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| To find the Higgs
very sophisticated searches are employed
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They depend on predictions
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of production rates & on fine details in kinematic
distributions.



How is the number of Higgs
events estimated ?

Overall normalization from very
precise inclusive cross section rates.



How is the number of Higgs
events estimated ?

Pythia, Herwig, MC@NLO,
POWHEG, Alpgen, Sherpa

Overall normalization from very
precise inclusive cross section rates.

Kinematic distributions from parton
shower MC (with LO, LL or NLO
accuracy).



How is the number of Higgs
events estimated ?

Overall normalization from very
precise inclusive cross section rates.

Kinematic distributions from parton
rownee Ao e, shower MC (with LO, LL or NLO

accuracy).

Differential distributions from more

precise calculations to control MC or
to compare directly with binned data.



How well do we understand
the kinematic distributions

of the Higgs boson of its decay products of associated radiation

?

Pretty well in general, but there is room for improvement.

Even for the simplest of distributions:



The invariant mass distribution
of the Higgs boson



If the Higgs is light

then it’s also thin:
an uneventful spike well thinner
than the experimental resolution

ACHILLEAS LAZOPOULOS, ETH ZURICH, ZPW 2012
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which is not excluded experimentally

It could be part of a sensible but more
complicated Higgs sector (2HDM, Susy, etc.)

then it’s also wide!

ACHILLEAS LAZOPOULOS, ETH ZURICH, ZPW 2012
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Amplitudes to produce a final state from a not-so-narrow
Higgs boson require decay widths at the virtuality, Q, not the
Higgs mass.
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- Mpy,e +1Z2(Q)T(Q%)
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A~ \/F99—+H(Q

Theory predictions can be very
sensitive to taking the limit Q~Mh
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Invariant mass distribution

...very, very sensitive!
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iHixs Is the only fixed order cross-section calculation
which allows for the width and branching ratios to
vary with the Higgs virtuality.
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There are significant Very important effects on the
differences in the estimate of signal line-shape are
the total cross section from  expected also due to signal-
the approximation used in background interference.

experimental studies.
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ATLAS and CMS start excluding very wide Higgs bosons.

|s there an effect on exclusion limits?

ACHILLEAS LAZOPOULOS, ETH ZURICH, ZPW 2012



600 GeV SM Higgs Exclusion Plot @ f L dt= 100 fb"
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A plain Breit-Wigner as part of the signal hypothesis (black
line) would lead to differences in exclusion limits than a
line-shape that approximates the sum of resonant and

non-resonant diagrams in gluon fusion (Seymour scheme).
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600 GeV SM Higgs Exclusion Plot @ f L dt= 100 fb"
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A plain Breit-Wigner as part of the signal hypothesis (black
line) would lead to differences in exclusion limits than a
line-shape that approximates the sum of resonant and

non-resonant diagrams in gluon fusion (Seymour scheme).

ACHILLEAS LAZOPOULOS, ETH ZURICH, ZPW 2012



600 GeV SM Higgs Exclusion Plot @ f L dt= 100 fb”
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line) would lead to differences in exclusion limits than a
line-shape that approximates the sum of resonant and
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| 1 1 1 1 1 1
750 800

1 1 1 |
500

L1 L1 |
550

600

-2 ] | 1 1 | 1 1 1
1000 450

ACHILLEAS LAZOPOULOS, ETH ZURICH, ZPW 2012



600 GeV SM Higgs Exclusion Plot @

L dt= 100 fb~
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A plain Breit-Wigner as part of the signal hypothe3|s (black
line) would lead to differences in exclusion limits than a
line-shape that approximates the sum of resonant and

non-resonant diagrams in gluon fusion (Seymour scheme).
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600 GeV SM Higgs Exclusion Plot @ f L dit= 100 fbo”
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A plain Breit-Wigner as part of the signal hypothesis (black
line) would lead to differences in exclusion limits than a
line-shape that approximates the sum of resonant and

non-resonant diagrams in gluon fusion (Seymour scheme).
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The role of the higher order corrections: realistic exclusion
limits require the number of hypothetical signal events.
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600 GeV SM Higgs Exclusion Plot @ f L dt= 100 fb”
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The role of the higher order corrections: realistic exclusion
limits require the number of hypothetical signal events.
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A very heavy Higgs might be considered unviable for
theoretical reasons, but care is needed before we conclude
that LHC data disfavors or excludes such a possibility.

ACHILLEAS LAZOPOULOS, ETH ZURICH, ZPW 2012



More complicated distributions

HQT

resumed transverse momentum fully differential (Catani &
distribution with the possibility  Grazzini 2007, Grazzini 2008)

to match with NNLO (Bozzi,

Catani, de Florian, Grazzini
2003&2006, de Florian, Ferrera,

Grazzini, Tommasini, 2011).

WH production

fully differential (Ferrera, fully differential (Anastasiou,

Grazzini, Tramontano 2011)

ACHILLEAS LAZOPOULOS, ETH ZURICH, ZPW 2012

HNNLO

H—bb production

Herzog, AL 2011)

FeHiPro
fully differential but never
officially released

fehip
fully differential ggF
(Anastasiou, Melnikov,
Petriello 2005)
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With those tools
important studies on
efficiencies from NNLO

In fully realistic set ups
and comparisons to
MCs have been
achieved

2007, H=>WW LHCI4
Anastasiou, Dissertori, Stoeckli

2008, H/WW LHC 4
Anastasiou, Dissertori, Stoeckli, VWWebber

ACHILLEAS LAZOPOULOS, ETH ZURICH, ZPW 2012



More such studies are necessary,
with all the effects implemented
In IHixs, at a differential level.



Fehipro

Fully differential NNLO,
including exact mass
dependence, EW
effects, ZZ decays etc.

Further improvements (integration of
HPro, python interface, ZZ decay): CA,
Stoeckli, Lazopoulos

)

HPro (2009) (NLO with exact mass
dependence): public (CA, Kunszt,
Bucherer) 1

Studies and improvements (ANN, WW
decay) (2007):CA, Dissertori, Stoeckli

t

FEHIP (2005): public (CA, Melnikov, Petriello)

ACHILLEAS LAZOPOULOS, ETH ZURICH, ZPW 2012
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Fehipro is basedon
«QQctor decomposition

f@njhe RR



We would prefer:

No sectors Simpler integrals  Universal treatment
of singularities

ACHILLEAS LAZOPOULOS, ETH ZURICH, ZPW 2012



Methods

e NNLO needed novel methods for
phase-space integrations with
arbitrary cuts and experimental
observables.

e subtraction, antennae, kt-
subtraction, sector decomposition,
slicing, physical sectors, ...

e Many conceptual problems remain.
Room and need for fresh ideas!



Basic mathematical problem

at NNLO

e Divergent loop and phase-space
(multi-dimensional) integrals

e Evaluated as an expansion in the
dimension regulator (epsilon)

e Fixed integration boundaries for loops
and inclusive phase-space integrations.

e Infrared safe but otherwise arbitrary
boundaries of phase-space for

OVERLAPPING ‘;11§Cf]g)l§alt1.(:e cuts and differential
SINGULARITIES



Overlapping singularities

e FIXED BOUNDARIES

Mellin-Barnes, differential equations, successive Feynman.
parameter integrations,...

e ARBITRARY BOUNDARIES (I)
Subtraction method based on infrared safety and QCD

factorization to divide the integration into a singularity free
numerical integral and integrals with fixed boundaries.

e ARBITRARY BOUNDARIES (IT)

Sector decomposition
NEW: Non-linear mappings



A toy example with sector

decomposition
Binoth,Heinrich; Denner,Roth; Hepp

1 xe
I:/ dxdy
0 r(ax + y)

Slice phase-space

i

— + (2) —_—

Y

Restore boundaries

i

+

I:/ dxdt@a—l—t /dtdy@at—l—l

Yy =1x Zial=tiah

t

t

drdy = drdy [O(x = y) + O(y = )]

Y

Singularities are
factorized!

Cost:

integral proliferation



Non-linear mappings

e Factorizes overlapping singularities
e trivializes extraction of poles

¢ local ...Jtke sector decomposition..

..but.

e Fasier to implement
* Does not proliferate integrations

e Transparent and more physical factorization of
singularities



A toy example with our new
method

1 7€
I :/ dxdy
0 z(ax + y)

ow e fefegar

factorizes the singularity  spoils integration boundaries

il A gre) il RGN ) e
i, /O@dxdy@ (a(l —2) +y)

factorizes the singularity preserves integration boundaries




A systematic method of non-
linear mappings at NNLO

e Most divergent (massless) two-loop integrals
ar X1v:1011.4867

* Double real-radiation integrals which emerge

in hadron collider processes (Higgs, top-pair,...)

ar X1v:1011.4867
o Real-virtual. arXiv:1110.2368

e Double real-radiation for decays.arXiv:1110.2368



Ready to do physics...

Butterworth,Davison,Rubin,Salam
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The decay of a Higgs boson to
bottom-quarks is dominant for
a light Higgs boson.

A viable discovery decay
channel in associated Higgs
production.

Gluon radiation oft the
bottom-pair system is
important for fat-jet analyses.

Nice proof of principle of our
method.



Feynman diagram anatomy

.......

_______

e Fasily done analytically...
Highly complicated
application of non-linear
mappings.

e Non-trivial! Overlapping
loop and phase-space
singularities.

e Difficult, but perfect

problem for our method.



Double Virtual = " -

P o 1 > 14-€ 1 — —1—c 1 — » —1—e
by = 42“6/ dxidxodzdydx 2 y) ( ?) e
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e Two-loop integrations numerically from its Feynman
parameterization, partial fractioning and non-linear

mappings.

e Also analytically with reducing (Laporta algorithm,
AIR) to master integrals (known since 1987).

o We use the analytic result in our Monte-Carlo program
for the decay width.

e Our method can be useful for two-loop amplitudes
which are not yet known analytically (more masses, off-

shell legs, ...)



e Used Laporta algorithm (AIR) to reduce the one-loop
amplitude to master integrals (box and bubble)

e Need to integrate the one-loop box over singular
phase-space (non-smooth off-shell to on-shell leg limit)

o DU
/dP832 IS s e T )

ut

e Use Euler representation of hypergeometric function

1 e
2F1 (1, 1— Gl g, —%) 51 —Et/ dil?g %3
0

t 4+ uxs

e Apply non-linear mapping
r3t/u

> 1—$3-|-t/u

L3 |



e Our mapping simply “re”-derives a known identity

Full regulator dependence carefully expanded in epsilon

must be kept and combined and subtracted in soft/collinear limits
with phase-space measure

e Implemented both analytic and semi-analytic (non-linear
mapping) methods. Surprisingly, no difference in evaluation time



e Opverlapping singularities “thrive” in Feynman diagrams with
double real emissions

5234
S34
523
$24
512

5134

A1

A1 L
J] ==

LY 513 1

A1X2X4 STA 5 i1 T Xl

A1 a3

A2 + Az Ao

A=

_)\4)\3 S )\25\35\4 + 2 COS()\57T) \/)\2)\35\3)\45\4_

-)\35\4 i )\25\3)\4 — 2 COS()\57T) \/)\2)\35\3)\45\4_ .

e We have factorized ALL overlapping singularities with partial
fractioning and just three mapping at most!

)\2 iy Oé(>\27 )\3)

A = a(A, Aads) i A rA 4+ 7T

Ao Oé()\2,5\1)

T A




The inclusive check

e Numerically

_ | )
DIYNEO = TEO - 11+ (22 5.6666(4) + (=) 29.12(4) + O(a?)

(s m

e Analytically

2
[YNVEQ L pLO {1 - (22 5.6666666.. + (=* ) 29.146714.. + O(a?)
(s T




Initial state double real (RR)

We catalogue all possible
singular kinematic
configurations based on
denominators of " TRTTIRLIT
(physical) Feynman
diagrams.

~ 1/(5131513)

~ 1/(t31t4)




Initial state double real (RR):

Using non-linear
mappings we can
factorize all singularities
for any singular structure
in initial-initial and final-
final radiation.

1. Topology C7 @ Ch:

Topology Cy @ Cs:

d®sN ({si;})

/

(s13504)2

Y

d®sN ({si;})

513523514524

/(1‘1)31\'7({82'_7'}) /(1(1)3:\.({51]})
(s345134)%

10. Topology Cy ®

.) . 2
- S3451345234
3. Topology C3 @ C's:
~/‘d@gN('{sz-j}) j[ d®3N ({si;}) j/ d®3N ({si;})
(s13s134)% 7) s13s23s1345234° ) 1352451345234
4. Topology C7 ® Cj: ]
L/'d@3ﬁ%{su})
$3459234513524
5. Topology C7 ® Cj: |
/(I(I);gN({sij}) /d‘l’;gi\'r({sij})
$134513523814 $1345%3514
6. Topology Cy @ Cj: | |
/d‘l’g;\’v({sz’j}) / d®3N ({si;})
s31593,4513 J S3451345234503
7. Topology Cy @ Cy: |
/(1‘1’33’({&']}) /(1‘1’33’({3ij})
tatyy J  tistjatjstia
8. Topology Cy @ C4: |
L/'d@33%{su})
ti3tj4513514
9. Topology Cy @ Co: |
d®sN ({si;j})

/
/

ti3tj48345134

d®3N ({si;})
ti3t;j45135134




Initial state double real (RR)
The singularity structure in s23¢. = M1 izzz 3@;

each topology is e = A
; S23 = A1Aa\4
determined by the s )
. . : So4 = A1d2Mg A=1—)\
kinematic invariants that S12 = Ak
appear in denominators. s134 = A2+ Az
We simultaneously si3 = M| Aads + dadahs +2c05(Asm) VA As daa g

factorize them using partial = X [Ashi + Aadshs — 2cos(Asm) VA2 AshsAaha |
fractioning and three, at
most, non-linear mappings.

No differences with double Ao = a(Ag, A
real radiation from the final - A
state. a(z,A) =



On the double real (RR)

Note that the process-specific numerator 4.

can be kept arbitrary.

5.

. Topology Cy &

Topology C3 @

Topology C7 &

Topology C7 &

. Topology Cy ®

C';)I

/(14’3;\"({8U}) /(1‘1)_-3;"\".('{52-]-}_)
(3345131)2 ’ 85181318234
C'32
/dq»g;\f({sij}) / d®sN ({si;}) / d®3N ({si;})
(s135134)% 7J s1352351345231° ) 5135245134523
C'Q:
/ d®3N ({si;})
5345234513524
Cv3: »
/ d®3N ({si;}) / d®3N ({si;})
$134513523514 ) 5134573514
C'3: .
/d‘l’gf\"(}{sij}) /(1@3;‘\’({52‘]-}_)
$345734513 $3451345234523

To extend the calculation to a new process we
just need to project the new RR matrix elements

on the topology basis!



Initial state double real (RR)

The fully soft limit is special: it exposes universal
threshold contributions. We parametrize double

soft singularities by a singe variable (Q/E) which
IS never re-mapped.

GREE(2) —GRE(1)
O'RR — 5£R(1)/d2(1 — Z)_1_4€£z’j(2) —+ /dZ,CZJ(Z)(l — Z)_4€ L ( ) 4 (1)

1 —z

Threshold contributions: all remaining

phase-space variables are integrated
once and for all.

Singular in at most three PSP variables. Contains
initial state collinear singularities are cancelled

numerically against convolutions with splitting
functions.

Promise for threshold log resummation and matched
to a fully differential NNLO code.



On the Real-Virtual (RV)

Complication: Singular limit
from phase space integration /dPSSQFl(l’ Il —¢—6—7)

of a virtual amplitude. ut

(Non-smooth off-shell to on-shell
limits of master integrals).

The loop amplitude must be L

1
cast in a form that exposes £ (1,1-¢ —, _%) _ _et/ iz txj
. . Urs
the limit smoothly. ’

Non-linear mappings is a r3t/u
method to do so. 3 1 Ts +t/u




On the collinear subtraction

Collinear subtraction terms are non-trivial at NNLO.

Usually treated analytically to supply cancelation terms to
the partonic cross sections.

DIV

1
UZ/ dxidxsfi(z1)fi(x2)oii(x1,z2)
0

DIV

filz) = (Aij@@fj) (x)

1
5’@' (QEl,ZCQ) = / dyldy2d21d225(y1 — 21331)5(3/2 — ZQQUQ) e 2-d integral over
0

cross-section!
k1 (Y1, Y2, o) Agi (21) Agj (22)



On the collinear subtraction

But if we use the bare o — /1 dardas f;(21) fi (22) 0 (21, 22)
PDF’s, expanded in strong ’
coupling and the filz) = (Aij 3 fj) ()
dimensional regulator, we -
have a universal treatment. AD() = 6,601 2)

A (z) = P—
Numerical AD () = Pii’z) + % [(PS, ® PY) (2) — BoPl(2)]

implementation of bare
PDFs in a grid, like the
renormalized ones.




bb—H differentially @ NNLO

Calculation in progress:
Full LO and NLO
Double virtual
Virtual square
Double real implemented
ggbbH sub-channel completed.
Real-Virtual in implementation.

Two independent numerical implementations of the
double real subtraction process.

gg—H also in progress: no extra effort.



bb—H differentially @ NNLO

Very preliminary
result: the Higgs
rapidity distribution
in the gg—bbH
channel subchannel. | 1 .

Applying cuts on the o« : .
b-quarks, the total

against MCFM. Rapidity of H in gg—bbH channel

5 1 5 mins

iIntegrals on laptop




L
Conclusions

Years of work by the theory community have resulted to very
accurate predictions for the Higgs signal event rates, inclusively
and differentially.

There is still room for improvement, especially in the high mass
region, where the Higgs line-shape affects significantly the
exclusion/discovery interpretation. iHixs is a flexible tool that
can incorporate any

A lot remains to be done for fully differential calculations that will
be even more important when the (some) Higgs is discovered.

We see a way to systematize the treatment of the double real
emission at NNLO. We apply it to gluon fusion and bbH.

We are building a framework that is fully generic, and is ready to
engage processes with colorful and/or massive final states.



