Antenna Subtraction

James Currie Universität Zürich

Outline

- Introductory remarks
 - motivation for jet physics
 - higher order calculations
 - rival methods, relative advantages and disadvantages

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○ ○ ○

- ▶ Antenna Subtraction:
 - what is an antenna?
 - how do you use one?
- Colourful Antenna Subtraction:
 - why colour explicit?
 - antenna dipoles
 - spin structure
- NNLO Dijets
 - quark-gluon channel
 - identity changing issues
 - update on results

Jets, past and present

Jets are the only available high energy experimental QCD object

[Phys. Rev. Lett. 35: 1609 (1975)]

$$m_{jj} \sim 2.55 \text{TeV}, p_{t_1} = 420 \text{GeV}, p_{t_2} = 320 \text{GeV}$$

Many process of interest involve at least one jet in the final state:

- ▶ $pp \rightarrow jj$
- $\blacktriangleright \ pp \to H+j$
- ▶ $pp \rightarrow V + j$
- ▶ $ep \rightarrow (2+1)j$

Cross sections accurately measured and presented in differential form, e.g.

- single jet inclusive w.r.t p_T and |y|
- exclusive dijet w.r.t m_{jj} and y^*

Uses of jet data - PDFs

Single jet inclusive x-sec, constrain PDFs, in particular the gluon at large x

(ロ) (同) (ヨ) (ヨ) (ヨ) (0)

Uses of jet data - α_s

Can use single jet inclusive x-sec to fit:

Higher order corrections

- ▶ Large reduction in theoretical scale uncertainty
 - ▶ needed for a precise determination of α_s
- Improved perturbative convergence
- NNLO coefficient needed to fit NNLO PDFs
- Corrections change the normalization, but also the shape
- Jet algorithm much more realistic at NNLO
 - parton shower inside the jet using pQCD
 - additional jets from branching
- Initial-state radiation
 - ▶ more realistic final-state p_T , reduce the need for intrinsic p_T
- ▶ logarithmic corrections in pert. theory vs NP power corrections

We need NNLO pQCD corrections for a realistic simulation of the events

イロト 不同下 イヨト イヨト 一日 うらつ

For the BSM dreamers...

The Standard Model is working well... maybe too well

*Only a selection of the available mass limits on new states or phenomena shown

For the BSM dreamers...

The Standard Model is working well...maybe too well

- Scenario 1: "that's all folks!"
 - ▶ no new physical states below Λ_{GUT} , Λ_R , Λ_{PC} , Λ_{Pl}
 - finely tuned Standard Model?
 - ▶ more radical approaches, e.g. non-commutative geometry
- ▶ Scenario 2:
 - new physics is there, but hiding
 - compressed SUSY spectrum
 - BSM mimicking SM
 - ▶ just out of reach of LHC...VLHC?

イロト 不同下 イヨト イヨト 一日 うらつ

precise understanding of SM boosts our ability to resolve BSM

The NNLO marketplace

In recent years many new tools developed for NNLO

▶ all have advantages and disadvantages

	analytic	FS colour	IS colour	local
antenna subtraction	 Image: A set of the set of the	 Image: A set of the set of the	 Image: A set of the set of the	×
STRIPPER	×	1	1	1
q_T subtraction	 Image: A set of the set of the	×	1	1
reverse unitarity	 Image: A set of the set of the	×	1	-
full ME subtraction	×	 Image: A set of the set of the	×	 Image: A set of the set of the

Antenna subtraction is the only method for computing cross sections with:

うして ふぼう ふほう ふほう しょうく

- ▶ hadronic initial-states
- ▶ jets in the final-state (especially more than one jet)
- ▶ analytic pole cancellation

Subtraction at NNLO

$$d\hat{\sigma}_{ab,NNLO} = \int_{\Phi_{m+2}} d\hat{\sigma}_{ab,NNLO}^{RR} + \int_{\Phi_{m+1}} \left[d\hat{\sigma}_{ab,NNLO}^{RV} + d\hat{\sigma}_{ab,NNLO}^{MF,1} \right] + \int_{\Phi_m} \left[d\hat{\sigma}_{ab,NNLO}^{VV} + d\hat{\sigma}_{ab,NNLO}^{MF,2} \right]$$

Subtraction at NNLO

$$d\hat{\sigma}_{ab,NNLO} = \int_{\Phi_{m+2}} \left[d\hat{\sigma}_{ab,NNLO}^{RR} - d\hat{\sigma}_{ab,NNLO}^{S} \right] + \int_{\Phi_{m+1}} \left[d\hat{\sigma}_{ab,NNLO}^{RV} - d\hat{\sigma}_{ab,NNLO}^{T} \right] + \int_{\Phi_{m}} \left[d\hat{\sigma}_{ab,NNLO}^{VV} - d\hat{\sigma}_{ab,NNLO}^{U} \right]$$

$$\begin{aligned} \mathrm{d}\hat{\sigma}^{T}_{ab,NNLO} &= -\int_{1} \mathrm{d}\hat{\sigma}^{S}_{ab,NNLO} + \mathrm{d}\hat{\sigma}^{V,S}_{ab,NNLO} - \mathrm{d}\hat{\sigma}^{MF,1}_{ab,NNLO} \\ \mathrm{d}\hat{\sigma}^{U}_{ab,NNLO} &= -\int_{2} \mathrm{d}\hat{\sigma}^{S}_{ab,NNLO} - \int_{1} \mathrm{d}\hat{\sigma}^{V,S}_{ab,NNLO} - \mathrm{d}\hat{\sigma}^{MF,2}_{ab,NNLO} \end{aligned}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへぐ

What is an antenna?

Constructed from physical matrix elements

$$X_3^0(i,j,k) \sim \frac{|\mathcal{M}_3^0(i,j,k)|^2}{|\mathcal{M}_2^0(I,K)|^2}, \qquad X_4^0(i,j,k,l) \sim \frac{|\mathcal{M}_4^0(i,j,k,l)|^2}{|\mathcal{M}_2^0(I,L)|^2}$$

Three main types:

▶ Quark-antiquark. Derived from the process $\gamma^* \rightarrow q\bar{q} + \cdots$

▶ Gluon-gluon. Derived from the process $H \rightarrow gg + \cdots$

(日) (國) (國) (國)

How are they useful?

smoothly interpolates many unresolved limits

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへぐ

▶ analytically integrable...and integrated

Extending to NNLO

IR factorization depends on colour connection of partons,

$$|\mathcal{M}_n^0(\cdots,a,i,j,k,l,b\cdots)|^2$$

- ▶ i, l "colour disconnected"
- i, k and j, l "almost colour connected"
- ▶ j, k "colour connected"

For disconnected and almost colour connected singularities

 $X_3^0(a,i,j) X_3^0(J,k,l)$

For colour connected singularities we need $X_4^0(i, j, k, l)$

Antenna Subtraction Toolbox

Many tools needed for implementation:

- ▶ final-final phase space mappings [Kosower '03]
- ▶ FF X_3^0 , X_4^0 , X_3^1 antennae [Gehrmann-De Ridder, Gehrmann, Glover, '04, '05]
- ▶ integrated FF antennae [Gehrmann-De Ridder, Gehrmann, Glover, '05]

 $\Rightarrow e^+e^- \rightarrow 3$ jets at NNLO [Gehrmann-De Ridder, Gehrmann, Glover, Heinrich, '07, Weinzierl '08]

Since then, extended for hadronic initial-states:

- initial-final + initial-initial mappings [Daleo, Gehrmann, Maître, '07]
- ▶ integrated IF X_3^1, X_4^0 [Daleo, Gehrmann-De Ridder, Gehrmann, Luisoni, '10]
- integrated II X⁰₄ [Boughezal, Gehrmann-De Ridder, Ritzmann, '11. Gehrmann, Ritzmann '12]

うつう 山田 エル・エー・ エー・ショー

▶ integrated II X₃¹ [Gehrmann, Monni, '11]

All tools exist for hadron-hadron scattering

[Glover, Pires, '10. Gehrmann De-Ridder, Glover, Pires, '12. Gehrmann De-Ridder, Gehrmann,

Glover, Pires, '13. JC, Glover, Wells, '13. JC, Gehrmann De-Ridder, Glover, Pires, '14.]

Colour explicit antenna subtraction

- \blacktriangleright Take the best bits from usual method... the antennae and PS mappings
- ▶ Match onto the predictable colour space virtual singularity structure

 Resulting method needs no new integrals and applies to arbitrary processes

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○ ○ ○

1-loop singularities - Catani recap

Move into colour space with set of abstract basis vectors $|c\rangle$

$$\mathcal{M}_n = \langle oldsymbol{c} | \mathcal{M}_n
angle \quad \& \quad | \mathcal{M}_n |^2 = \langle \mathcal{M}_n | \mathcal{M}_n
angle$$

One-loop amplitude pole structure governed by colour dipole operator,

$$|\mathcal{M}_n^1\rangle = \boldsymbol{I}^{(1)}(\epsilon)|\mathcal{M}_n^0\rangle + \mathcal{O}(\epsilon^0)$$

$$I^{(1)}(\epsilon) = \sum_{\text{pairs}(i,j)} \mathcal{I}^{(1)}_{ij}(\epsilon) (T_i \cdot T_j)$$

One-loop matrix element pole structure given by,

$$2\operatorname{Re}\left[\langle \mathcal{M}_{n}^{0}|\mathcal{M}_{n}^{1}\rangle\right] = \sum_{(i,j)} 2\operatorname{Re}\left[\boldsymbol{\mathcal{I}}_{ij}^{(1)}(\epsilon)\right]\langle \mathcal{M}_{n}^{0}|(\boldsymbol{T}_{i}\cdot\boldsymbol{T}_{j})|\mathcal{M}_{n}^{0}\rangle + \mathcal{O}(\epsilon^{0})$$

ション ふゆ く は と く ほ と く 日 と

Integrated antenna dipoles

Integrated antennae contain Catani pole coefficients:

▶ set up correspondence

$$\mathcal{I}_{ij}^{(1)}(s_{ij}) \Leftrightarrow \mathcal{J}_2^{(1)}(i,j)$$

define an antenna insertion operator

$$\mathcal{J}^{(1)}(\epsilon) = \sum_{(i,j)} \mathcal{J}^{(1)}_2(i,j) \left(\mathbf{T}_i \cdot \mathbf{T}_j \right)$$

▶ virtual poles written systematically in terms of integrated antennae

$$2\operatorname{Re}\left[\langle \mathcal{M}_{n}^{0}|\mathcal{M}_{n}^{1}\rangle\right] = 2\sum_{(i,j)} \mathcal{J}_{2}^{(1)}(i,j)\langle \mathcal{M}_{n}^{0}|(\boldsymbol{T}_{i}\cdot\boldsymbol{T}_{j})|\mathcal{M}_{n}^{0}\rangle + \mathcal{O}(\epsilon^{0})$$

(日) (日) (日) (日) (日) (日) (日) (日)

• clear link between $\boldsymbol{\mathcal{J}}_2^{(1)}(i,j) \sim \mathcal{X}_3^0(s_{ij})$ and X_3^0

The $q\bar{q}gg$ real correction to $e^+e^- \rightarrow 3j$.

$$\mathrm{d}\hat{\sigma}^{R}_{NLO} \sim \int_{\Phi_{4}} \sum_{(i,j)} \left[M^{0}_{4}(1_{q}, i_{g}, j_{g}, 2_{\bar{q}}) - \frac{1}{2N^{2}} \widetilde{M}^{0}_{4}(1_{q}, i_{g}, j_{g}, 2_{\bar{q}}) \right] J^{(4)}_{3}$$

The $q\bar{q}gg$ real correction to $e^+e^- \rightarrow 3j$.

$$\begin{split} \mathrm{d}\hat{\sigma}^{R}_{NLO} &\sim \int_{\Phi_{4}} \sum_{(i,j)} \left[M^{0}_{4}(1_{q}, i_{g}, j_{g}, 2_{\bar{q}}) - \frac{1}{2N^{2}} \widetilde{M}^{0}_{4}(1_{q}, i_{g}, j_{g}, 2_{\bar{q}}) \right] J^{(4)}_{3} \\ \mathrm{d}\hat{\sigma}^{S}_{NLO} &\sim \int_{\Phi_{4}} \sum_{(i,j)} \left[\frac{d^{0}_{3}(1, i, j) M^{0}_{3}((1i)_{q}, (ij)_{g}, 2_{\bar{q}}) + \frac{d^{0}_{3}(2, j, i) M^{0}_{3}(1_{q}, (ij)_{g}, (2j)_{\bar{q}})}{-\frac{1}{N^{2}} A^{0}_{3}(1, i, 2) M^{0}_{3}((1i)_{q}, j_{g}, (2i)_{\bar{q}})} \right] J^{(3)}_{3} \end{split}$$

The $q\bar{q}gg$ real correction to $e^+e^- \rightarrow 3j$.

$$\begin{split} \mathrm{d}\hat{\sigma}_{NLO}^{R} &\sim \int_{\Phi_{4}} \sum_{(i,j)} \left[M_{4}^{0}(1_{q}, i_{g}, j_{g}, 2_{\bar{q}}) - \frac{1}{2N^{2}} \widetilde{M}_{4}^{0}(1_{q}, i_{g}, j_{g}, 2_{\bar{q}}) \right] J_{3}^{(4)} \\ \mathrm{d}\hat{\sigma}_{NLO}^{S} &\sim \int_{\Phi_{4}} \sum_{(i,j)} \left[\frac{d_{3}^{0}(1, i, j) M_{3}^{0}((1i)_{q}, (ij)_{g}, 2_{\bar{q}}) + d_{3}^{0}(2, j, i) M_{3}^{0}(1_{q}, (ij)_{g}, (2j)_{\bar{q}}) \right] \\ &- \frac{1}{N^{2}} A_{3}^{0}(1, i, 2) M_{3}^{0}((1i)_{q}, j_{g}, (2i)_{\bar{q}}) \right] J_{3}^{(3)} \\ \mathrm{d}\hat{\sigma}_{NLO}^{T} &\sim \int_{\Phi_{3}} \left[\underbrace{\frac{1}{2} \mathcal{D}_{3}^{0}(s_{13}) + \frac{1}{2} \mathcal{D}_{3}^{0}(s_{23})}_{2I_{qg}^{(1)}(s_{13}) + 2I_{qg}^{(1)}(s_{23})} - \frac{1}{N^{2}} \underbrace{\mathcal{A}_{3}^{0}(s_{12})}_{2I_{q\bar{q}\bar{q}}^{(1)}(s_{12})} \right] M_{3}^{0}(1_{q}, 3_{g}, 2_{\bar{q}}) J_{3}^{(3)} \end{split}$$

The $q\bar{q}gg$ real correction to $e^+e^- \rightarrow 3j$.

$$\begin{split} \mathrm{d}\hat{\sigma}_{NLO}^{R} &\sim \int_{\Phi_{4}} \sum_{(i,j)} \left[M_{4}^{0}(1_{q}, i_{g}, j_{g}, 2_{\bar{q}}) - \frac{1}{2N^{2}} \widetilde{M}_{4}^{0}(1_{q}, i_{g}, j_{g}, 2_{\bar{q}}) \right] J_{3}^{(4)} \\ \mathrm{d}\hat{\sigma}_{NLO}^{S} &\sim \int_{\Phi_{4}} \sum_{(i,j)} \left[d_{3}^{0}(1, i, j) M_{3}^{0}((1i)_{q}, (ij)_{g}, 2_{\bar{q}}) + d_{3}^{0}(2, j, i) M_{3}^{0}(1_{q}, (ij)_{g}, (2j)_{\bar{q}}) \right. \\ &\left. - \frac{1}{N^{2}} A_{3}^{0}(1, i, 2) M_{3}^{0}((1i)_{q}, j_{g}, (2i)_{\bar{q}}) \right] J_{3}^{(3)} \\ \mathrm{d}\hat{\sigma}_{NLO}^{T} &\sim \int_{\Phi_{3}} \left[\underbrace{\frac{1}{2} \mathcal{D}_{3}^{0}(s_{13}) + \frac{1}{2} \mathcal{D}_{3}^{0}(s_{23})}_{2I_{q\bar{q}}^{(1)}(s_{13}) + 2I_{q\bar{q}}^{(1)}(s_{23})} - \underbrace{\frac{1}{N^{2}} \underbrace{\mathcal{A}_{3}^{0}(s_{12})}_{2I_{q\bar{q}}^{(1)}(s_{12})} \right] M_{3}^{0}(1_{q}, 3_{g}, 2_{\bar{q}}) J_{3}^{(3)} \\ \mathrm{d}\hat{\sigma}_{NLO}^{V} &\sim \int_{\Phi_{3}} \left[2I_{qg}^{(1)}(s_{13}) + 2I_{qg}^{(1)}(s_{23}) - \frac{1}{N^{2}} 2I_{q\bar{q}}^{(1)}(s_{12}) \right] M_{3}^{0}(1_{q}, 3_{g}, 2_{\bar{q}}) J_{3}^{(3)} + \mathcal{O}(\epsilon^{0}) \end{split}$$

Example: $e^+e^- \rightarrow 3j$ @ NLO...colour explicit approach

For three partons q_1 , \bar{q}_2 , g_3 ,

$$T_1 \cdot T_3 = T_2 \cdot T_3 = -\frac{N}{2} \mathbf{1} , \ T_1 \cdot T_2 = \frac{1}{2N} \mathbf{1}$$

$$\mathcal{J}^{(1)}(\epsilon) = \mathcal{J}^{(1)}_{2}(1,3) (\mathbf{T}_{1} \cdot \mathbf{T}_{3}) + \mathcal{J}^{(1)}_{2}(2,3) (\mathbf{T}_{2} \cdot \mathbf{T}_{3}) + \mathcal{J}^{(1)}_{2}(1,2) (\mathbf{T}_{1} \cdot \mathbf{T}_{2})$$

Construct the virtual subtraction term,

$$\mathrm{d}\hat{\sigma}_{NLO}^{T} \sim \int_{\Phi_{3}} \langle \mathcal{M}_{3}^{0} | \boldsymbol{\mathcal{J}}^{(1)}(\epsilon) | \mathcal{M}_{3}^{0} \rangle$$

$$\mathrm{d}\hat{\sigma}_{NLO}^{T} \sim \int_{\Phi_{3}} \left[\underbrace{\mathcal{J}_{2}^{(1)}(1,3)}_{\frac{1}{2}\mathcal{D}_{3}^{0}(s_{13})} + \underbrace{\mathcal{J}_{2}^{(1)}(2,3)}_{\frac{1}{2}\mathcal{D}_{3}^{0}(s_{23})} - \frac{1}{N^{2}} \underbrace{\mathcal{J}_{2}^{(1)}(1,2)}_{\mathcal{A}_{3}^{0}(s_{12})} \right] \langle \mathcal{M}_{3}^{0} | \mathcal{M}_{3}^{0} \rangle$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへぐ

▶ same result as colour stripped approach

Unintegrated insertion operator,

$$\mathbb{X}_{3}^{0} = \sum_{(i,j)\in(3,4)} \left[X_{3}^{0}(1,i,j) \left(\mathbf{T}_{(1i)} \cdot \mathbf{T}_{(ij)} \right) + X_{3}^{0}(2,i,j) \left(\mathbf{T}_{(2i)} \cdot \mathbf{T}_{(ij)} \right) \right. \\ \left. + X_{3}^{0}(1,i,2) \left(\mathbf{T}_{(1i)} \cdot \mathbf{T}_{(i2)} \right) \right]$$

Construct the real subtraction term,

$$\mathrm{d}\hat{\sigma}^{S}_{NLO} \sim \int_{\Phi_4} \langle \widetilde{\mathcal{M}}^0_3 | \mathbb{X}^0_3 | \widetilde{\mathcal{M}}^0_3 \rangle$$

$$\begin{split} \mathrm{d}\hat{\sigma}^{S}_{NLO} &\sim \int_{\Phi_4} \sum_{(i,j)\in(3,4)} \left[X^0_3(1,i,j) \langle \widetilde{\mathcal{M}}^0_3 | \widetilde{\mathcal{M}}^0_3 \rangle + X^0_3(2,i,j) \langle \widetilde{\mathcal{M}}^0_3 | \widetilde{\mathcal{M}}^0_3 \rangle \right. \\ &\left. - \frac{1}{N^2} X^0_3(1,i,2) \langle \widetilde{\mathcal{M}}^0_3 | \widetilde{\mathcal{M}}^0_3 \rangle \right] \, J^{(4)}_3 \end{split}$$

▶ same result as colour stripped approach

Colour explicit antenna subtraction @ NLO: summary

Strategy:

- construct virtual subtraction term from inserting $\mathcal{J}^{(1)}(\epsilon)$
- construct real subtraction term from inserting X_3^0
- evaluate explicitly in the most convenient colour basis

Features:

- ▶ can translate easily between the two approaches
- ▶ real subtraction constructed algorithmically without detailed knowledge of ME

うつん 川田 スポット エット スロッ

- leading and sub-leading colour on same footing
- ▶ can be applied to arbitrary processes...automatable

Aside...spin correlations

Antennae are spin-averaged,

$$X_3^0(i,j,k) \mid \mathcal{M}_n^0 \mid^2 \stackrel{i \mid |j \to g}{\longrightarrow} P_{ij \to g}^0(z) \mid \mathcal{M}_n^0 \mid^2,$$

but $g \to gg$ and $g \to q\bar{q}$ splittings contain azimuthal correlations,

$$\begin{aligned} |\mathcal{M}_{n+1}^{0}|^{2} & \stackrel{i||j \to g}{\longrightarrow} & P_{ij \to g}^{0,\mu\nu}(z) \; |\mathcal{M}_{n}^{0}|_{\mu\nu}^{2} \\ &= & P_{ij \to g}^{0}(z) \; |\mathcal{M}_{n}^{0}|^{2} + \underbrace{\text{ang. terms}}_{\sim \cos(2\phi)} \end{aligned}$$

うつん 川田 スポット エット スロッ

Pair up PS points related by $\Delta \phi = \pi/2$

- ▶ angular terms cancel
- ▶ antennae properly subtract matrix elements
- computational cost (also gain from improved convergence)
- ▶ difficult to match NLO method to parton showers etc

Tensorial antennae

We would like to have tensorial antennae for fully local subtraction,

$$\langle \cdots, \lambda_I, \cdots, \lambda_K \cdots | X^0_{3, I, I', K, K'}(i, j, k) | \cdots, \lambda_{I'}, \cdots, \lambda_{K'} \cdots \rangle$$

- define a generalized spin-correlation tensor $\Theta_{\mu\nu}$
- ► construct tensorial antennae, $X^0_{3,\mu\nu}(i,j,k), X^0_{3,\mu\nu\rho\sigma}(i,j,k)$
 - tends to tensorial splitting function in collinear limit
 - yields spin averaged antenna when contracted with polarization tensor

- no new integrals needed
- ▶ antennae promoted to matrices in spin space and colour space
- local subtraction for arbitrary processes @ NLO
- can a similar procedure be achieved @ NNLO?

Extending to NNLO - 2-loop singularities recap

$$|\mathcal{M}_n^2\rangle = \boldsymbol{I}^{(1)}(\epsilon)|\mathcal{M}_n^1\rangle + \boldsymbol{I}^{(2)}(\epsilon)|\mathcal{M}_n^0\rangle + \mathcal{O}(\epsilon^0)$$

$$I^{(2)}(\epsilon) = -\frac{1}{2}I^{(1)}(\epsilon)I^{(1)}(\epsilon) - \frac{\beta_0}{\epsilon}I^{(1)}(\epsilon) + \frac{e^{-\epsilon\gamma}\Gamma(1-2\epsilon)}{\Gamma(1-\epsilon)}\left(\frac{\beta_0}{\epsilon} + K\right)I^{(1)}(2\epsilon) + H^{(2)}(\epsilon)$$

Leads to the two-loop ME pole structure,

$$\begin{split} M_n^2|^2 &= \langle \mathcal{M}_n^1 | 2 \mathrm{Re} \Big[\mathbf{I}^{(1)}(\epsilon) \Big] | \mathcal{M}_n^0 \rangle + \langle \mathcal{M}_n^0 | 2 \mathrm{Re} \Big[\mathbf{I}^{(1)}(\epsilon) \Big] | \mathcal{M}_n^1 \rangle \\ &- \frac{1}{2} \langle \mathcal{M}_n^0 | 2 \mathrm{Re} \Big[\mathbf{I}^{(1)}(\epsilon) \Big]^2 | \mathcal{M}_n^0 \rangle - \frac{\beta_0}{\epsilon} \langle \mathcal{M}_n^1 | 2 \mathrm{Re} \Big[\mathbf{I}^{(1)}(\epsilon) \Big] | \mathcal{M}_n^0 \rangle \\ &+ e^{-\epsilon \gamma} \frac{\Gamma(1 - 2\epsilon)}{\Gamma(1 - \epsilon)} \Big(\frac{\beta_0}{\epsilon} + K \Big) \langle \mathcal{M}_n^0 | 2 \mathrm{Re} \Big[\mathbf{I}^{(1)}(2\epsilon) \Big] | \mathcal{M}_n^0 \rangle \\ &+ \langle \mathcal{M}_n^0 | 2 \mathrm{Re} \Big[\mathbf{H}^{(2)}(\epsilon) \Big] | \mathcal{M}_n^0 \rangle + \mathcal{O}(\epsilon^0) \end{split}$$

A dipole form for the Hard Function

Has the general form,

$$\boldsymbol{H}^{(2)}(\boldsymbol{\epsilon}) = \sum_{i} C_{i} \boldsymbol{\mathcal{H}}_{i}^{(2)}(\boldsymbol{\epsilon}) + \boldsymbol{\check{H}}^{(2)}(\boldsymbol{\epsilon}) + \boldsymbol{\mathcal{O}}(\boldsymbol{\epsilon})$$

$$\begin{array}{l} \bullet \ \boldsymbol{\mathcal{H}}_{i}^{(2)}(\epsilon) \text{ diagonal in colour space} \\ \bullet \ \boldsymbol{\check{H}}^{(2)}(\epsilon) \text{ a non-dipole tensor in colour space} \end{array} \right\} \text{ neither are colour dipoles} \\ \text{However...} \end{array}$$

$$\langle \mathcal{M}_n^0 | \check{\boldsymbol{H}}^{(2)}(\epsilon) | \mathcal{M}_n^0 \rangle = 0$$

then using colour conservation,

$$oldsymbol{H}^{(2)}(\epsilon) = -\sum_{(i,j)} oldsymbol{\mathcal{H}}^{(2)}_{ij}(\epsilon) \; (oldsymbol{T}_i \cdot oldsymbol{T}_j) + ext{irrelevant terms}$$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 – のへで

2-loop integrated antenna dipoles

Define a 2-loop insertion operator,

$$\boldsymbol{\mathcal{J}}^{(2)}(\epsilon) = \sum_{(i,j)} \boldsymbol{\mathcal{J}}_2^{(2)}(i,j) \ (\boldsymbol{T}_i \cdot \boldsymbol{T}_j)$$

$$\mathcal{J}_{2}^{(2)}(i,j) \sim \mathcal{X}_{4}^{0}(s_{ij}) + \mathcal{X}_{3}^{1}(s_{ij}) + \frac{\beta_{0}}{\epsilon} \mathcal{X}_{3}^{0} \left[\left(\frac{s_{ij}}{\mu^{2}} \right)^{-\epsilon} - 1 \right] + \mathcal{X}_{3}^{0}(s_{ij}) \otimes \mathcal{X}_{3}^{0}(s_{ij})$$

Double virtual subtraction term,

$$\begin{aligned} \mathrm{d}\hat{\sigma}^{U}_{NNLO} &\sim & \langle \mathcal{M}^{1}_{n} | \boldsymbol{\mathcal{J}}^{(1)}(\epsilon) | \mathcal{M}^{0}_{n} \rangle + \langle \mathcal{M}^{0}_{n} | \boldsymbol{\mathcal{J}}^{(1)}(\epsilon) | \mathcal{M}^{1}_{n} \rangle \\ &+ & \langle \mathcal{M}^{0}_{n} | \boldsymbol{\mathcal{J}}^{(1)}(\epsilon) \boldsymbol{\mathcal{J}}^{(1)}(\epsilon) | \mathcal{M}^{0}_{n} \rangle \\ &+ & \langle \mathcal{M}^{0}_{n} | \boldsymbol{\mathcal{J}}^{(2)}(\epsilon) | \mathcal{M}^{0}_{n} \rangle \end{aligned}$$

Cascading down the calculation

Real-virtual involves the operators

$$\begin{split} \langle \mathcal{M}_{n+1}^{0} | \boldsymbol{\mathcal{J}}^{(1)}(\epsilon) | \mathcal{M}_{n+1}^{0} \rangle \\ \langle \widetilde{\mathcal{M}}_{n}^{0} | \mathbb{X}_{3}^{1} | \widetilde{\mathcal{M}}_{n}^{0} \rangle \\ \langle \widetilde{\mathcal{M}}_{n}^{1} | \mathbb{X}_{3}^{0} | \widetilde{\mathcal{M}}_{n}^{0} \rangle \\ \langle \widetilde{\mathcal{M}}_{n}^{0} | \boldsymbol{\mathcal{J}}^{(1)}(\epsilon) \otimes \mathbb{X}_{3}^{0} | \widetilde{\mathcal{M}}_{n}^{0} \rangle \end{split}$$

Double real built from,

$$\begin{split} &\langle \widetilde{\mathcal{M}}_{n+1}^{0} | \mathbb{X}_{3}^{0} | \widetilde{\mathcal{M}}_{n+1}^{0} \rangle \\ &\langle \widetilde{\mathcal{M}}_{n}^{0} | \mathbb{X}_{4}^{0} | \widetilde{\mathcal{M}}_{n}^{0} \rangle \\ &\langle \widetilde{\mathcal{M}}_{n}^{0} | \mathbb{X}_{3}^{0} \otimes \mathbb{X}_{3}^{0} | \widetilde{\mathcal{M}}_{n}^{0} \rangle \end{split}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへぐ

$$\langle \mathcal{M}_n^0 | oldsymbol{\mathcal{J}}^{(2)} | \mathcal{M}_n^0
angle$$

$$\langle \mathcal{M}_n^0 | oldsymbol{\mathcal{J}}^{(1)} | \mathcal{M}_n^1
angle$$

$$\langle \mathcal{M}_n^0 | oldsymbol{\mathcal{J}}^{(1)} \otimes oldsymbol{\mathcal{J}}^{(1)} | \mathcal{M}_n^0
angle$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへぐ

Colourful subtraction - summary

- ▶ Subtraction term can be written in colour space
- guided by universal singularity structure
- ▶ gives full matrix element subtraction, not just LC
- ▶ algorithmic and automatable

but... requires a full set of dipoles for a general scheme

うつん 川田 スポット エット スロッ

- currently have all NLO dipoles
- ▶ all NNLO FF dipoles
- ▶ all NNLO FF, IF and II pure gluon dipoles
- many more, but not a complete set...yet!

NNLO calculations under way

▶ $pp \rightarrow jj$ [JC, Gehrmann De-Ridder, Gehrmann, Glover, Pires, Wells]

- ▶ $gg \rightarrow jj$ leading colour ✓
- ▶ $gg \rightarrow jj$ sub-leading colour ✓
- ▶ $q\bar{q} \rightarrow jj$ leading colour ✓
- $qg \rightarrow jj$ leading colour nearly there!
- $gg \rightarrow jj$ leading N_F in preparation

▶
$$ep \rightarrow (2+1)j$$
 [JC, Gehrmann, Niehues]

ション ふゆ アメリア メリア しょうくしゃ

LHC 8TeV

▶ $pp \rightarrow V + j$ [JC, Gehrmann De-Ridder, Gehrmann, Glover, Morgan, Piebinga]

NNLO calculations under way

- ▶ $pp \rightarrow jj$ [JC, Gehrmann De-Ridder, Gehrmann, Glover, Pires, Wells]
 - ▶ $gg \rightarrow jj$ leading colour ✓
 - ▶ $gg \rightarrow jj$ sub-leading colour ✓
 - ▶ $q\bar{q} \rightarrow jj$ leading colour ✓
 - $qg \rightarrow jj$ leading colour nearly there!
 - $gg \rightarrow jj$ leading N_F in preparation

▶
$$ep \rightarrow (2+1)j$$
 [JC, Gehrmann, Niehues]

 $\blacktriangleright \ pp \to H+j \ [\texttt{Chen, Gehrmann, Glover, Jaquier}]$

▶ $pp \rightarrow V + j$ [JC, Gehrmann De-Ridder, Gehrmann, Glover, Morgan, Piebinga]

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

NNLO RR dijet subtraction terms

Constructed from three main contributions,

$$\mathrm{d}\hat{\sigma}^{S}_{NNLO} = \mathrm{d}\hat{\sigma}^{S,a}_{NNLO} + \mathrm{d}\hat{\sigma}^{S,b}_{NNLO} + \mathrm{d}\hat{\sigma}^{S,c,d,e}_{NNLO}$$

▶ a-term removes single unresolved divergence

$$\mathrm{d}\hat{\sigma}_{NNLO}^{S,a} \sim X_3^0(i,j,k) \; M_5^0(\cdots,I,K,\cdots)$$

▶ b-term removes double unresolved divergence

$$\begin{array}{rcl} \mathrm{d}\hat{\sigma}^{S,b}_{NNLO} &\sim & X^0_4(i,j,k,l) \; M^0_4(\cdots,I,L,\cdots) \\ & & - & X^0_3(i,j,k) \; X^0_3(I,K,l) \; M^0_4(\cdots,I,L,\cdots) \\ & & - & X^0_3(j,k,l) \; X^0_3(i,J,L) \; M^0_4(\cdots,I,L,\cdots). \end{array}$$

▶ c,d,e-terms remove any spurious over-subtraction in a- and b-terms

Example, $q\bar{q} \rightarrow gggg$

Need to perform subtraction for

$$|M_6^0|^2 \sim \sum_{P(i,j,k,l)} M_6^0(1_q, i, j, k, l, 2_{\bar{q}})$$

00000

A COO

ション ふゆ く は と く ほ と く 日 と

Double unresolved limits subtracted using,

$$\begin{split} \mathrm{d}\hat{\sigma}^{b}_{NNLO} ~\sim & \sum ~~ + ~~ D^{0}_{4}(1,i,j,k) ~~ M^{0}_{4}(\bar{1},(\widetilde{ijk}),l,2) \\ & + ~~ F^{0}_{4}(i,j,k,l) ~~ M^{0}_{4}(1,(\widetilde{ijk}),(\widetilde{jkl}),2) \\ & + ~~ D^{0}_{4}(2,l,k,j) ~~ M^{0}_{4}(1,i,(\widetilde{jkl}),\bar{2}) \\ & - ~~ \tilde{A}^{0}_{4}(1,i,k,2) ~~ M^{0}_{4}(\bar{1},\tilde{j},\tilde{l},\bar{2}) \end{split}$$

 full subtraction term successfully removes all single and double unresolved divergence

Quark-gluon channel: identity changing collinear limits

Need to perform subtraction for

$$|M_6^0|^2 \sim \sum_{P(2,i,j,k)} M_6^0(\mathbf{1}_q, \mathbf{2}_g, i, j, k, Q)$$

Matrix element can collapse onto different initial states

- \blacktriangleright quark-gluon, e.g., 2|i|j, i|j|k, Q|i|j etc
- \blacktriangleright quark-antiquark e.g., 2|i|Q etc
- ▶ gluon-gluon e.g. 1|i|Q etc

うつん 川田 スポット エット スロッ

Quark-gluon channel: identity changing collinear limits

Need to perform subtraction for

$$|M_6^0|^2 \sim \sum_{P(2,i,j,k)} M_6^0(\mathbf{1}_q, \mathbf{2}_g, i, j, k, Q)$$

Matrix element can collapse onto different initial states

- \blacktriangleright quark-gluon, e.g., 2|i|j, i|j|k, Q|i|j etc
- quark-antiquark e.g., 2|i|Q etc
- ▶ gluon-gluon e.g. 1|i|Q etc

But subtraction term must make a choice

 $D_4^0(Q, i, j, 2) \ M_4^0(1, k, \overline{2}, (\widetilde{ijQ}))$

or

 $D_4^0(Q, i, j, 2) \ M_4^0(1, k, (\widetilde{ijQ}), \overline{2})$

many spurious divergences

うつん 川田 スポット エット スロッ

Double real quark-gluon channel tests

Preliminary dijet results

Preliminary results for full-colour "gluons only" scattering and leading colour $q\bar{q}$ scattering combined

Numerical setup and cuts:

- ▶ leading jet transverse momentum $p_{T_1} > 80 \text{ GeV}$
- all other jets with at least $p_T > 60 \text{ GeV}$
- jets with rapidities |y| < 4.4 considered
- anti- k_T jet algorithm with R = 0.7
- ▶ all scales taken to be common dynamical scale $\mu = p_{T_1}$

うつん 川田 スポット エット スロッ

▶ MSTW2008NNLO PDF set

Inclusive jet p_T distribution

イロト 不同ト イヨト イヨト

- 12

 \blacktriangleright NNLO correction between $\sim 15\%$ and 26% w.r.t NLO

• K-factor at high p_T brought under control

Double differential inclusive jet p_T distribution

- コト - (四下 - 4日下 - 4日下 - 日

- ▶ NNLO correction between $\sim 15\%$ and 26% w.r.t NLO
- similar effects in other rapidity slices

Double differential exclusive dijet distribution

- ▶ NNLO correction $\sim 20\%$ w.r.t NLO
- similar effects in other y^* slices

Inclusive jet p_T scale dependence

Full colour gluons only contribution

▲□▶ ▲課▶ ★注▶ ★注▶ 注: のへで

Summary

Antenna subtraction is one of the most powerful and versatile methods for NNLO computations

- allows hadronic initial states
- can cope with several final-state jets
- ▶ analytic pole cancellation
- colour explicit formalism generalizes to arbitrary processes and SLC
- many calculations under way
 - expect some preliminary dijet results soon
- new generalizations of the method in progress

Thank you for your attention!

うして ふぼう ふほう ふほう しょうく