Scattering Amplitudes and Top Phenomenology with OpenLoops

Stefano Pozzorini Zürich University

based on

F. Cascioli, P. Maierhöfer and S.P., PRL 108 (2012) 111601 [arXiv:1111.5206]

F. Cascioli, S. Höche, F. Krauss, P. Maierhöfer, S. P. and F. Siegert, arXiv:1309.0500

F. Cascioli, P. Maierhöfer, N. Moretti, S. P. and F. Siegert, arXiv:1309.5912

F. Cascioli, S. Kallweit, P. Maierhöfer and S. P., arXiv:1312.0546

Humboldt University, Berlin, 30 January 2014

Outline of the talk

- (A) Introduction
- (B) OpenLoops algorithm
- (C) A unified NLO description of tt and Wt production
- (D) MC@NLO matching for $t\bar{t}b\bar{b}$ production with $m_b > 0$

(A) Introduction

NLO Revolution and Automation

NLO QCD calculations for $2 \rightarrow 4(5,6)$ processes at the LHC

- many recent results (2009-2013): 5j, W + 5j, Z + 4j, H + 3j, WWjj, WZjj, $\gamma\gamma + 3j$, W $\gamma\gamma j$, WWb \bar{b} , b $\bar{b}b\bar{b}$, t $\bar{t}b\bar{b}$, t $\bar{t}t\bar{t}$, ...
- NLO wish list closed since $2\rightarrow 4$ NLO feasibility well established (... but various results still incomplete ...)
- serious multi-particle simulations important for Run $2 \Rightarrow$ emphasis should move from proof-of-concept papers to complete simulations and nontrivial pheno studies
- technical frontier just shifted and still exciting to explore

NLO automation including matching and merging

- many tools: CutTools, Samurai, HELAC-NLO, MadLoop, GoSam, BlackHat, NGluon, OpenLoops, Collier, Recola, MADGRAPH/aMC@NLO, POWHEG, Sherpa, Herwig, Pythia
- new attitude towards R&D at NLO: think more in terms of general methodological features (e.g. EW corrections) and less in terms of single processes
- ...keeping in mind that simulation of every single process needs to be well understood and some processes will require more than "vanilla NLO"
- methodology and phenomenology at NLO much more involved wrt LO: usage, maintanance and development of tools requires much higher level of expertise and TH/EXP cross-talk
- algorithmic efficiency crucial in order to promote NLO to the default accuracy in LHC studies \Rightarrow don't stop R&D

(B) The OpenLoops Algorithm [Cascioli, Maierhöfer, S.P '11]

$$= \sum_{i} d_{i} + \sum_{i} c_{i} + \sum_{i} b_{i} + \sum_{i} a_{i}$$

OpenLoops Generator [Cascioli, Maierhöfer, S.P., PRL 108 (2012) 111601]

- fully automated generation of tree and loop amplitudes for NLO (with UV/IR CTs)
- conceived to break multi-particle bottlenecks (fast, stable, flexible)
- NLO QCD for $2 \to 2, 3, 4$ SM processes $(2 \to 5 \text{ and NLO EW possible})$

Hybrid "tree-loop" algorithmic approach

- constructs process-dependent 1-loop ingredients with hybrid "tree—loop" approach based on diagrammatic building blocks (openloops)
- pinch relations to obtain n-point diagrams from (n-1)-point diagrams
- works in combination with both tensor-integral and OPP reduction
- numerical recursion inspired by 1-loop Dyson-Schwinger recursion [van Hameren '09]

Tree generator

Colour-stripped tree diagrams are built numerically in terms of sub-trees

$$w^{\beta}(i) = -i$$
: $\beta \leftrightarrow \text{off-shell line spin}$

and recursively merged by attaching vertices and propagators

Completely generic and automatic (similar to Madgraph+HELAS)

- flexible (only \mathcal{L}_{int} dependent)
- fast (many diagrams share common sub-trees)
- efficient colour bookkeeping (colour factorisation and algebraic reduction)

$$\bullet - \underbrace{(i)}_{i} := \bullet - \underbrace{(i)}_{j} : \qquad w^{\beta}(i) = \frac{X^{\beta}_{\gamma\delta}(i,j,k)}{p_{i}^{2} - m_{i}^{2}} w^{\gamma}(j) w^{\delta}(k)$$

sub-tree = individual topology with off-shell line \neq off-shell current

Example

$$w_{\alpha}(1) = \longrightarrow = \bar{u}_{\alpha}(p_{1}, \lambda_{1}) \qquad w_{\mu}(2) = \longleftarrow = \epsilon_{\mu}^{*}(p_{2}, \lambda_{2})$$

$$w_{\beta}(12) = \longrightarrow = \frac{g_{S} \left[(\not p_{12} + m)\gamma^{\mu} \right]_{\alpha\beta}}{p_{12}^{2} - m^{2}} w_{\alpha}(1) w_{\mu}(2) \qquad w_{\nu}(3) = \longrightarrow = \epsilon_{\nu}^{*}(p_{3}, \lambda_{3})$$

$$w_{\gamma}(123) = \longrightarrow = \frac{e \left[(\not p_{123} + m)\gamma^{\nu}(1 - \gamma_{5}) \right]_{\beta\gamma}}{2\sqrt{2}s_{W}(p_{123}^{2} - m^{2})} w_{\beta}(12) w_{\nu}(3) \qquad \text{etc.}$$

Recursion terminates when full set of diagram can be obtained via sub-diagram merging

Colour-stripped loop diagrams (and reduction to basis integrals)

OpenLoops computes symmetrised $\mathcal{N}_{\mu_1...\mu_r}(\mathcal{I}_n)$ coefficients

tensor-rank	R	0	1	2	3	4	5	6
# coeff. per diagram	$\begin{pmatrix} R+4 \\ 4 \end{pmatrix}$	1	5	15	35	70	126	210
	,	•				6	particl	es

and applies two alternative reductions:

- (A) Tensor-integral reduction [Denner/Dittmaier '05] avoids instabilities (Gram-determinant expansions)
- (B) **OPP reduction** [Ossola, Papadopolous, Pittau '07] based on numerical evaluation of $\mathcal{N}(\mathcal{I}_n;q) = \sum \mathcal{N}_{\mu_1...\mu_r}(\mathcal{I}_n) \ q^{\mu_1} \dots q^{\mu_r}$ at multiple q-values (strong speed-up!)

Tree generators for "usual" OPP-input $\mathcal{N}(\mathcal{I}_n;q)$

Cut-open loops can be built by recursively attaching external sub-trees

$$\mathcal{N}_{\alpha}^{\beta}(\mathcal{I}_n;q) = X_{\gamma\delta}^{\beta}(\mathcal{I}_n,i_n,\mathcal{I}_{n-1}) \, \mathcal{N}_{\alpha}^{\gamma}(\mathcal{I}_{n-1};q) \, w^{\delta}(i_n)$$

like in conventional tree generators

- one-loop automation in Helac-NLO (off-shell recursion) and MadLoop (diagrams)
- CPU expensive OPP reduction (multiple-q evaluations) since tree algorithms conceived for fixed momenta

Nature of loop amplitudes requires loop-momentum functional dependence!

OpenLoops recursion for $\mathcal{N}_{\mu_1...\mu_r;\alpha}^{\beta}(\mathcal{I}_n)$

Handle building blocks of recursion as polynomials in the loop momentum q

$$\underbrace{\mathcal{N}_{\alpha}^{\beta}(\mathcal{I}_{n};q)}_{r=0} = \underbrace{X_{\gamma\delta}^{\beta}(\mathcal{I}_{n},i_{n},\mathcal{I}_{n-1})}_{\gamma\delta} \underbrace{\mathcal{N}_{\alpha}^{\gamma}(\mathcal{I}_{n-1};q)}_{n-1} w^{\delta}(i_{n})$$

$$\underbrace{\sum_{r=0}^{n} \mathcal{N}_{\mu_{1}...\mu_{r};\alpha}^{\beta}(\mathcal{I}_{n}) q^{\mu_{1}}...q^{\mu_{r}}}_{r=0} = \underbrace{Y_{\gamma\delta}^{\beta} + q^{\nu} Z_{\nu;\gamma\delta}^{\beta}}_{\gamma\delta} \underbrace{\sum_{r=0}^{n-1} \mathcal{N}_{\mu_{1}...\mu_{r};\alpha}^{\beta}(\mathcal{I}_{n-1}) q^{\mu_{1}}...q^{\mu_{r}}}_{m_{r}}$$

and construct polynomial coefficients with "open loops recursion"

$$\mathcal{N}^{\beta}_{\mu_1\dots\mu_r;\alpha}(\mathcal{I}_n) = \left[Y^{\beta}_{\gamma\delta} \, \mathcal{N}^{\gamma}_{\mu_1\dots\mu_r;\alpha}(\mathcal{I}_{n-1}) + Z^{\beta}_{\mu_1;\gamma\delta} \, \mathcal{N}^{\gamma}_{\mu_2\dots\mu_r;\alpha}(\mathcal{I}_{n-1}) \right] \, w^{\delta}(i_n)$$

Key features

• tree-like recursion supplemented with complete loop-momentum information

- fully flexible and automated (universal kernels dictated by Feynman rules)
- very fast thanks to:
 - optimal implementation
 - helicity/colour/loop decoupling
 - pinch relations: n-point loop diagrams can be obtained starting from pre-computed (n-1)-point child diagrams

Example

Complicated diagrams require only "last missing piece" (always works in QCD!)

Example of OpenLoops recursion for a fermionic loop

$$\mathcal{N}_{\alpha}^{\beta}(\mathcal{I}_{n};q) = \int_{i_{1}}^{i_{n-1}} \left[\left(\mathbf{q} + \mathbf{p}_{n} + \mathbf{m} \right) \gamma^{\nu} \right]_{\beta\gamma} \mathcal{N}_{\alpha}^{\gamma}(\mathcal{I}_{n-1};q) \varepsilon_{\nu}^{*}(p_{n},\lambda_{n})$$

• n-point open-loop coefficients of rank $r = 0, 1, \dots, n$

$$\mathcal{N}_{;\alpha}^{\beta}(\mathcal{I}_{n}) = g_{S}[(\not p_{n} + m)\gamma^{\nu}]_{\beta\gamma} \, \mathcal{N}_{;\alpha}^{\gamma}(\mathcal{I}_{n-1}) \, \varepsilon_{\nu}^{*}(p_{n}, \lambda_{n})$$

$$\mathcal{N}_{\mu_{1};\alpha}^{\beta}(\mathcal{I}_{n}) = g_{S}\left\{[(\not p_{n} + m)\gamma^{\nu}]_{\beta\gamma} \, \mathcal{N}_{\mu_{1};\alpha}^{\gamma}(\mathcal{I}_{n-1}) + [\gamma_{\mu_{1}}\gamma^{\nu}]_{\beta\gamma} \, \mathcal{N}_{;\alpha}^{\gamma}(\mathcal{I}_{n-1})\right] \, \varepsilon_{\nu}^{*}(p_{n}, \lambda_{n})$$
etc.

• initial condition for 0-point rank-0 open loop

$$\mathcal{N}^{\gamma}_{;\alpha}(\mathcal{I}_0) = \delta^{\gamma}_{\alpha}$$

- rank, i.e. complexity, increases with $n \Rightarrow \text{symmetrised } \mu_1 \dots \mu_r \text{ components!}$
- bookkeeping of tensor components fully automated

R_2 Rational Terms

Extra rational terms from $3 < \mu_1, \ldots, \mu_r \le D - 1$ coefficient components

$$R_{2} = \sum_{\mu_{1}...\mu_{r}=0}^{D-1} \mathcal{N}_{\mu_{1}...\mu_{r}} \left| \begin{array}{c} T_{\text{UV}}^{\mu_{1}...\mu_{r}} \\ D=4-2\varepsilon \end{array} \right| - \sum_{\mu_{1}...\mu_{r}=0}^{3} \mathcal{N}_{\mu_{1}...\mu_{r}} \left| \begin{array}{c} T_{\text{UV}}^{\mu_{1}...\mu_{r}} \\ D=4 \end{array} \right|$$

From catalogue of 2-, 3- and 4-point 1PI diagrams (depends only on model)

$$\left(\begin{array}{c} Z \\ \\ \end{array}\right)_{R_{2}} = \begin{array}{c} Z \\ \\ \end{array}\right) = -\frac{g_{\mathrm{S}}^{2}}{16\pi^{2}} \frac{N_{c}^{2} - 1}{2N_{c}} \gamma^{\mu} (g_{\mathrm{V}}^{\mathrm{Z}} - g_{\mathrm{A}}^{\mathrm{Z}} \gamma_{5}) \end{array} \qquad \text{etc.}$$

OpenLoops Implementation and Technical Features

One-loop QCD corrections to SM processes fully automated

• process-definition file \Rightarrow Fortran 90 libraries for matrix elements

Other technical features

- interfaced to Collier library [Denner, Dittmaier, Hofer] for tensor integrals
- on-the-fly quadruple precision (very useful for benchmarks and NNLO)
- loop-induced processes
- speed of tree amplitudes optimised
- precision checks against independent in-house generator for > 100 processes

• . . .

Flexibility and Automation

	T	
Process	size [MB]	$t_{ m code}\left[m s ight]$
$u\bar{u} \to t\bar{t}$	0.1	2.2
$u\bar{u} \to W^+W^-$	0.1	7.2
$u\bar{d} \to W^+ g$	0.1	4.2
$gg o t\bar{t}$	0.2	5.4
$u\bar{u} \to t\bar{t}g$	0.4	12.8
$u\bar{u} \to W^+W^-g$	0.4	39.8
$u\bar{d} \to W^+ gg$	0.5	22.9
gg o t ar t g	1.2	52.9
$u \bar u o t ar t g g$	3.6 (200)*	$236 \ (\sim 10^6)^*$
$u\bar{u} \to W^+W^-gg$	$2.5 (1000)^*$	$381.7 \ (\sim 10^6)^*$
$u\bar{d} \to W^+ ggg$	4.2	366.2
gg o t ar t gg	16.0	3005

Compact code

- 100 kB to few MB object files
- $\mathcal{O}(10^2 10^3)$ compression in $2 \to 4$

Fast code generation/compilation

- few seconds to minutes
- $\mathcal{O}(10^3)$ speed-up in $2 \to 4$

Large-scale applicability!

^{*}pp $\to t\bar{t}b\bar{b}$ & WWb \bar{b} (Bredenstein, Denner, Dittmaier, Kallweit and S.P. '09-'11)

High CPU efficiency for multi-particle processes

Timings including col/hel sums (Intel i5-750 core)

$2 \rightarrow 4$ amplitudes

- $\mathcal{O}(10^3)$ diagrams in $\mathcal{O}(10^2)$ ms/point
- competitive with fastest codes

Scaling

- linear n_{diag} -scaling $\Rightarrow \mathcal{O}(10^5)$ diagrams feasible
- factor 20 per extra leg \Rightarrow 2 \rightarrow 5 feasible

Tensor-reduction vs OPP

• similar timings with OpenLoops!

Numerical stability with tensor reduction in double precision

Stability Δ in samples of 10^6 points $(\sqrt{\hat{s}} = 1 \text{ TeV}, p_T > 50 \text{ GeV}, \Delta R_{ij} > 0.5)$

Average number of correct digits

• 11-15

Cross section accuracy

- depends on tails
- stability issues grow with n_{part}

$2 \rightarrow 4$ processes very stable

- $\lesssim 0.01\%$ prob. that $\Delta_{\rm S} < 10^{-3}$
- thanks to Gram-determinant expansions in Collier!

Real-life NLO applications

- $\mathcal{O}(10^{-4})$ unstable points in most challenging $2 \to 4$ calculations considered so far
- can be monitored and safely suppressed thanks to **online instability-trigger**

Interfacing OpenLoops with NLO Monte-Carlo Tools

Interface with various MC tools (IR subtraction, integration) provide complete automation from process definition to hadron-collider observables

- dedicated interface to Sherpa2.0
 - automated matching (MC@NLO) to Sherpa shower and multi-jet merging (MEPS@NLO)
- parton-level Monte-Carlo by S. Kallweit
 - fully automated and very fast MC integrator
- standard BLHA interface
 - applicable to any other Monte-Carlo tool
 - completed very recently in combination with Herwig++ and now under validation

First OpenLoops Applications

Recent papers

- MEPS@NLO for $\ell\ell\nu\nu+0,1$ jets, Cascioli, Höche, Krauss, Maierhöfer, S. P. and Siegert, arXiv:1309.0500
- MC@NLO for pp \rightarrow ttbb with $m_{\rm b} > 0$, Cascioli, Maierhöfer, Moretti, S. P. and Siegert, arXiv:1309.5912
- NLO for pp \to W⁺W⁻b \bar{b} with $m_b > 0$, Cascioli, Kallweit, Maierhöfer and S. P., arXiv:1312.0546
- NNLO for pp $\rightarrow \gamma Z$ production, Grazzini, Kallweit, Rathlev and Torre, arXiv:1309.7000
- NLO merging for pp o HH+0.1 jets, Maierhöfer and Papaefstathiou, arXiv:1401.0007

General motivation

- Higgs phenomenology
- technical stress tests for OpenLoops: multi-particle and multi-scale processes, loop-induced processes, multiple resonances, . . .
- beyond parton-level NLO: MC@NLO, MEPS@NLO and NNLO applications

Publication Plans and Process Library

Towards OpenLoops publication

- all technical prerequisites essentially fulfilled: many processes validated, good experience in challenging real-life applications, BLHA interface almost ready
- we aim at code release in early 2014

The release is planned as NLO QCD library for $2 \rightarrow 2, 3, 4$ processes

- first version already available to MCWGs of ATLAS/CMS
- new processes can/will be easily added (also upon user request)

W/Z	γ	jets	HQ pairs	single-top	Higgs
V+3j	$\gamma + 3j$	3(4)j	$t\bar{t}+2j$	tb+1j	(H+2j)
VV+2j	$\gamma\gamma+2j$		${ m tar{t}bar{b}}$	t+1(2)j	VH $+1j$
$gg \to VV + 1j$	$V\gamma+2j$		$t\bar{t}V+1j$	tW+0(1)j	${ m t}ar{ m t}{ m H}+1j$
VVV+1j			$b\bar{b}V+1j$		$qq \to Hqq + 0(1)j$
$gg \to VVV$					

lower jet multiplicities implicitly understood

(C) Unified tt and Wt description at NLO [Cascioli, Kallweit, Maieröfer, S.P. '13]

Top-pair production plus (di-leptonic) decay at NLO

NWA [Bernreuther et al. '04; Melnikov, Schulze '09]

• Only $t\bar{t}$ channels in $\Gamma_t \to 0$ limit

 $pp \rightarrow W^+W^-b\bar{b}$ in **5F** scheme [Denner, Dittmaier, Kallweit, S.P. '10; Bevilacqua et al. '10; Heinrich et al. '13]

- off-shell, single- and non-resonant contributions
- small $\mathcal{O}(\Gamma_{\rm t}/m_{\rm t})$ effects for "inclusive" ${
 m t} \bar{
 m t}$ cuts
- $m_b = 0$ approx. requires two hard bjets (g \rightarrow b \bar{b} collinear singularities)

pp $\to W^+W^-b\bar{b}$ in 4F scheme $(m_b > 0)$ [Frederix'13; Cascioli, Kallweit, Maieröfer, S.P. '13]

- full b-quark phase space
- first consistent tt and Wt combination
 with interference at LO and NLO ⇒
 Wt contribution pert. stable
- important for top-backgrounds in 0and 1-jet bins (e.g. in $H \to WW$)
- challenging multi-particle, multiresonance, multi-scale $(m_{\rm b}, \dots, m_{
 m t\bar{t}})$ process

ill-defined $t\bar{t}/Wt$ separation in 5F scheme \Rightarrow gauge-invariant $t\bar{t}/mon-t\bar{t}$ separation

Numerical NWA \Rightarrow on-shell $t\bar{t}$ production \times decay

$$d\sigma_{t\bar{t}} = \lim_{\Gamma_t \to 0} \left(\frac{\Gamma_t}{\Gamma_t^{phys}} \right)^2 d\sigma_{W^+W^-b\bar{b}}(\Gamma_t)$$

permille-level convergence shows cancellation of soft-gluon $\ln(\Gamma_{\rm t}/m_{\rm t})$ singularities

Finite-top-width remainder (FtW)

- contains all $\mathcal{O}(\Gamma_{\rm t}/m_{\rm t})$ effects: off-shell ${\rm t\bar{t}}$ production, single-top and non-resonant contributions with interferences
- from sub-percent for 2 b-jet final states to 6-8% effect in inclusive case (and more for 0/1-jets!)

Ad-hoc dynamic scale choice for multi-channel/multi-scale nature of $W^+W^-b\bar{b}$

Idea: $\mu_{\rm R} \sim m_{\rm t}$ for ${
m g} \rightarrow {
m b} \bar{{
m b}}$ splittings might generate corrections up to $\alpha_S(m_{\rm b})/\alpha_S(m_{\rm t}) \sim 2$ in Wt contribution

Appropriate scales for tt and Wt production (see CKKW and AP evolution)

$$\mu_{\mathrm{t}\bar{\mathrm{t}}}^2 = E_{\mathrm{T},\mathrm{t}} E_{\mathrm{T},\bar{\mathrm{t}}} \qquad \qquad \mu_{\mathrm{tW}^-}^2 = E_{\mathrm{T},\mathrm{t}} E_{\mathrm{T},\bar{\mathrm{b}}} \qquad \Rightarrow \quad \alpha_{\mathrm{S}}^2(\mu_{\mathrm{tW}^-}^2) \simeq \alpha_{\mathrm{S}}(E_{\mathrm{T},\mathrm{t}}^2) \alpha_{\mathrm{S}}(E_{\mathrm{T},\bar{\mathrm{b}}}^2)$$

Global "interpolating scale"

$$\mu_{\text{WWbb}}^2 = \mu_{\text{W+b}} \, \mu_{\text{W-}\bar{\text{b}}} \quad \text{with} \quad \mu_{\text{Wb}} = P_{\text{b}}(p_{\text{W,b}}) \, E_{\text{T,b}} + P_{\text{t}}(p_{\text{W,b}}) \, E_{\text{T,t}}$$

 $g \to b\bar{b}$ and $t \to Wb$ probabilities dictated by respective singularity structures

$$\frac{P_{\rm b}}{P_{\rm t}} \propto \frac{\chi_{\rm b}}{\chi_{\rm t}}$$
 with $\chi_{\rm b} = \frac{m_{\rm t}^2}{E_{\rm T,b}^2}$, $\chi_{\rm t} = \frac{m_{\rm t}^4}{[(p_{\rm W} + p_{\rm b})^2 - m_{\rm t}^2]^2 + \Gamma_{\rm t}^2 m_{\rm t}^2}$,

and free constants fixed by natural normalisation conditions

$$P_{\rm b} + P_{\rm t} = 1,$$
 and
$$\int d\sigma_{\rm W^+W^-b\bar{b}}^{\rm FtW} = \int d\Phi \left[1 - P_{\rm t}(\Phi)P_{\bar{\rm t}}(\Phi)\right] \frac{d\sigma_{\rm W^+W^-b\bar{b}}}{d\Phi}$$

Consistency of $t\bar{t}$ vs tW probability densities

Check normalisation identity for more exclusive/differential observables

$$\int d\sigma_{W^+W^-b\bar{b}}^{FtW} = \int d\Phi \left[1 - P_t(\Phi)P_{\bar{t}}(\Phi)\right] \frac{d\sigma_{W^+W^-b\bar{b}}}{d\Phi}$$

to verify if observed finite-top-width effects (computed via $\Gamma_t \to 0$) are consistent with (pseudo)probability densities

Test dependence wrt veto on 2nd b-jet

• single-top Wt contribution strongly enhanced when $p_{\mathrm{T,veto}} \to 0$

• enhancement fairly well described by $P_{\rm t}(\Phi), P_{\rm b}(\Phi)$ probability densisties

NLO and FtW effects in jet bins

Jet bins relevant for $t\bar{t}$ -suppression and most interesting application of $m_{\rm b}>0$

- 40% inclusive NLO correction driven by 2-jet bin, with very stable 0/1-jet bins
- only $\sim 10\%$ NLO uncertainty in all bins!
- FtW contribution bin-dependent (2% to 30%) and strongly enhanced in 0/1-jet bins!
- also FtW part perturbatively stable (not shown here)

Success of "ad-hoc" scale choice

- but naive $\mu = m_{\rm t}$ choice yields surprisingly similar stability in jet bins!
- "ad-hoc scale" should be superior for more exclusive observables...

NLO(LO) 4F NNPDFSs, $p_{T,j} = 30 \,\text{GeV}$

Jet-Veto and Binning Effects

0-jet bin vs p_{T} -veto

- smooth inclusive limit at large $p_{\rm T}$ and very strong $p_{\rm T}$ sensitivity below 50 GeV:
 - FtW effects increase up to 50%
 - K-factor falls very fast
- at low $p_{\rm T}$ IR singularity calls for NLO+PS matching
- typical veto $p_{\rm T} \sim 30\,{\rm GeV}$ yields 98% suppression and still decent NLO stability $(K \sim 1)$

1-jet bin vs $p_{\rm T}$ threshold

- low $p_{\rm T}$ behaviour driven by veto on 2nd jet and analogous to 0-jet case
- high $p_{\rm T}$ region driven by 1st jet and NLO radiation dominates over b-jets from W⁺W⁻b $\bar{\rm b}$

B-Jet-Veto and Binning Effects

- NLO radiation doesn't change b-jet multiplicity \Rightarrow rather stable K-factor and uncertainties
- ullet single-top and off-shell effects still enhanced at small b-jet p_{T}

In general: nontrivial interplay of NLO and off-shell/single-top effects

$t\bar{t}$ and Wt background to $H \to W^+W^-$ in 0-jet bin

- $\Delta \phi_{e^+\mu^-}$ and $M_{e^+\mu^-}$ distributions feature 10% NLO uncertainty
- significant (although moderate) NLO shape distortions
- 30–40% FtW contributions (nontrivial tt/Wt mix)

(D) MC@NLO for 4F ttbb production [Cascioli, Maieröfer, Moretti, S.P., Siegert '13]

$t\bar{t}H(b\bar{b})$ Analyses at the LHC and Irreducible $t\bar{t}b\bar{b}$ Background

- complicated $b\bar{b}b\bar{b}\ell\nu jj$ final state hampers $H\to b\bar{b}$ peak reconstruction
- signal still hidden in huge QCD background and search dominated by systematics
- theory uncertainty of irreducible ttbb background crucial (normalisation in control region quite difficult)

Theory predictions for ttbb background

- NLO reduces scale uncertainty from 80% to 20–30% [Bredenstein, Denner, Dittmaier, S. P. '09/'10; Bevilacqua, Czakon, Papadopoulos, Pittau, Worek '09]
- application to ATLAS/CMS analyses requires matching to parton showers
- → POWHEG matching in **5F scheme** [Kardos, Trocsanyi '13]
- ightarrow Sherpa-MC@NLO matching in **4F** scheme [Cascioli, Maierhoefer, Moretti, S. P., Siegert '13]

NLO matching for ttbb production in 5F vs 4F schemes

5F scheme $(m_b = 0)$: ttbb MEs cannot describe collinear $g \to b\bar{b}$ splittings

 \Rightarrow inclusive $t\bar{t}+b$ -jets simulation requires $t\bar{t}g+PS$, i.e. $t\bar{t}+\leq 2$ jets NLO merging

4F scheme $(m_b > 0)$: ttbb MEs cover full b-quark phase space

- \Rightarrow MC@NLO ttbb sufficient for inclusive tt+b-jets simulation
 - access to **new** $t\bar{t} + 2b$ -jets production mechanism wrt 5F scheme: double collinear $g \to b\bar{b}$ splittings (surprisingly important impact on $t\bar{t}H(b\bar{b})$ analysis!)

MC@NLO matching (avoids double-counting of first emission)

$$\langle \mathcal{O} \rangle = \int d\Phi_B \left[B(\Phi_B) + V(\Phi_B) + I(\Phi_B) \right] \frac{U(t_0, \mu_Q^2)}{U(t_0, \mu_Q^2)}$$
$$+ \int d\Phi_R \left[R(\Phi_R) - \sum_{ijk} \frac{D_{ijk}(\Phi_R)\theta(\mu_Q^2 - t)}{U(t_0, \mu_Q^2)} \right] \mathcal{O}(\Phi_R).$$

Integrated CS dipole-subtraction terms

$$I(\Phi_B) = \sum_{ijk} \int d\Phi_{R|B} D_{ijk}(\Phi_R) \theta(\mu_Q^2 - t),$$

Sherpa shower based on CS dipoles (exact and automated colour treatment)

$$U(t_0, \mu_Q^2) = \Delta(t_0, \mu_Q^2) \mathcal{O}(\Phi_B) + \sum_{ijk} \int_{t_0}^{\mu_Q^2} d\Phi_{R|B} \frac{D_{ijk}(\Phi_R)}{B(\Phi_B)} \Delta(t, \mu_Q^2) \mathcal{O}(\Phi_R),$$

Resummation scale μ_Q (parton-shower starting scale) restricts shower to meaningful region and its variations provide systematic shower-uncertainty estimates

Scale choice and b-jet selections

Factorisation and Resummation scales (available phase space for QCD emission)

$$\mu_{\rm F} = \mu_Q = \frac{1}{2} (E_{\rm T,t} + E_{\rm T,\bar{t}})$$

Scale choice crucial due to $\alpha_S^4(\mu^2)$ dependence (80% LO variation)

- widely separated scales $m_{\rm b} \leq Q_{ij} \lesssim m_{\rm t\bar{t}b\bar{b}}$ can generate huge logs
- CKKW inspired scale adapts to b-jet $p_{\rm T}$ and guarantees good pert. convergence

$$\mu_{\mathrm{R}}^{4} = \mathbf{E}_{\mathrm{T},\mathbf{t}} \mathbf{E}_{\mathrm{T},\bar{\mathbf{t}}} E_{\mathrm{T},\mathbf{b}} E_{\mathrm{T},\bar{\mathbf{b}}} \quad \Rightarrow \quad \alpha_{S}^{4}(\mu_{\mathrm{R}}^{2}) = \alpha_{S}(\mathbf{E}_{\mathrm{T},\mathbf{t}}^{2}) \alpha_{S}(\mathbf{E}_{\mathrm{T},\bar{\mathbf{b}}}^{2}) \alpha_{S}(E_{\mathrm{T},\bar{\mathbf{b}}}^{2})$$

ttb, ttbb and $ttbb_{100}$ analyses with stable tops

- ttb analysis $(N_b \ge 1)$
- ttbb analysis $(N_b \ge 2)$
- $ttbb_{100}$ $(N_{\rm b} \ge 2)$ analysis in the $t\bar{t}H(b\bar{b})$ signal region $m_{\rm bb} > 100\,{\rm GeV}$ ($N_{\rm b}=$ number of QCD b-jets with $p_{\rm T}>25\,{\rm GeV},\,|\eta|<2.5$ and at least one b-quark)

NLO corrections and uncertainties for ttb and ttbb cross sections

	ttb	ttbb	$ttbb(m_{\rm bb} > 100)$
$\sigma_{ m LO}[{ m fb}]$	$2547^{+71\%}_{-37\%}{}^{+14\%}_{-11\%}$	$463.9^{+66\%}_{-36\%}{}^{+15\%}_{-12\%}$	$123.7^{+62\%}_{-35\%}{}^{+17\%}_{-13\%}$
$\sigma_{ m NLO}[{ m fb}]$	$3192^{+33\%}_{-25\%}{}^{+4.6\%}_{-4.9\%}$	$557^{+28\%}_{-24\%}{}^{+5.6\%}_{-4.0\%}$	$141^{+25\%}_{-22\%}{}^{+8.6\%}_{-3.8\%}$
$\sigma_{ m NLO}/\sigma_{ m LO}$	1.25	1.20	1.14

MSTW2008 NLO(LO) 4F PDFs

Good perturbative convergence (also for ttb!)

- K-factors and uncertainties rather independent of selection
- +20% correction mainly from b-quark contribution to $\alpha_{\rm S}$ running in 4F scheme $(K \simeq 1 \text{ with 5F running})$
- 20–30% residual uncertainty dominated by μ_R variations (1st uncertainty)
- only 5-10% uncertainty from combined μ_F and μ_Q variations (2nd uncertainty)

M@NLO corrections wrt NLO in ttb and ttbb cross sections

	ttb	ttbb	$ttbb(m_{\rm bb} > 100)$
$\sigma_{ m MC@NLO}[{ m fb}]$	$3223^{+33\%}_{-25\%}{}^{+4.3\%}_{-2.5\%}$	$607^{+25\%}_{-22\%}{}^{+2.2\%}_{-2.8\%}$	$186^{+21\%}_{-20\%}{}^{+5.4\%}_{-4.7\%}$
$\sigma_{ m MC@NLO}/\sigma_{ m NLO}$	1.01	1.09	1.32
$\sigma^{ m 2b}_{ m MC@NLO}[{ m fb}]$	3176	539	145
$\sigma_{ m MC@NLO}^{ m 2b}/\sigma_{ m NLO}$	0.99	0.97	1.03

Nontrivial MC@NLO effects

- μ_R , μ_F and μ_Q uncertainties similar as for NLO
- negligible(moderate) MC@NLO/NLO differences with standard ttb(ttbb) selections
- large MC@NLO effect ($\sim 30\%$) in Higgs-signal region of ttbb
- disappears in MC@NLO_{2b}, where $g \to b\bar{b}$ shower splittings are switched off (see more details in distributions)

NLO and MC@NLO effects in distributions

ttbb analysis ($N_b \ge 2$): b-jet correlations

Unexpected behaviour

- NLO corrections quite flat
- pronounced MC@NLO enhancement at large $\Delta R_{b_1b_2}$ and large $m_{b_1b_2}$
- reaches 30–40% at $m_{\rm b_1b_2} \sim 125\,{\rm GeV}$ and largely exceeds $t\bar{t}H(b\bar{b})$ signal!

ttbb analysis ($N_b \ge 2$) with $m_{b_1b_2} > 100 \,\mathrm{GeV}$: b-jet observables

MC@NLO excess at large $m_{\rm bb}$ from back-to-back soft jets

- factor-2 enhancement at $\Delta R \sim \pi$ and at small $p_{\rm T}$
- disappears almost completely in MC@NLO_{2b} where $g \to b\bar{b}$ splittings are switched off in the parton shower (double $g \to b\bar{b}$ splittings "smoking gun")

MC@NLO enhancement consistent with double $g \rightarrow b\bar{b}$ splittings mechanism

- "double splittings" kinematically favoured at large $m_{\rm bb}$ since $t\bar{t}gg/t\bar{t}b\bar{b}$ ratio grows and $g \to b\bar{b}$ splitting probability does not decrease at large $m_{\rm gg}$
- emission of parent gluons is strongly enhanced at small $p_{\rm T}$ due to double (soft-collinear) singularity associated to IS gluon emission \Rightarrow at large invariant mass the di-jet system tends to have the smallest possible $p_{\rm T}$ and $\Delta R \sim \pi$
- kinematic reconstruction of double $g \to b\bar{b}$ splitting nontrivial since typically $\Delta R_{b\bar{b}} > 0.4$ and one of the b-quarks can be outside acceptance

Implications of (double) $g \to b\bar{b}$ splitting contributions

Double splittings change conventional hard-scattering picture

- this kind of contributions have always been present in $t\bar{t}$ +jets LO merged samples
- however, their large impact on the $t\bar{t}H(b\bar{b})$ signal region is surprising and does not fit into the conventional hard-scattering picture of $t\bar{t}b\bar{b}$ production based on a single and non-collinear $b\bar{b}$ pair

Implications for theory systematics in tt+HF

- matching to shower essential (4F ttbb NLO matching or 5F tt+jets NLO merging)
- MC@NLO ttbb simulation provides NLO accuracy for tt+2 b-jets with hard b-quark jets: NLO or LO+PS accuracy for "double-splittings"?

Accuracy of "double splittings" in MC@NLO ttbb simulation

Naive picture

real-emission t̄b̄b̄g MEs plus g \rightarrow b̄b̄ shower splitting \Rightarrow only LO+PS accuracy as in usual LO merging

Correct MC@NLO picture: interplay of three different contributions

 $t\bar{t}b\bar{b}g$ MEs plus PS $g \to b\bar{b}$ emission

- LO tībbg uncertainty $\sim 100\%$ at large $p_{\rm T}$
- ullet largely cancelled by PS-matching at small p_{T}

 $t\bar{t}b\bar{b}$ MEs plus PS gluon and $g \to b\bar{b}$ emissions

- dominates at small $p_{\rm T}$
- NLO tībb accuracy $\sim 25\%$

Well reflected in scale uncertainty of 1^{st} light-jet emission on top of $t\bar{t}b\bar{b}...$

ttb analysis ($N_b \ge 1$): 1st light-jet p_T distribution (responsible for double splittings)

MC@NLO vs NLO

- Sudakov damping of NLO IR singularity at $p_T \to 0$
- 30% NLO excess in the hard tail (probably due to dynamic μ_Q , multi-jet final state, unresolved b-quark)

MC@NLO scale uncertainty

- LO-like uncertainty ($\sim 100\%$) in the tail irrelevant for $t\bar{t}H(b\bar{b})$
- NLO-like accuracy ($\sim 30\%$) up to $70\,\mathrm{GeV}$

 \Rightarrow NLO-like accuracy in the region relevant for $t\bar{t}H(b\bar{b})$

Conclusions

OpenLoops

- handles $2 \rightarrow 2, 3, 4$ SM process at NLO QCD very efficiently
- well tested, working for nontrivial LHC studies, ready for publication

Examples of first applications (W⁺W⁻bb̄ and tt̄bb̄)

- $m_b > 0$ and NLO matching give access to new important physics ingredients (single-top, double splittings) and crucial for applicability to exp analysis
- ~ 4 years after first NLO papers (2009, 2011) and not yet the end of the story (top decays in $t\bar{t}b\bar{b}$, NLO matching for W⁺W⁻b \bar{b} , nontrivial pheno applications like m_t measurements,...)

Lesson

- \bullet NLO $t\bar{t}$ still very active business 25 years after first pioneering result
- NLO automation is just moving the first (very promising) steps
- the very wide applicability range of NLO tools and high relevance for the LHC will stimulate further exciting progress

BACKUP SLIDES

$W^+W^-b\bar{b}$ cross section in generic-jet bins

	μ_0	$\sigma[\mathrm{fb}]$	$\sigma_0[\mathrm{fb}]$	$\sigma_1[\mathrm{fb}]$	$\sigma_{2^+}[\mathrm{fb}]$
LO	$\mu_{ m WWbb}$	$1232^{+34\%}_{-24\%}$	$37^{+38\%}_{-25\%}$	$367^{+36\%}_{-24\%}$	$828^{+33\%}_{-23\%}$
NLO	$\mu_{ m WWbb}$	$1777^{+10\%}_{-12\%}$	$41^{+3\%}_{-8\%}$	$377^{+1\%}_{-6\%}$	$1359^{+14\%}_{-14\%}$
K	$\mu_{ m WWbb}$	1.44	1.09	1.03	1.64
LO	$m_{ m t}$	$1317^{+35\%}_{-24\%}$	$35^{+37\%}_{-25\%}$	$373^{+36\%}_{-24\%}$	$909^{+35\%}_{-24\%}$
NLO	$m_{ m t}$	$1817^{+8\%}_{-11\%}$	$40^{+4\%}_{-8\%}$	$372^{+1\%}_{-8\%}$	$1405^{+13\%}_{-13\%}$
K	$m_{ m t}$	1.38	1.14	1.00	1.55
	μ_0	$\sigma^{\mathrm{FtW}}[\mathrm{fb}]$	$\sigma_0^{\mathrm{FtW}}[\mathrm{fb}]$	$\sigma_1^{\mathrm{FtW}}[\mathrm{fb}]$	$\sigma_{2+}^{\mathrm{FtW}}[\mathrm{fb}]$
LO	$\mu_{ m WWbb}$	$91^{+41\%}_{-27\%}$	$13^{+42\%}_{-27\%}$	$71^{+40\%}_{-27\%}$	$7^{+45\%}_{-29\%}$
NLO	$\mu_{ m WWbb}$	$107^{+6\%}_{-11\%}$	$13^{+1\%}_{-7\%}$	$61^{+2\%}_{-16\%}$	$33^{+51\%}_{-31\%}$
K	$\mu_{ m WWbb}$	1.18	0.99	0.86	4.70
LO	$m_{ m t}$	$63^{+36\%}_{-25\%}$	$8^{+36\%}_{-25\%}$	$49^{+36\%}_{-24\%}$	$6^{+46\%}_{-29\%}$
NLO	$m_{ m t}$	$100^{+17\%}_{-16\%}$	$13^{+14\%}_{-14\%}$	$65^{+9\%}_{-12\%}$	$23^{+42\%}_{-28\%}$
K	$m_{ m t}$	1.58	1.47	1.32	3.89

$\mathrm{W^{+}W^{-}b\bar{b}}$ cross section in b-jet bins

	μ_0	$\sigma[\mathrm{fb}]$	$\sigma_0[\mathrm{fb}]$	$\sigma_1[\mathrm{fb}]$	$\sigma_{2^+}[{\rm fb}]$
LO	$\mu_{ m WWbb}$	$1232^{+34\%}_{-24\%}$	$37^{+38\%}_{-25\%}$	$367^{+36\%}_{-24\%}$	$828^{+33\%}_{-23\%}$
NLO	$\mu_{ m WWbb}$	$1777^{+10\%}_{-12\%}$	$65^{+20\%}_{-17\%}$	$571^{+14\%}_{-14\%}$	$1140^{+7\%}_{-10\%}$
K	$\mu_{ m WWbb}$	1.44	1.73	1.56	1.38
LO	$m_{ m t}$	$1317^{+35\%}_{-24\%}$	$35^{+37\%}_{-25\%}$	$373^{+36\%}_{-24\%}$	$909^{+35\%}_{-24\%}$
NLO	$m_{ m t}$	$1817^{+8\%}_{-11\%}$	$63^{+20\%}_{-17\%}$	$584^{+14\%}_{-14\%}$	$1170^{+5\%}_{-9\%}$
K	$m_{ m t}$	1.38	1.80	1.56	1.29
	μ_0	$\sigma^{ m FtW}[{ m fb}]$	$\sigma_0^{\mathrm{FtW}}[\mathrm{fb}]$	$\sigma_1^{\mathrm{FtW}}[\mathrm{fb}]$	$\sigma_{2+}^{\mathrm{FtW}}[\mathrm{fb}]$
LO	$\mu_{ m WWbb}$	$91^{+41\%}_{-27\%}$	$13^{+42\%}_{-27\%}$	$71^{+40\%}_{-27\%}$	$7^{+45\%}_{-29\%}$
NLO	$\mu_{ m WWbb}$	$107^{+6\%}_{-11\%}$	$20^{+18\%}_{-17\%}$	$82^{+4\%}_{-10\%}$	$5^{+2\%}_{-10\%}$
K	$\mu_{ m WWbb}$	1.18	1.49	1.16	0.77
LO	$m_{ m t}$	$63^{+36\%}_{-25\%}$	$8^{+36\%}_{-25\%}$	$49^{+36\%}_{-24\%}$	$6^{+46\%}_{-29\%}$
NLO	$m_{ m t}$	$100^{+17\%}_{-16\%}$	$16^{+22\%}_{-18\%}$	$77^{+16\%}_{-15\%}$	$6^{+12\%}_{-16\%}$
K	$m_{ m t}$	1.58	1.89	1.58	1.10

NLO and MC@NLO effects in distributions

ttb analysis $(N_b \ge 1)$: b-jet and top-quark distributions

Reliable perturbative prediction

- shape of 1st b-jet very stable wrt NLO corrections (thanks to dynamic scale!)
- shape of $1^{\rm st}$ top receives significant ($\sim 25\%$) NLO correction
- excellent MC@NLO vs NLO agreement

ttbb analysis $(N_b \ge 2)$: b-jet and top-quark distributions

Similarly good stability as for ttb analysis

- apart from moderate MC@NLO excess wrt NLO
- resulting distortions of b-jet and top distributions very mild

ttbb analysis ($N_b \ge 2$): 1st light-jet p_T distribution

MC@NLO vs NLO

- in good (5%) agreement in the tail
- Sudakov damping of NLO IR singularity at $p_T \to 0$
- $\sim 25\%$ deviation at intermediate $p_{\rm T}$ consistent with expected NNLO effect

MC@NLO scale uncertainty

- LO-like uncertainty ($\sim 100\%$) in the tail irrelevant for $t\bar{t}H(b\bar{b})$
- NLO-like accuracy ($\sim 25\%$) up to $100\,\mathrm{GeV}$