JET BROADENING IN EFFECTIVE FIELD THEORY: WHEN DIMENSIONAL REGULARIZATION FAILS

[GUIDO BELL]

based on: T. Becher, GB, M. Neubert, Phys. Lett. B 704 (2011) 276

T. Becher, GB, Phys. Lett. B 713 (2012) 41

T. Becher, GB, work in progress

b UNIVERSITÄT UNIVERSITY OF BERN

ALBERT EINSTEIN CENTER FOR FUNDAMENTAL PHYSICS

OUTLINE

EVENT SHAPE VARIABLES

FACTORIZATION

BRIEF REVIEW OF THRUST ANALYSIS
FACTORIZATION BREAKDOWN FOR BROADENING
ANALYTIC REGULARIZATION IN SCET

RESUMMATION

COLLINEAR ANOMALY
EXTENSION TO NNLL

OUTLINE

EVENT SHAPE VARIABLES

FACTORIZATION

BRIEF REVIEW OF THRUST ANALYSIS
FACTORIZATION BREAKDOWN FOR BROADENING
ANALYTIC REGULARIZATION IN SCET

RESUMMATION

COLLINEAR ANOMALY
EXTENSION TO NNLL

Canonical event shape

Thrust:

$$T = \frac{1}{Q} \max_{\vec{n}} \left(\sum_{i} |\vec{p}_{i} \cdot \vec{n}_{T}| \right)$$

two-jet like: $T \simeq 1$

spherical: $T \simeq 1/2$

Thrust distribution precisely measured at LEP $(\tau = 1 - T)$

in the two-jet region $\, au \simeq 0 \,$

$$\frac{1}{\sigma_0} \frac{d\sigma}{d\tau} \simeq \frac{\alpha_s C_F}{2\pi} \left[-\frac{4 \ln \tau + 3}{\tau} + \ldots \right]$$

 \Rightarrow Sudakov logs require resummation

Motivation

Why should we study e^+e^- event shapes in 2012?

- perturbation theory + resummation + non-perturbative effects
 - ⇒ clean environment to test our understanding of QCD
- \blacktriangleright precision determination of α_s

final result from LEP QCD working group:

$$lpha_{\it S}(\it M_{\it Z}) = 0.1202 \pm 0.0003~{
m (stat)} \pm 0.0049~{
m (syst)}$$

completely dominated by theoretical uncertainty (± 0.0047)

Renewed interest due to theory advances

- fixed-order calculation extended to NNLO
- resummations beyond NLL using SCET

[Gehrmann-De Ridder, Gehrmann, Glover, Heinrich 07; Weinzierl 08]

[Becher, Schwartz 08; Chien, Schwartz 10; Becher, GB in preparation]

First NNLO calculation for 3-jet observables

- \triangleright $\mathcal{O}(100)$ diagrams with complicated loop integrals
- ▶ individual terms are IR-divergent ⇒ highly non-trivial IR subtractions
- \Rightarrow two Monte-Carlo implementations for generic 3-jet observables

Used in various α_s determinations

[Dissertori et al 07,09]

- NNLO: $\alpha_s(M_Z) = 0.1240 \pm 0.0008 \text{ (stat)} \pm 0.0010 \text{ (exp)} \pm 0.0011 \text{ (had)} \pm 0.0029 \text{ (theo)}$
- NNLO + NLL: $\alpha_s(M_Z) = 0.1224 \pm 0.0009 \text{ (stat)} \pm 0.0009 \text{ (exp)} \pm 0.0012 \text{ (had)} \pm 0.0035 \text{ (theo)}$
- ⇒ further improvements require to go beyond NLL resummation!

Beyond NLL?

Traditional resummations are based on the coherent branching algorithm

[Catani, Trentadue, Turnock, Webber 93]

- sums probabilities for independent gluon emissions
- apparently hard to extend beyond NLL

In SCET resummations are formulated in an operator language on the amplitude level

- extension to higher orders requires standard EFT techniques
- thrust analysis extended by two orders to N³LL accuracy

[Becher, Schwartz 08]

field theoretical treatment of power corrections
 two-dimensional fit to world thrust data

[Abbate, Fickinger, Hoang, Mateu, Stewart 10]

 $lpha_{\it S}(\it M_{\it Z}) = 0.1135 \pm 0.0002~{\rm (exp)} \pm 0.0005~{\rm (had)} \pm 0.0009~{\rm (pert)}$

very precise but 3.7σ lower than world average?

Beyond NLL?

Traditional resummations are based on the coherent branching algorithm

[Catani, Trentadue, Turnock, Webber 93]

- sums probabilities for independent gluon emissions
- apparently hard to extend beyond NLL

In SCET resummations are formulated in an operator language on the amplitude level

extension to higher orders requires standard EFT techniques

Event shape studies in SCET

Heavy jet mass: [Chien, Schwartz 10]

$$\rho = \frac{1}{Q^2} \max \left(M_L^2, M_R^2 \right)$$

hemisphere jet masses $M_{L/R}^2 = \left(\sum_{i \in L/R} p_i\right)^2$

- ▶ similar to thrust ⇒ again N³LL resummation
- ▶ field theoretical treatment of power corrections more involved

[talk by Mateu at SCET 2011]

Event shape studies in SCET

Heavy jet mass:

[Chien, Schwartz 10]

$$\rho = \frac{1}{Q^2} \max \left(M_L^2, M_R^2 \right)$$

hemisphere jet masses $M_{L/R}^2 = \left(\sum_{i \in L/R} p_i\right)^2$

- ▶ similar to thrust \Rightarrow again N³LL resummation
- field theoretical treatment of power corrections more involved

[talk by Mateu at SCET 2011]

Total and wide jet broadening:

[Chiu, Jain, Neill, Rothstein 11; Becher, GB, Neubert 11]

$$b_T = b_L + b_R$$

 $b_W = \max(b_L, b_R)$

hemisphere jet broadenings $b_{L/R} = rac{1}{2} \sum_{i \in L/R} | ec{p}_i imes ec{n}_T |$

- orthogonal to thrust (measure transverse momentum distribution)
- ▶ different type of factorization formula ⇒ aim at NNLL resummation

OUTLINE

EVENT SHAPE VARIABLES

FACTORIZATION

BRIEF REVIEW OF THRUST ANALYSIS
FACTORIZATION BREAKDOWN FOR BROADENING
ANALYTIC REGULARIZATION IN SCET

RESUMMATION

COLLINEAR ANOMALY
EXTENSION TO NNLL

In the two-jet limit $\, au
ightarrow 0\,$ the thrust distribution factorizes as

[Fleming, Hoang, Mantry, Stewart 07; Schwartz 07]

$$\frac{1}{\sigma_0} \frac{d\sigma}{d\tau} = H(Q^2, \mu) \int dp_L^2 \int dp_R^2 \ J(p_L^2, \mu) \ J(p_R^2, \mu) \ S(\tau Q - \frac{p_L^2 + p_R^2}{Q}, \mu)$$

multi-scale problem: $Q^2 \gg p_L^2 \sim p_R^2 \sim \tau Q^2 \gg \tau^2 Q^2$

In the two-jet limit $\, au
ightarrow 0\,$ the thrust distribution factorizes as

[Fleming, Hoang, Mantry, Stewart 07; Schwartz 07]

$$\left| \frac{1}{\sigma_0} \frac{d\sigma}{d\tau} \right| = \frac{H(Q^2, \mu)}{\int dp_L^2} \int dp_R^2 \ J(p_L^2, \mu) \ J(p_R^2, \mu) \ S\left(\tau Q - \frac{p_L^2 + p_R^2}{Q}, \mu\right)$$

multi-scale problem:
$$Q^2 \gg p_L^2 \sim p_R^2 \sim \tau Q^2 \gg \tau^2 Q^2$$
 hard collinear soft

Hard function:

on-shell vector form factor of a massless quark

$$H(Q^2) = \left| \begin{array}{c} \\ \\ \\ \\ \end{array} \right|^2$$

known to three-loop accuracy

- [Baikov, Chetyrkin, Smirnov, Smirnov, Steinhauser 09; Gehrmann, Glover, Huber, Ikizlerli, Studerus 10]
- also enters Drell-Yan and DIS in the endpoint region

In the two-jet limit $\tau \to 0$ the thrust distribution factorizes as

[Fleming, Hoang, Mantry, Stewart 07; Schwartz 07]

$$\boxed{\frac{1}{\sigma_0}\frac{d\sigma}{d\tau} \,=\, \textit{H}(\textit{Q}^2,\mu) \; \int\! dp_L^2 \, \int\! dp_R^2 \; \textit{J}(\textit{p}_L^2,\mu) \; \; \textit{J}(\textit{p}_R^2,\mu) \; \; \textit{S}\!\left(\tau\textit{Q}-\frac{\textit{p}_L^2+\textit{p}_R^2}{\textit{Q}},\mu\right)}$$

multi-scale problem:
$$Q^2 \gg p_L^2 \sim p_R^2 \sim \tau Q^2 \gg \tau^2 Q^2$$
 hard collinear soft

Jet function:

imaginary part of quark propagator in light-cone gauge

$$J(\rho^2) \sim \operatorname{Im}\left[\operatorname{F.T.}\left\langle 0 \left| \frac{\hbar \bar{n}}{4} W^\dagger(0) \psi(0) \ \bar{\psi}(x) W(x) \frac{\bar{n} h}{4} \left| 0 \right\rangle \right] \right. \\ \left. W(x) = \mathbf{P} \ \exp\left(i g_s \int_{-\infty}^0 ds \ \bar{n} \cdot A(x+s\bar{n}) \right) \left[-\frac{1}{2} \left(-\frac{1}{2}$$

- ▶ known to two-loop accuracy (anomalous dimension to three-loop)
- [Becher, Neubert 06]

also enters inclusive B decays and DIS in the endpoint region

In the two-jet limit $\tau \to 0$ the thrust distribution factorizes as

[Fleming, Hoang, Mantry, Stewart 07; Schwartz 07]

$$\left| \frac{1}{\sigma_0} \frac{d\sigma}{d\tau} = H(Q^2, \mu) \int dp_L^2 \int dp_R^2 \ J(p_L^2, \mu) \ J(p_R^2, \mu) \ S\left(\tau Q - \frac{p_L^2 + p_R^2}{Q}, \mu\right) \right|$$

multi-scale problem:
$$Q^2 \gg p_L^2 \sim p_R^2 \sim \tau Q^2 \gg \tau^2 Q^2$$
 hard collinear soft

Soft function:

Wilson lines along the directions of energetic quarks

$$S(\omega) = \sum_{X} \left| \left\langle X \middle| S_{n}^{\dagger}(0) S_{\bar{n}}(0) \middle| 0 \right\rangle \right|^{2} \delta(\omega - n \cdot \rho_{X_{n}} - \bar{n} \cdot \rho_{X_{\bar{n}}}) \qquad S_{n}(x) = \mathbf{P} \exp \left(ig_{\mathbf{S}} \int_{-\infty}^{0} d\mathbf{s} \ n \cdot A_{\mathbf{S}}(x + \mathbf{s}n) \right)$$

- determined to two-loop from matching to fixed order calculation
 - [Becher, Schwartz 08; Hoang, Kluth 08]
 - confirmed by several direct calculations
 [Kelley, Schwartz, Schabinger, Zhu 11; Monni, Gehrmann,
 Luisoni 11: Hornio, Lee, Stewart, Walsh Zuberi 11
- anomalous dimension known to three-loop

Let us have a closer look at the one-loop expressions

$$\begin{split} H(Q^2, \mu) &= 1 + \frac{\alpha_S C_F}{4\pi} \left[-2 \ln^2 \frac{Q^2}{\mu^2} + 6 \ln \frac{Q^2}{\mu^2} - 16 + \frac{7\pi^2}{3} \right] \\ J(\rho^2, \mu) &= \delta(\rho^2) + \frac{\alpha_S C_F}{4\pi} \left[\left(\frac{4 \ln(\rho^2/\mu^2) - 3}{\rho^2} \right)_*^{[\mu^2]} + (7 - \pi^2) \, \delta(\rho^2) \right] \\ S(\omega, \mu) &= \delta(\omega) + \frac{\alpha_S C_F}{4\pi} \left[\left(\frac{-16 \ln(\omega/\mu)}{\omega} \right)_*^{[\mu]} + \frac{\pi^2}{3} \, \delta(\omega) \right] \end{split}$$

Let us have a closer look at the one-loop expressions

$$\begin{split} H(Q^2,\mu) &= 1 + \frac{\alpha_s C_F}{4\pi} \left[-2\ln^2 \frac{Q^2}{\mu^2} + 6\ln \frac{Q^2}{\mu^2} - 16 + \frac{7\pi^2}{3} \right] \\ J(\rho^2,\mu) &= \delta(\rho^2) + \frac{\alpha_s C_F}{4\pi} \left[\left(\frac{4\ln(\rho^2/\mu^2) - 3}{\rho^2} \right)_*^{[\mu^2]} + (7 - \pi^2) \, \delta(\rho^2) \right] \\ S(\omega,\mu) &= \delta(\omega) + \frac{\alpha_s C_F}{4\pi} \left[\left(\frac{-16\ln(\omega/\mu)}{\omega} \right)_*^{[\mu]} + \frac{\pi^2}{3} \, \delta(\omega) \right] \end{split}$$

General structure:

▶ logarithms ⇔ divergences

anomalous dimensions of EFT operators ⇒ resum logs via RG techniques

$$\frac{d}{d \ln \mu} H(Q^2, \mu) = \left[2\Gamma_{\text{cusp}}(\alpha_s) \ln \frac{Q^2}{\mu^2} + 4\gamma^q(\alpha_s) \right] H(Q^2, \mu)$$

Let us have a closer look at the one-loop expressions

$$\begin{split} H(Q^2,\mu) &= 1 + \frac{\alpha_s C_F}{4\pi} \left[-2\ln^2\frac{Q^2}{\mu^2} + 6\ln\frac{Q^2}{\mu^2} - 16 + \frac{7\pi^2}{3} \right] \\ J(\rho^2,\mu) &= \delta(\rho^2) + \frac{\alpha_s C_F}{4\pi} \left[\left(\frac{4\ln(\rho^2/\mu^2) - 3}{\rho^2} \right)_*^{[\mu^2]} + (7 - \pi^2) \delta(\rho^2) \right] \\ S(\omega,\mu) &= \delta(\omega) + \frac{\alpha_s C_F}{4\pi} \left[\left(\frac{-16\ln(\omega/\mu)}{\omega} \right)_*^{[\mu]} + \frac{\pi^2}{3} \delta(\omega) \right] \end{split}$$

General structure:

▶ logarithms ⇔ divergences anomalous dimensions of EFT operators ⇒ resum logs via RG techniques

$$\frac{d}{d \ln \mu} \ H(Q^2, \mu) = \left[2\Gamma_{\rm cusp}(\alpha_{\rm S}) \ \ln \frac{Q^2}{\mu^2} + 4\gamma^{\rm q}(\alpha_{\rm S}) \right] H(Q^2, \mu)$$

▶ finite terms ⇒ accounted for in matching calculations

Let us have a closer look at the one-loop expressions

$$\begin{split} H(Q^2,\mu) &= 1 + \frac{\alpha_s C_F}{4\pi} \left[-2\ln^2\frac{Q^2}{\mu^2} + 6\ln\frac{Q^2}{\mu^2} - 16 + \frac{7\pi^2}{3} \right] \\ J(\rho^2,\mu) &= \delta(\rho^2) + \frac{\alpha_s C_F}{4\pi} \left[\left(\frac{4\ln(\rho^2/\mu^2) - 3}{\rho^2} \right)_*^{[\mu^2]} + (7 - \pi^2) \, \delta(\rho^2) \right] \\ S(\omega,\mu) &= \delta(\omega) + \frac{\alpha_s C_F}{4\pi} \left[\left(\frac{-16\ln(\omega/\mu)}{\omega} \right)_*^{[\mu]} + \frac{\pi^2}{3} \, \delta(\omega) \right] \end{split}$$

General structure:

▶ logarithms ⇔ divergences anomalous dimensions of EFT operators ⇒ resum logs via RG techniques

$$\frac{d}{d \ln \mu} H(Q^2, \mu) = \left[2\Gamma_{\text{cusp}}(\alpha_s) \ln \frac{Q^2}{\mu^2} + 4\gamma^q(\alpha_s) \right] H(Q^2, \mu)$$

▶ finite terms ⇒ accounted for in matching calculations

Notice: there is no large log when each function is evaluated at its natural scale!

Angularities

Interesting class of event shape variables

[Berger, Kucs, Sterman 03]

$$\tau_a = \frac{1}{Q} \sum_i E_i (\sin \theta_i)^a (1 - |\cos \theta_i|)^{1-a}$$

- ▶ interpolates between thrust (a = 0) and broadening (a = 1)
- ▶ infrared safe for a < 2, but standard factorization only for a < 1</p>

SCET analysis

[Hornig, Lee, Ovanesyan 09]

relevant scales:
$$\mu_H^2 \sim Q^2 \gg \mu_J^2 \sim Q^2 au_a^{rac{2}{2}-a} \gg \mu_S^2 \sim Q^2 au_a^2$$

thrust:
$$\mu_H^2 \sim Q^2 \quad \gg \quad \mu_J^2 \sim Q^2 \tau \quad \gg \quad \mu_S^2 \sim Q^2 \tau^2 \qquad \qquad (\text{SCET}_1)$$

broadening:
$$\mu_H^2 \sim Q^2 \gg \mu_J^2 \sim Q^2 B^2 \sim \mu_S^2 \sim Q^2 B^2$$
 (SCET_{II})

⇒ factorization formula for broadening will be different (and more complicated)

Jet broadening

In the two-jet limit $b_L \sim b_R \to 0$ expect that the broadening distribution factorizes as

$$\begin{split} \frac{1}{\sigma_0} \, \frac{d^2 \sigma}{d b_L \, d b_R} &= H(Q^2, \mu) \, \int d b_L^s \int d b_R^s \int d^{d-2} p_L^\perp \int d^{d-2} p_R^\perp \\ \mathcal{J}_L(b_L - b_L^s, p_L^\perp, \mu) \, \, \mathcal{J}_R(b_R - b_R^s, p_R^\perp, \mu) \, \, \mathcal{S}(b_L^s, b_R^s, -p_L^\perp, -p_R^\perp, \mu) \end{split}$$

two-scale problem: $Q^2 \gg b_L \sim b_R$

- ▶ relevant modes have $p_{\text{coll}}^{\perp} \sim p_{\text{soft}}^{\perp} \sim b_{L,R}$ \Rightarrow factorization in SCET_{II}
- ▶ jet recoils against soft radiation

Jet broadening

In the two-jet limit $b_L \sim b_R \to 0$ expect that the broadening distribution factorizes as

$$\begin{split} \frac{1}{\sigma_0} \, \frac{d^2 \sigma}{d b_L \, d b_R} &= \textit{H}(\textit{Q}^2, \mu) \, \int d b_L^s \int d b_R^s \int d^{d-2} p_L^\perp \int d^{d-2} p_R^\perp \\ & \mathcal{J}_L(b_L - b_L^s, p_L^\perp, \mu) \, \, \mathcal{J}_R(b_R - b_R^s, p_R^\perp, \mu) \, \, \mathcal{S}(b_L^s, b_R^s, -p_L^\perp, -p_R^\perp, \mu) \end{split}$$

Hard function:

- precisely the same object as for thrust
- recall the RG equation

$$\frac{d}{d \ln \mu} H(Q^2, \mu) = \left[2\Gamma_{\text{cusp}}(\alpha_s) \ln \frac{Q^2}{\mu^2} + 4\gamma^q(\alpha_s) \right] H(Q^2, \mu)$$

⇒ there is a hidden Q-dependence in the second line!

thrust
$$\frac{\mu_J^2}{\mu_S} = \frac{\tau Q^2}{\tau Q} = Q$$
 \Leftrightarrow broadening $\frac{\mu_J^2}{\mu_S} = \frac{b^2}{b} = b$

Jet broadening

In the two-jet limit $b_L \sim b_R o 0$ expect that the broadening distribution factorizes as

$$\begin{split} \frac{1}{\sigma_0} \, \frac{d^2 \sigma}{d b_L \, d b_R} &= H(Q^2, \mu) \, \int d b_L^s \int d b_R^s \int d^{d-2} p_L^\perp \int d^{d-2} p_R^\perp \\ \mathcal{J}_L(b_L - b_L^s, p_L^\perp, \mu) \, \, \mathcal{J}_R(b_R - b_R^s, p_R^\perp, \mu) \, \, \mathcal{S}(b_L^s, b_R^s, -p_L^\perp, -p_R^\perp, \mu) \end{split}$$

Some manipulations:

- ▶ Laplace transform $b_{L,R} \rightarrow \tau_{L,R}$
- ▶ Fourier transform $p_{L,R}^{\perp} \rightarrow x_{L,R}^{\perp}$
- ▶ define dimensionless variable $z_{L,R} = \frac{2|x_{L,R}^{\perp}|}{\tau_{L,R}}$
- ⇒ the naive factorization theorem takes the form

$$\frac{1}{\sigma_0} \frac{d^2 \sigma}{d \tau_L d \tau_R} = H(Q^2, \mu) \int_0^\infty dz_L \int_0^\infty dz_R \ \overline{\mathcal{J}}_L(\tau_L, z_L, \mu) \ \overline{\mathcal{J}}_R(\tau_R, z_R, \mu) \ \overline{\mathcal{S}}(\tau_L, \tau_R, z_L, z_R, \mu)$$

Jet function

The quark jet function for broadening reads

$$\mathcal{J}(b,\rho^\perp) \, \sim \, \sum_X \; \delta(\bar{n} \cdot \rho_X - Q) \; \delta^{d-2}(\rho_X^\perp - \rho^\perp) \; \delta\left(b - \tfrac{1}{2} \sum_{i \in X} |\rho_i^\perp|\right) \; \left|\left\langle X \middle| \bar{\psi}(0) W(0) \frac{\bar{h} h}{4} \middle| 0 \right\rangle\right|^2$$

- lacktriangle delta-functions ensure that jet has given energy, p^\perp and b
- ▶ tree level: $\mathcal{J}(b, \rho^{\perp}) = \delta \Big(b \frac{1}{2} |\rho^{\perp}| \Big) \Rightarrow \overline{\mathcal{J}}(\tau, z) = \frac{z}{\left(1 + z^2\right)^{3/2}} + \mathcal{O}(\epsilon)$

Jet function

The quark jet function for broadening reads

$$\mathcal{J}(b,\rho^\perp) \, \sim \, \sum_X \; \delta(\bar{n} \cdot \rho_X - Q) \; \delta^{d-2}(\rho_X^\perp - \rho^\perp) \; \delta\left(b - \tfrac{1}{2} \sum_{i \in X} |\rho_i^\perp|\right) \; \left|\left\langle X \middle| \bar{\psi}(0) W(0) \frac{\bar{h}h}{4} \middle| 0 \right\rangle\right|^2$$

- ▶ delta-functions ensure that jet has given energy, p^{\perp} and b
- $\qquad \text{tree level:} \quad \mathcal{J}(b,\rho^\perp) = \delta\Big(b \tfrac{1}{2}|\rho^\perp|\Big) \quad \Rightarrow \quad \overline{\mathcal{J}}(\tau,z) = \frac{z}{\left(1+z^2\right)^{3/2}} + \mathcal{O}(\epsilon)$

At one-loop the calculation involves

- Wilson-line diagrams are not well-defined in dimensional regularization!
 - $\int_0^Q \frac{dk_-}{k_-}$ diverges in the soft limit (DR regularizes $d^{d-2}k_\perp$)
- this does not happen for thrust or any SCET_I problem
- ⇒ one has to introduce an additional regulator

Regularization in SCET_{II}

The regularization of individual diagrams is largely arbitrary, one could try e.g.

$$\frac{1}{p^2+i\varepsilon} \rightarrow \frac{1}{p^2-\Delta+i\varepsilon}, \quad \frac{(\nu^2)^{\alpha}}{(p^2+i\varepsilon)^{1+\alpha}}, \quad \dots$$

- trivial for QCD, but regularizes ill-defined EFT diagrams
- spoils gauge-invariance and eikonal structure of Wilson line emissions

Regularization in SCET_{II}

The regularization of individual diagrams is largely arbitrary, one could try e.g.

$$\frac{1}{p^2 + i\varepsilon} \rightarrow \frac{1}{p^2 - \Delta + i\varepsilon}, \quad \frac{(\nu^2)^{\alpha}}{(p^2 + i\varepsilon)^{1+\alpha}}, \quad \dots$$

- trivial for QCD, but regularizes ill-defined EFT diagrams
- spoils gauge-invariance and eikonal structure of Wilson line emissions

In a massless theory it is sufficient to regularize phase space integrals

[Becher, GB 11]

$$\int d^d k \ \delta(k^2) \ \theta(k^0) \quad \Rightarrow \quad \int d^d k \ \left(\frac{\nu_+}{k_+}\right)^{\alpha} \delta(k^2) \ \theta(k^0)$$

- ▶ does not modify SCET at all ⇒ keeps gauge-invariance and eikonal structure
- analytic, minimal and adopted to the problem (LC propagators)

Why does it work?

Our new prescription amounts to

$$\int d^d k \ \delta(k^2) \ \theta(k^0) \quad \Rightarrow \quad \int d^d k \ \left(\frac{\nu_+}{k_+}\right)^{\alpha} \delta(k^2) \ \theta(k^0)$$

virtual corrections do not need regularization

matrix elements of Wilson lines in QCD \Rightarrow the same for thrust and broadening

technical reason:
$$\int d^{d-2}k_{\perp} \ f(k_{\perp},k_{+}) \sim k_{+}^{-\epsilon}$$

Why does it work?

Our new prescription amounts to

$$\int d^d k \ \delta(k^2) \ \theta(k^0) \quad \Rightarrow \quad \int d^d k \ \left(\frac{\nu_+}{k_+}\right)^{\alpha} \delta(k^2) \ \theta(k^0)$$

- virtual corrections do not need regularization matrix elements of Wilson lines in QCD \Rightarrow the same for thrust and broadening technical reason: $\int d^{d-2}k_{\perp} \ f(k_{\perp},k_{+}) \ \sim \ k_{+}^{-\epsilon}$
- required for observables sensitive to transverse momenta $f(k_{\perp},k_{+}) \sim \delta^{d-2}(k_{\perp}-p_{\perp}) \quad \Rightarrow \quad \text{factor } k_{+}^{-\epsilon} \text{ absent} \quad \Rightarrow \quad \text{reinstalled as } k_{+}^{-\alpha}$ can show that the prescription regularizes all LC singularities in SCET
- not sufficient for cases where virtual corrections are ill-defined examples: electroweak Sudakov corrections, Regge limits

Jet function revisited

With the additional regulator in place, the jet functions can be evaluated

$$\begin{split} \mathcal{J}_L(b,\rho^\perp = 0) &= \delta(b) + \frac{C_F\alpha_s}{2\pi} \, \frac{e^{\epsilon\gamma_E}}{\Gamma(1-\epsilon)} \, \frac{1}{b} \left(\frac{\mu}{b}\right)^{2\epsilon} \left[1 - \epsilon + \frac{4\,\Gamma(2+\alpha)\,\Gamma(\alpha)}{\Gamma(2+2\alpha)} \left(\frac{Q\nu_+}{b^2}\right)^{\alpha}\right] \\ \mathcal{J}_R(b,\rho^\perp = 0) &= \delta(b) + \frac{C_F\alpha_s}{2\pi} \, \frac{e^{\epsilon\gamma_E}}{\Gamma(1-\epsilon)} \, \frac{1}{b} \left(\frac{\mu}{b}\right)^{2\epsilon} \left[1 - \epsilon + \frac{4\,\Gamma(-\alpha)}{\Gamma(2-\alpha)} \left(\frac{\nu_+}{O}\right)^{\alpha}\right] \end{split}$$

- ordered limit $\alpha \to 0$, $\varepsilon \to 0$ generates a pole in the analytic regulator
- ▶ note the characteristic scaling $\left(\frac{\nu_+}{k_+}\right)^{\alpha}$ in each region

For $p^{\perp} \neq 0$ the computation is considerably more involved $(\rightarrow later)$

$$\overline{\mathcal{J}}_L(\tau,z) = \overline{\mathcal{J}}_L^{(0)}(\tau,z) \left[1 - \frac{C_F \alpha_S}{\pi} \, \frac{1}{\alpha} \left(\frac{1}{\epsilon} + \ln\left(\mu^2 \bar{\tau}^2\right) + 2\ln\frac{\sqrt{1+z^2}+1}{4} \right) \left(\frac{Q\nu_+ \bar{\tau}^2}{\tau^2} \right)^{\alpha} + \ldots \right]$$

divergent term has non-trivial z-dependence

Soft function

The soft function for broadening reads

$$\begin{split} \mathcal{S}(b_L, b_R, p_L^{\perp}, p_R^{\perp}) \, \sim \, \sum_{X_L, X_R} \, \delta^{d-2}(p_{X_L}^{\perp} - p_L^{\perp}) \, \, \delta^{d-2}(p_{X_R}^{\perp} - p_R^{\perp}) \\ \delta \Big(b_L - \frac{1}{2} \sum_{i \in X_L} |p_{L,i}^{\perp}| \Big) \, \, \delta \Big(b_R - \frac{1}{2} \sum_{j \in X_R} |p_{R,j}^{\perp}| \Big) \, \, \left| \left\langle X_L X_R \middle| S_n^{\dagger}(0) \, S_{\bar{n}}(0) \middle| 0 \right\rangle \right|^2 \end{split}$$

- split final state into left and right-moving particles
- ▶ tree level: $S(b_L, b_R, p_L^{\perp}, p_R^{\perp}) = \delta(b_L) \, \delta(b_R) \, \delta^{d-2}(p_L^{\perp}) \, \delta^{d-2}(p_R^{\perp}) \Rightarrow \overline{S}(\tau_L, \tau_R, z_L, z_R) = 1$

At one-loop the calculation involves

$$\Rightarrow \ \overline{\mathcal{S}}(\tau_L,\tau_R,z_L,z_R) = 1 + \frac{C_F\alpha_S}{\pi} \left\{ \frac{1}{\alpha} \left(\frac{1}{\epsilon} + \ln\left(\mu^2\bar{\tau}_L^2\right) + 2\ln\frac{\sqrt{1+z_L^2+1}}{4} \right) \left(\nu_+\bar{\tau}_L\right)^{\alpha} - (L \leftrightarrow R) + \dots \right\}$$

Anomalous Q dependence

Let us now put the jet and soft functions together

$$\begin{split} \overline{\mathcal{J}}_L(\tau_L, z_L) \ \overline{\mathcal{J}}_R(\tau_R, z_R) \ \overline{\mathcal{S}}(\tau_L, \tau_R, z_L, z_R) \ = \ \overline{\mathcal{J}}_L^{(0)}(\tau_L, z_L) \ \overline{\mathcal{J}}_R^{(0)}(\tau_R, z_R) \\ \\ \left\{ 1 + \frac{C_F \alpha_s}{\pi} \left[\left(-\frac{1}{\alpha} - \ln \left(Q \nu_+ \bar{\tau}_L^2 \right) + \frac{1}{\alpha} + \ln \left(\nu_+ \bar{\tau}_L \right) \right) \left(\frac{1}{\epsilon} + \ln \left(\mu^2 \bar{\tau}_L^2 \right) + 2 \ln \frac{\sqrt{1 + z_L^2 + 1}}{4} \right) \right. \\ \\ \left. + \left(+ \frac{1}{\alpha} + \ln \left(\frac{\nu_+}{Q} \right) - \frac{1}{\alpha} - \ln \left(\nu_+ \bar{\tau}_R \right) \right) \left(\frac{1}{\epsilon} + \ln \left(\mu^2 \bar{\tau}_R^2 \right) + 2 \ln \frac{\sqrt{1 + z_R^2 + 1}}{4} \right) + \dots \right] \right\} \end{split}$$

well-defined without additional regulators

Anomalous Q dependence

Let us now put the jet and soft functions together

$$\begin{split} \overline{\mathcal{J}}_L(\tau_L, z_L) \ \overline{\mathcal{J}}_R(\tau_R, z_R) \ \overline{\mathcal{S}}(\tau_L, \tau_R, z_L, z_R) \ = \ \overline{\mathcal{J}}_L^{(0)}(\tau_L, z_L) \ \overline{\mathcal{J}}_R^{(0)}(\tau_R, z_R) \\ \\ \left\{ 1 + \frac{C_F \alpha_S}{\pi} \left[\left(\qquad - \ln \left(Q \nu_+ \tilde{\tau}_L^2 \right) \right. \\ \left. + \ln \left(\nu_+ \tilde{\tau}_L \right) \right) \left(\frac{1}{\epsilon} + \ln \left(\mu^2 \tilde{\tau}_L^2 \right) + 2 \ln \frac{\sqrt{1 + z_L^2 + 1}}{4} \right) \right. \\ \\ \left. + \left(\qquad + \ln \left(\frac{\nu_+}{Q} \right) \right. \\ \left. - \ln \left(\nu_+ \tilde{\tau}_R \right) \right) \left(\frac{1}{\epsilon} + \ln \left(\mu^2 \tilde{\tau}_R^2 \right) + 2 \ln \frac{\sqrt{1 + z_R^2 + 1}}{4} \right) + \dots \right] \right\} \end{split}$$

- well-defined without additional regulators
- ightharpoonup similarly the artificial scale ν_+ drops out

Anomalous Q dependence

Let us now put the jet and soft functions together

$$\begin{split} \overline{\mathcal{J}}_L(\tau_L, z_L) \ \overline{\mathcal{J}}_R(\tau_R, z_R) \ \overline{\mathcal{S}}(\tau_L, \tau_R, z_L, z_R) \ = \ \overline{\mathcal{J}}_L^{(0)}(\tau_L, z_L) \ \overline{\mathcal{J}}_R^{(0)}(\tau_R, z_R) \\ \\ \left\{ 1 + \frac{C_F \alpha_S}{\pi} \Bigg[\bigg(\qquad - \ln \left(Q \bar{\tau}_L \right) \\ \\ + \bigg(\qquad - \ln \left(Q \bar{\tau}_R \right) \\ \\ \bigg) \left(\frac{1}{\epsilon} + \ln \left(\mu^2 \bar{\tau}_L^2 \right) + 2 \ln \frac{\sqrt{1 + z_L^2 + 1}}{4} \right) \\ \\ + \left(\qquad - \ln \left(Q \bar{\tau}_R \right) \\ \\ \bigg) \left(\frac{1}{\epsilon} + \ln \left(\mu^2 \bar{\tau}_R^2 \right) + 2 \ln \frac{\sqrt{1 + z_R^2 + 1}}{4} \right) + \dots \Bigg] \right\} \end{split}$$

- well-defined without additional regulators
- ightharpoonup similarly the artificial scale ν_+ drops out
- the hidden Q dependence shows up!
- ⇒ the naive factorization formula does not achieve a proper scale separation

How to resum a logarithm that appears in a matching calculation?

OUTLINE

EVENT SHAPE VARIABLES

FACTORIZATION

BRIEF REVIEW OF THRUST ANALYSIS
FACTORIZATION BREAKDOWN FOR BROADENING
ANALYTIC REGULARIZATION IN SCET

RESUMMATION

COLLINEAR ANOMALY EXTENSION TO NNLL

Collinear anomaly

Will show that the Q dependence exponentiates using and extending arguments from

electroweak Sudakov resummation

[Chiu, Golf, Kelley, Manohar 07]

 \triangleright p_T resummation in Drell-Yan production

[Becher, Neubert 10]

Start from the logarithm of the product of jet and soft functions

$$\begin{split} \ln P &= \ln \overline{\mathcal{J}}_L \Big(\frac{\ln \left(Q \nu_+ \overline{\tau}_L^2 \right); \ \tau_L, z_L \Big) + \ln \overline{\mathcal{J}}_R \Big(\ln \left(\frac{\nu_+}{Q} \right); \ \tau_R, z_R \Big) + \ln \overline{\mathcal{S}} \Big(\ln \left(\nu_+ \overline{\tau}_L \right); \ \tau_L, \tau_R, z_L, z_R \Big) \\ & \qquad \qquad \Big| \qquad \qquad \Big| \qquad \qquad \Big| \\ & \text{collinear: } k_+ \sim \frac{b^2}{Q} \qquad \text{anticollinear: } k_+ \sim Q \qquad \text{soft: } k_+ \sim b \end{split}$$

lacktriangle use that product does not depend on u_+ and that it is LR symmetric

$$\Rightarrow \ln P = \frac{k_2(\mu)}{4} \ln^2 \left(Q^2 \, \bar{\tau}_L \bar{\tau}_R \right) - F_B(\tau_L, z_L, \mu) \, \ln \left(Q^2 \bar{\tau}_L^2 \right) - F_B(\tau_R, z_R, \mu) \, \ln \left(Q^2 \bar{\tau}_R^2 \right) + \ln W(\tau_L, \tau_R, z_L, z_R, \mu)$$

▶ RG invariance implies $k_2(\mu) = 0$ to all orders

$$\Rightarrow \boxed{P(Q^2, \tau_L, \tau_R, z_L, z_R, \mu) \ = \ (Q^2 \bar{\tau}_L^2)^{-F_B(\tau_L, z_L, \mu)} \ (Q^2 \tau_R^2)^{-F_B(\tau_R, z_R, \mu)} \ W(\tau_L, \tau_R, z_L, z_R, \mu)}$$

Final factorization formula

The corrected all-order generalization of the naive factorization formula becomes

[Becher, GB, Neubert 11]

$$\boxed{ \frac{1}{\sigma_0} \frac{d^2 \sigma}{d \tau_L d \tau_R} \ = \ H(Q^2, \mu) \ \int_0^\infty \! dz_L \int_0^\infty \! dz_R \ \left(Q^2 \bar{\tau}_L^2 \right)^{-F_B(\tau_L, z_L, \mu)} \ \left(Q^2 \bar{\tau}_R^2 \right)^{-F_B(\tau_R, z_R, \mu)} \ W(\tau_L, \tau_R, z_L, z_R, \mu) }$$

Our explicit calculation determines the one-loop anomaly coefficient

$$F_B(au, z, \mu) = \frac{C_F \alpha_S}{\pi} \left[\ln(\mu \bar{ au}) + \ln \frac{\sqrt{1 + z^2} + 1}{4} \right]$$

To NLL one further needs

$$\begin{split} W(\tau_L,\tau_R,z_L,z_R,\mu) &= \frac{z_L \, z_R}{\left(1+z_L^2\right)^{3/2} \left(1+z_R^2\right)^{3/2}} \\ H(Q^2,\mu) &= \exp\left\{\frac{4C_F}{\beta_0^2} \left[\frac{4\pi}{\alpha_s(Q)} \left(1-\frac{1}{r}-\ln r\right) + \left(K-\frac{\beta_1}{\beta_0}\right) (1-r+\ln r) + \frac{\beta_1}{2\beta_0} \ln^2 r + \frac{3\beta_0}{2} \ln r\right]\right\} \end{split}$$

Total and wide jet broadening

To NLL the Mellin inversion can be performed analytically

$$\frac{1}{\sigma_0} \frac{d\sigma}{db_T} = H(Q^2, \mu) \frac{e^{-2\gamma_E \eta}}{\Gamma(2\eta)} \frac{1}{b_T} \left(\frac{b_T}{\mu}\right)^{2\eta} l^2(\eta)$$

$$\frac{1}{\sigma_0} \frac{d\sigma}{db_W} = H(Q^2, \mu) \frac{2\eta e^{-2\gamma_E \eta}}{\Gamma^2(1+\eta)} \frac{1}{b_W} \left(\frac{b_W}{\mu}\right)^{2\eta} l^2(\eta)$$

where

$$\eta = \frac{C_F \alpha_s(\mu)}{\pi} \ln \frac{Q^2}{\mu^2} = \mathcal{O}(1)$$

The non-trivial z-dependence of the anomaly coefficient is encoded in

$$I(\eta) = \int_0^\infty dz \, \frac{z}{\left(1+z^2\right)^{3/2}} \left(\frac{\sqrt{1+z^2}+1}{4}\right)^{-\eta} = \frac{4^{\eta}}{1+\eta} \, _2F_1(\eta, 1+\eta, 2+\eta, -1)$$

Comparison with literature

Traditional resummation

▶ pioneering work missed quark recoil effects ⇒ valid to LL

[Catani, Turnock, Webber 92]

first NLL resummation by Dokshitzer et al

[Dokshitzer, Lucenti, Marchesini, Salam 98]

we find complete analytical agreement with this work

Resummation within SCET

[Chiu, Jain, Neill, Rothstein 11,12]

- starts from same naive factorization formula
- uses different regularization prescription (not manifestly gauge-invariant)
- treats additional divergences in a "rapidity renormalization group"
- ▶ 2011 paper missed quark recoil effects ⇒ valid to LL
 - 2012 paper in agreement with Dokshitzer result

A glimpse at the data

- NLL with perturbative uncertainty only
- without matching to fixed order calculation
- does not include any treatment of non-perturbative corrections
- \Rightarrow a precision determination of α_s requires NNLL matched to NNLO!

Beyond NLL

The extension to NNLL requires three ingredients

- one-loop soft function
- one-loop jet function
- two-loop anomaly coefficient

The calculation of the one-loop soft function is straight-forward

[Becher, GB, Neubert 11]

$$\begin{split} \Rightarrow & \overline{\mathcal{S}}(\tau_L,\tau_R,z_L,z_R) = 1 + \frac{\alpha_S C_F}{4\pi} \left\{ \left(\mu^2 \overline{\tau}_L^2 \right)^\varepsilon \, \left(\nu_+ \overline{\tau}_L \right)^\alpha \, \left[\frac{4}{\alpha} \left(\frac{1}{\varepsilon} + 2 \ln \left(\frac{1 + \sqrt{1 + z_L^2}}{4} \right) \right) - \frac{2}{\varepsilon^2} \right. \\ & + 8 \operatorname{Li}_2 \! \left(- \frac{\sqrt{1 + z_L^2} - 1}{\sqrt{1 + z_L^2} + 1} \right) + 4 \ln^2 \left(\frac{1 + \sqrt{1 + z_L^2}}{4} \right) + \frac{5\pi^2}{6} \right] - (L \leftrightarrow R) \bigg\} \end{split}$$

One-loop jet function

The calculation of the one-loop jet function is surprisingly complicated

$$\sim \int d^{d}q \ \delta(q^{2}) \ \theta(q^{0}) \ \int d^{d}k \ \left(\frac{\nu_{+}}{k_{+}}\right)^{\alpha} \delta(k^{2}) \ \theta(k^{0}) \ \frac{\bar{n}q \ (\bar{n}k + \bar{n}q)}{\bar{n}k \ (q + k)^{2}}$$

$$\times \delta\left(Q - \bar{n}q - \bar{n}k\right) \ \delta^{d-2}\left(p_{\perp} - q_{\perp} - k_{\perp}\right) \ \delta\left(b - \frac{1}{2}|q_{\perp}| - \frac{1}{2}|k_{\perp}|\right)$$

$$\sim \int_{0}^{1} d\eta \ \eta \ (1 - \eta)^{-1 + \alpha} \int_{1 - y}^{1 + y} d\xi \ \frac{\xi(2 - \xi)^{1 - 2\alpha}(\xi(2 - \xi) - 1 + y^{2})^{-\frac{1}{2} - \varepsilon}}{(\xi - 2y\eta)^{2} + 4\eta(1 - y)(1 + y - \xi)}$$

- non-trivial angle complicates calculation
- ightharpoonup expansion in α and ϵ is subtle
 - \Rightarrow have to keep $(2b-p)^{-1-\epsilon}, (2b-p)^{-1-2\epsilon}, \dots$ to all orders

- ⇒ hypergeometric functions of half-integer parameters
- ▶ perform Laplace + Fourier transformations analytically

One-loop jet function

The calculation of the one-loop jet function is surprisingly complicated

$$\sim \int d^{d}q \ \delta(q^{2}) \ \theta(q^{0}) \ \int d^{d}k \ \left(\frac{\nu_{+}}{k_{+}}\right)^{\alpha} \delta(k^{2}) \ \theta(k^{0}) \ \frac{\bar{n}q \ (\bar{n}k + \bar{n}q)}{\bar{n}k \ (q + k)^{2}}$$

$$\times \delta\left(Q - \bar{n}q - \bar{n}k\right) \ \delta^{d-2}\left(p_{\perp} - q_{\perp} - k_{\perp}\right) \ \delta\left(b - \frac{1}{2}|q_{\perp}| - \frac{1}{2}|k_{\perp}|\right)$$

$$\sim \int_{0}^{1} d\eta \ \eta \ (1 - \eta)^{-1+\alpha} \int_{1-y}^{1+y} d\xi \ \frac{\xi(2 - \xi)^{1-2\alpha}(\xi(2 - \xi) - 1 + y^{2})^{-\frac{1}{2} - \varepsilon}}{(\xi - 2y\eta)^{2} + 4\eta(1 - y)(1 + y - \xi)}$$

The Wilson line diagram yields

$$\begin{split} \overline{\mathcal{J}}_{L}^{(1b)}(\tau,z) &= \overline{\mathcal{J}}_{L}^{(0)}(\tau,z) \, \frac{\alpha_{s} C_{F}}{4\pi} \, \left(\mu^{2} \bar{\tau}^{2}\right)^{\varepsilon} \, \left(\nu_{+} Q \bar{\tau}^{2}\right)^{\alpha} \\ &\times \, \left\{ \, - \, \frac{2}{\alpha} \left[\frac{1}{\varepsilon} + 2 \ln \left(\frac{1+\sqrt{1+z^{2}}}{4} \right) \right] + \frac{2}{\varepsilon^{2}} + \frac{2}{\varepsilon} - 8 \mathrm{Li}_{2} \Big(- \, \frac{\sqrt{1+z^{2}} - 1}{\sqrt{1+z^{2}} + 1} \Big) \right. \\ &\quad + 8 \mathrm{Li}_{2} \big(- \sqrt{1+z^{2}} \big) - 4 \ln^{2} \left(\frac{1+\sqrt{1+z^{2}}}{4} \right) + \ln^{2} \big(1 + z^{2} \big) + 2 z^{2} \ln \big(1 + z^{2} \big) \\ &\quad + 4 \big(1 - z^{2} \big) \ln \big(1 + \sqrt{1+z^{2}} \big) + 4 \sqrt{1+z^{2}} - 8 \ln 2 - \frac{\pi^{2}}{6} \, \right\} \end{split}$$

Two-loop anomaly coefficient

Most easily extracted from the two-loop soft function

- ▶ again two particles in final state ⇒ similar integrals as one-loop jet function
- **b** but requires to go one order higher in ϵ -expansion
- encounter Nielsen polylogs and elliptic integrals

$$= \left(\frac{\alpha_s}{4\pi}\right)^2 \frac{C_A C_F}{2} \left(\mu^2 \bar{\tau}_L^2\right)^{2\varepsilon} \frac{(\nu + \bar{\tau}_L)^\alpha}{\alpha} \\ \left\{ \frac{1}{\varepsilon^3} + \frac{4 \ln z_L^+ + 2}{\varepsilon^2} + \left[12 \text{Li}_2\left(-\frac{z_L^-}{z_L^+}\right) + 8 \ln^2 z_L^+ + 8 \ln z_L^+ + 4 + \frac{7\pi^2}{6}\right] \frac{1}{\varepsilon} \right. \\ \left. + 8\pi E(-z_L^2) - 16 \mathcal{E}(-z_L^2) + 4 \text{Li}_3\left(-\frac{z_L^-}{z_L^+}\right) - 8 \text{S}_{1,2}\left(-\frac{z_L^-}{z_L^+}\right) - 40 \text{Li}_3(1 - 4z_L^+) \\ \left. + 8 \text{S}_{1,2}(1 - 4z_L^+) + 8 \text{Li}_3(-4z_L^-) - 40 \text{S}_{1,2}(-4z_L^-) - 8 \text{Li}_3(-2z_L^-) + 40 \text{S}_{1,2}(-2z_L^-) \\ \left. + 8 \ln\left(\frac{z_L^+}{64}\right) \text{Li}_2\left(-\frac{z_L^-}{z_L^+}\right) + \left(20 \ln(1 + z_L^2) + 8 \ln(4z_L^+)\right) \text{Li}_2(1 - 4z_L^+) + \frac{8}{3} \ln^3 z_L^+ \\ + \text{a few more lines} \right\}$$

Two-loop anomaly coefficient

Most easily extracted from the two-loop soft function

- ▶ again two particles in final state ⇒ similar integrals as one-loop jet function
- **b** but requires to go one order higher in ϵ -expansion
- encounter Nielsen polylogs and elliptic integrals

We recently finished the two-loop calculation

- ▶ can check $\frac{1}{\alpha^2} \left\{ \frac{1}{\varepsilon^2}, \frac{1}{\varepsilon}, 1 \right\}$ and $\frac{1}{\alpha} \left\{ \frac{1}{\varepsilon^3}, \frac{1}{\varepsilon^2}, \frac{1}{\varepsilon} \right\}$ structures \checkmark
- $ightharpoonup C_F^2$ color structure given by non-abelian exponentiation \checkmark
- \Rightarrow the analytic result is rather lengthy...
- \Rightarrow we are currently working on the NNLL implementation for $b_{\mathcal{T}}$ and $b_{\mathcal{W}}$

Conclusions

Resummation beyond standard RG techniques via collinear anomaly

we proposed an analytic phase space regularization for SCET_{II} problems

$$\int d^d k \ \delta(k^2) \ \theta(k^0) \quad \Rightarrow \quad \int d^d k \ \left(\frac{\nu_+}{k_+}\right)^{\alpha} \delta(k^2) \ \theta(k^0)$$

we have explicitly shown that this prescription works at two-loop order

We have determined all ingredients to perform NNLL resummation for jet broadening

lacktriangle allows for precision determinations of $lpha_{
m S}$ from $b_{
m T}$ and $b_{
m W}$ distributions

The formalism is relevant for many interesting LHC observables

▶ p_T resummation, jet veto, jet substructure, . . .

Backup slides

Analytic regularization

Raise QCD propagators along the fermion line to fractional power

quark:
$$\frac{1}{p^2 + i\varepsilon} \rightarrow \frac{(\nu_1^2)^{\alpha}}{(p^2 + i\varepsilon)^{1+\alpha}}$$
 antiquark: $\frac{1}{p^2 + i\varepsilon} \rightarrow \frac{(\nu_2^2)^{\beta}}{(p^2 + i\varepsilon)^{1+\beta}}$

- trivial for QCD, but regularizes ill-defined SCET diagrams
- modifies Wilson line in the opposite sector

$$\frac{\bar{n}^{\mu}}{\bar{n} \cdot k} \rightarrow \frac{\bar{n}^{\mu} \left(\nu_{2}^{2}\right)^{\beta} \, n \cdot p_{R}}{\left(\bar{n} \cdot k \, n \cdot p_{R}\right)^{1+\beta}} \qquad \qquad \frac{n^{\mu}}{n \cdot k} \rightarrow \frac{n^{\mu} \left(\nu_{1}^{2}\right)^{\alpha} \, \bar{n} \cdot p_{L}}{\left(n \cdot k \, \bar{n} \cdot p_{L}\right)^{1+\alpha}}$$

▶ introduces foreign momentum components $n \cdot p_R = \bar{n} \cdot p_L = Q$ into jet functions!

Raise QCD propagators along the fermion line to fractional power

quark:
$$\frac{1}{p^2 + i\varepsilon} \rightarrow \frac{(\nu_1^2)^{\alpha}}{(p^2 + i\varepsilon)^{1+\alpha}}$$
 antiquark: $\frac{1}{p^2 + i\varepsilon} \rightarrow \frac{(\nu_2^2)^{\beta}}{(p^2 + i\varepsilon)^{1+\beta}}$

- trivial for QCD, but regularizes ill-defined SCET diagrams
- modifies Wilson line in the opposite sector

$$\frac{\bar{n}^{\mu}}{\bar{n} \cdot k} \rightarrow \frac{\bar{n}^{\mu} \left(\nu_{2}^{2}\right)^{\beta} \, n \cdot p_{R}}{(\bar{n} \cdot k \, n \cdot p_{R})^{1+\beta}} \qquad \qquad \frac{n^{\mu}}{n \cdot k} \rightarrow \frac{n^{\mu} \left(\nu_{1}^{2}\right)^{\alpha} \, \bar{n} \cdot p_{L}}{(n \cdot k \, \bar{n} \cdot p_{L})^{1+\alpha}}$$

introduces foreign momentum components $n \cdot p_R = \bar{n} \cdot p_L = Q$ into jet functions!

Collinear anomaly:

[Becher, Neubert 10]

- lacktriangledown classically $\mathcal{J}_L(b_L,p_L^\perp)$ is invariant under rescaling of $p_R o \lambda p_R$
- ▶ in the quantum theory $\mathcal{J}_L(b_L, p_L^{\perp})$ requires regularization
- symmetry is not recovered when the regulator is removed

Compare to fixed-order calculation

Confront with output from EVENT2 generator

[Catani, Seymour 96]

$$\frac{b_{T}}{\sigma_{0}} \frac{d\sigma}{db_{T}} = \frac{\alpha_{s}(Q)}{2\pi} A(b_{T}) + \left(\frac{\alpha_{s}(Q)}{2\pi}\right)^{2} B(b_{T})$$

$$= \frac{100}{80} \left(\frac{100}{80}\right)^{-10} \left(\frac{1$$

In the two-jet limit
$$L = \ln(b_T/Q) \to -\infty$$
 find $\Delta A \to 0$ \checkmark

 $\Delta B \rightarrow \text{const} \quad \checkmark$

Details of thrust analysis

Two-dimensional fit to world thrust data:

[Abbate, Fickinger, Hoang, Mateu, Stewart 10]

- ► NNLO + (approx.) N³LL resummation
- ▶ different treatments of peak, tail and multi-jet regions (with profile functions) +4.3%
- ▶ field theoretical treatment of power corrections (+ renormalon subtraction)
 -8.4%
- ▶ bottom mass + QED corrections -0.4%

Details of thrust analysis (cont'd)

Pros:

- sophisticated analysis
- uses all available data
- good convergence and fit quality

Delicate aspects:

- uncertainty from profile functions
- dependence on fit range
- ▶ remnant hadroniz. effects ~ 0.4%?

 \Rightarrow thrust: $\alpha_{s}(M_{Z})=0.1135\pm0.0002~{\rm (exp)}\pm0.0005~{\rm (had)}\pm0.0009~{\rm (pert)}$

moment: $\alpha_s(M_Z) = 0.1140 \pm 0.0004 \text{ (exp)} \pm 0.0013 \text{ (had)} \pm 0.0007 \text{ (pert)}$