αs(µ)

π
α3
s (1/r)

(

−2 log
CAαs(1/r)

2rµ
+

5

3
− 2 log 2

)

+ · · ·
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In summary, the static energy E0(r) is currently known at 3 loop

+sub-leading ultrasoft log res. (N3LL) accuracy

N3(2)LL accuracy: α
1+[3(2)+n]
s lnn αs with n ≥ 0
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Directly plotting the previous results (MS scheme) the potential
does not present a good convergent behavior

tree level
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2 loop
3 loop
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R =
∞∑

n=0

rnα
n+1 → B[R](t) =

∞∑

n=0

rn
tn

n!

R =

∫
∞

0
dt e−t/αB[R](t)
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It is necessary to use a scheme that cancels the leading
renormalon singularity Beneke’98, Hoang Smith Stelzer Willenbrock’98

Some specific terms in the perturbative expansion of the
potential cause a badly convergent behavior (renormalon).
These terms come from the Fourier transform to position space.
One can use a scheme where these terms are not present

Consider quarks with large but finite mass m

E = Vs + 2mOS

Previous discussion implicitly assumes pole mass. Badly
convergent terms in the potential are also present in the pole
mass. Do not use expansion parameters that can be defined less
precisely (more sensitive to long-distance contributions, power
corrections) than the physical observable we want
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We use the so-called RS scheme Pineda’01. Add a subtraction term
to the potential

V RS
s = V MS

s +Rs ρ
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2π
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αs(ρ)
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k=0

dk
Γ(n+ 1 + b− k)

Γ(1 + b− k)
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We use the so-called RS scheme Pineda’01. Add a subtraction term
to the potential

V RS
s = V MS

s +Rs ρ
m∑

n=1

(
β0
2π

)n

αs(ρ)
n+1

2∑

k=0

dk
Γ(n+ 1 + b− k)

Γ(1 + b− k)

■ b, di given in terms of the coefficients of the β function

■ Normalization Rs can only be computed approximately (we

use the procedure in Lee’99)

Any scheme of this kind introduces an additional dimensional
scale, ̺. Natural value around the inverse of the center of the
r-range, ̺ ∼ 3.25r−1

0 → (∼ 1.5 GeV)
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Obtain a better convergent behavior.
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Perturbative expression depends on r0ΛMS

Assume pert. theory is enough to describe lattice at short
distances (r < 0.5r0) and use comparison to extract r0ΛMS

(i.e. we use data for distances 0.065fm . r . 0.234fm)

Using r0 = 0.468± 0.004 fm Bazavov et al. (HotQCD Coll.)’11 obtain
r0ΛMS → ΛMS

Find values of r0ΛMS that are allowed by lattice data

Agreement with lattice improves when perturbative order

is increased
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Procedure had been already successfully applied in the quenched
case, to extract r0ΛMS at N3LL accuracy from the quenched
data of Necco Sommer’01

(r0ΛMS)
quen. = 0.637+0.032

−0.030

Brambilla XGT Soto Vairo’10
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Procedure had been already successfully applied in the quenched
case, to extract r0ΛMS at N3LL accuracy from the quenched
data of Necco Sommer’01

(r0ΛMS)
quen. = 0.637+0.032

−0.030

Brambilla XGT Soto Vairo’10

Previous quenched extractions of r0ΛMS from the static energy
at lower orders in perturbation theory (e.g. Sumino’05, ...), and analyses
with nf = 2 (Jansen Karbstein Nagy Wagner’11, Leder Knechtli’11, Donnellan Knechtli Leder

Sommer’10) exist
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Recall that lattice comparison requires scheme that cancels
leading renormalon. This introduces dimensional scale, ̺, whose
natural value is around the inverse of the center of the r-range,
̺ ∼ 3.25r−1

0 → (∼ 1.5 GeV)

Procedure to extract r0ΛMS:

1. Vary ̺ around natural value

2. Fit r0ΛMS for each value of ̺ and at each order in pert. th.

3. Select ̺’s for which χ2 decreases when increasing pert.
order

In that ̺ range, use reduced χ2 as weight of fit values r0ΛMS

and take the average. This gives our central value for r0ΛMS
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Accuracy r0ΛMS

tree level 0.395
1 loop 0.848
2 loop 0.636
N2LL 0.756
3 loop 0.690

3 loop + lead. us. res. 0.702

N3LL (3loop +sub-lead. us. res.) also known, but depends on
additional constant K2 ∼ ΛMS (to be fit to the data). χ2 as a
function of r0ΛMS is very flat, cannot improve extraction. Data
not accurate enough to be sensitive to sub-leading us logs

Take 3 loop + lead. us. res. as our best result
(note that in the quenched case we could use the N3LL result)
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Error assigned to the result must account for uncertainties due
to neglected higher order terms in the perturbative expansion

- Weighted standard deviation

- Difference with weighted average at previous order

- Additionally, redo analysis with alternative weight
assignments (p-value, constant). Results are compatible.
Quote error to cover whole range

Cross-check: redo full analysis with energy normalized in units of
r1

r2
dE0(r)

dr
|r=r1 = 1

Gives compatible results (comes from the same lattice data set in

terms of r/a. But error analysis for the normalization of the energy for

each lattice spacing is different in the two cases)
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r0ΛMS = 0.70± 0.07,
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→ αs (MZ , nf = 5) = 0.1156+0.0021
−0.0022
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Comparison with other recent lattice determinations
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Comparison with a few recent determinations using other
techniques

BBGPSVHthis talkL
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- We have obtained a determination of αs by comparing
lattice data for the short-distance part of the QCD static
energy with perturbation theory

- The result is at 3-loop (plus resummation of ultrasoft logs)
accuracy

- Natural scale of our determination corresponds to the
inverse of the typical distance of the lattice data, i.e.
around 1.5 GeV

- Result: αs (1.5GeV, nf = 3) = 0.326± 0.019

−→ αs (MZ , nf = 5) = 0.1156+0.0021
−0.0022

- Independent of other determinations in the world average
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