DESY Zeuthen Theory Group Seminar, Jan 22, 2014

From flavor data to QCD and back:

rare decays 2014

Gudrun Hiller, Dortmund

based on works with Christian Hambrock, Stefan Schacht and Roman Zwicky, 1308.4379 [hep-ph], 1312.1923 [hep-ph]

Exploring Physics at Highest Energies

With observation of scalar boson with mass 126 GeV scalar new arena for flavor physics.

In SM, f = q, l:

 $-hf\bar{f}'$ couplings are strictly flavor diagonal $\propto \delta_{ff'}$.

 $-hf\bar{f}'$ couplings are strictly $\propto m_f$, $\mu(h \to \tau \tau)/\mu(h \to \mu \mu)|_{SM} = \frac{m_{\tau}^2}{m_{\mu}^2}$.

 $\mu(h \to f\bar{f})$: signal strength

Already in 2 Higgs Doublet models, this doesn't have to be the case. Important test of SM and flavor physics. e.g. arXiv: :1302.3229,1304.6727

Aspen flavor workshop: "Connecting Flavor Physics with Naturalness: from Theory to Experiment",

Aspen Center for Physics, R.Harnik, GH, G.Kribs, J.Zupan Colorado, June 22-July 20, 2014

SM tests with Quark flavor/CKM 1995 vs today

The CKM-picture of flavor and CP violation is currently consistent with all – and quite different – laboratory observations, although some tensions exist.

Different sectors and different couplings presently probed:

$$s \rightarrow d$$
: $K^0 - \bar{K}^0, K \rightarrow \pi \nu \bar{\nu}$
 $c \rightarrow u$: $D^0 - \bar{D}^0, \Delta A_{CP}$
 $b \rightarrow d$: $B^0 - \bar{B}^0, B \rightarrow \rho \gamma, b \rightarrow d \gamma, B \rightarrow \pi \mu \mu$
 $b \rightarrow s$: $B_s - \bar{B}_s, b \rightarrow s \gamma, B \rightarrow K_s \pi^0 \gamma, b \rightarrow s ll, B \rightarrow K^{(*)} ll, B_s \rightarrow \Phi ll$
(precision, angular analysis), $B_s \rightarrow \mu \mu, \Lambda_b \rightarrow \Lambda \mu \mu$
 $t \rightarrow c, u, l \rightarrow l'$: not observed

$B \rightarrow K^* (\rightarrow K\pi) \mu \mu$, $Br \sim 10^{-7}$ angular distributions

 $B \rightarrow K^* (\rightarrow K\pi) \mu \mu$, $Br \sim 10^{-7}$ angular distributions

There are many more measurements on this mode, also from ATLAS and CMS. This is the one with a lot of discussions.

2013+: lots of data, and more to come. (LHCb run n, Belle II)

Sufficient control of hadronic physics vital for searches and interpretation.

contents of this talk:

- 1) Extracting form factor ratios from $B \to K^*$ data
- 2) Model-independent relations at & near the kinematic endpoint

2012:

	BaBar	CDF		Lł	HCb
q^2 [GeV 2]	F_L	F_L	$A_T^{(2)}$	F_L	$A_T^{(2)}$
[14.18, 16]	$0.43_{-0.16}^{+0.13}$	$0.40_{-0.12}^{+0.12}$	$0.11_{-0.65}^{+0.65}$	$0.35\substack{+0.10 \\ -0.06}$	$0.06^{+0.24}_{-0.29}$
[16, 19.xx]	$0.55\substack{+0.15 \\ -0.17}$	$0.19\substack{+0.14 \\ -0.13}$	$-0.57^{+0.60}_{-0.57}$	$0.37\substack{+0.07 \\ -0.08}$	$-0.75_{-0.20}^{+0.35}$

2013:

	BaBar	CDF			LHCb	ATLAS	CMS	
q^2	F_L	F_L	$A_T^{(2)}$	F_L	$A_T^{(2)}$	$^{a}P_{4}^{\prime}$	F_L	F_L
bin1	$0.43^{+0.13}_{-0.16}$	$0.40^{+0.12}_{-0.12}$	$0.11\substack{+0.65 \\ -0.65}$	$0.33^{+0.08}_{-0.08}$	$0.07\substack{+0.26 \\ -0.28}$	$-0.18^{+0.54}_{-0.70}$	$0.28^{+0.16}_{-0.16}$	$0.53^{+0.12}_{-0.12}$
bin2	$0.55\substack{+0.15 \\ -0.17}$	$0.19\substack{+0.14 \\ -0.13}$	$-0.57\substack{+0.60 \\ -0.57}$	$0.38\substack{+0.09 \\ -0.08}$	$-0.71\substack{+0.36 \\ -0.26}$	$0.70\substack{+0.44 \\ -0.52}$	$0.35\substack{+0.08 \\ -0.08}$	$0.44^{+0.08}_{-0.08}$

more experiments, more observables sensitive to form factors

Benefits of $B \to K^*$ at low recoil

At low hadr. recoil transversity amplitudes $A_i^{L,R}$, $i = \perp, ||, 0$ related *:

$$A_i^{L,R} \propto C^{L,R} \cdot f_i$$

 $C^{L,R}$: <u>universal</u> short-dist.-physics; $C^{L,R} = (C_9^{\text{eff}} \mp C_{10}) + \kappa \frac{2\hat{m}_b}{\hat{s}} C_7^{\text{eff}}$ $1/m_b$ - corrections parametrically suppressed $\sim \alpha_s/m_b, C_7/(C_9m_b)$ f_i : form factors $C^{L,R}$ drops out in ratios:

$$F_{L} = \frac{|A_{0}^{L}|^{2} + |A_{0}^{R}|^{2}}{\sum_{X=L,R}(|A_{0}^{X}|^{2} + |A_{\perp}^{X}|^{2} + |A_{\parallel}^{X}|^{2})} = \frac{f_{0}^{2}}{f_{0}^{2} + f_{\perp}^{2} + f_{\parallel}^{2}}$$
$$A_{T}^{(2)} = \frac{|A_{\perp}^{L}|^{2} + |A_{\perp}^{R}|^{2} - |A_{\parallel}^{L}|^{2} - |A_{\parallel}^{R}|^{2}}{|A_{\perp}^{L}|^{2} + |A_{\perp}^{R}|^{2} + |A_{\parallel}^{R}|^{2} + |A_{\parallel}^{R}|^{2}} = \frac{f_{\perp}^{2} - f_{\parallel}^{2}}{f_{\perp}^{2} + f_{\parallel}^{2}}$$
$$P_{4}^{\prime}(q^{2}) = \frac{\sqrt{2}f_{\parallel}(q^{2})}{\sqrt{f_{\parallel}^{2}(q^{2}) + f_{\perp}^{2}(q^{2})}}$$

* assuming only V-A operators

Higher order Series Expansion; use theory input from low q^2 : LCSR (sum rules) or $V(0)/A_1(0) = (m_B + m_{K^*})^2/(2m_B E_{K^*}) + O(1/m_b) = 1.33 \pm 0.4$ (LEL) F_L :

Higher order Series Expansion; use theory input from low q^2 : LCSR (sum rules) or $V(0)/A_1(0) = (m_B + m_{K^*})^2/(2m_B E_{K^*}) + O(1/m_b) = 1.33 \pm 0.4$ (LEL) $A_T^{(2)}$:

Higher order Series Expansion; use theory input from low q^2 : LCSR (sum rules) or $V(0)/A_1(0) = (m_B + m_{K^*})^2/(2m_B E_{K^*}) + O(1/m_b) = 1.33 \pm 0.4$ (LEL) P'_4 :

Predictivity at low q^2 is obtained from low q^2 input. (Required at higher order)

Data-extracted form factor ratios constitute benchmark for lattice form factor estimations at low recoil. Blue points: Wingate '13 et al

SM predictions for A_{FB} and P'_5 at low recoil (assuming V - A currents). Good agreement with data in fits in both low recoil bins.

 P_4' escapes explanation within factorizaton Altmannshofer, Straub '13, Hambrock, GH,

Schacht, Zwicky '13, Beaujean, Bobeth, vanDyk '13, Descotes-Genon, Matias, Virto '13

2) Model-independent relationsat & near the kinematic endpoint

Consider particle decays

- $A \rightarrow B(\rightarrow B_1B_2)C$ "sequential"
- $A \rightarrow B_1 B_2 C$ "from local operators", effective (weak) Hamiltonian

(Both types appear in weak flavor decays, e.g. $B \to K^{(*)}\ell^+\ell^-$ used to test the SM)

At zero recoil A at rest decays to C at rest, $p_A = p_C = 0$ and $p_B \equiv p_{B_1} + p_{B_2} = 0$ (back-to-back). Assuming an unpolarized initial state, there is no preferred direction for p_{B_i} . This implies relations among helicity amplitudes because of fewer lorentz invariants.

Decay amplitude in product form: $\mathcal{A}(A \to (B_1 B_2)C) = (B_1 B_2)_{\mu_1 \dots \mu_X} \times C^{\mu_1 \dots \mu_X}_{A \to B}(p_A^2, p_B^2, p_C^2)$ Use completeness relation for polarization vectors $\omega(\lambda_r)$; λ : helicity ($\bar{\lambda} = -\lambda$) $\sum_{\lambda,\lambda'\in\{t,\pm,0\}} \omega^{\mu}(\lambda) \omega^{*\nu}(\lambda') G_{\lambda\lambda'} = g^{\mu\nu} , \quad G_{\lambda\lambda'} = \operatorname{diag}(1,-1,-1,-1)$ Here for spin(A) = 0 and spin(C) = 1: $\mathcal{A}(A \to (B_1 B_2)C) = H_{\lambda_{B_1} \dots \lambda_{B_X}, \lambda_C}(B_1 B_2)_{\lambda_{B'_1} \dots \lambda_{B'_Y}} G^{\lambda_{B_1} \lambda_{B'_1}} \dots G^{\lambda_{B_X} \lambda_{B'_X}}$ with helicity amplitudes H $C^{\alpha\mu_1\dots\mu_X}\gamma^*_{\alpha}(\lambda_C) \equiv C^{\mu_1\dots\mu_X}$ $H_{\lambda_{B_1}..\lambda_{B_Y},\lambda_C} = C^{\alpha\mu_1..\mu_X}\gamma^*_{\alpha}(\lambda_C)\beta^*_{\mu_1}(\lambda_{B_1})..\beta^*_{\mu_Y}(\lambda_{B_X})$ $(B_1 B_2)_{\lambda_{B'_1} \dots \lambda_{B'_{Y}}} = (B_1 B_2)^{\mu_1 \dots \mu_X} \beta_{\mu_1}(\lambda_{B_1}) \dots \beta_{\mu_X}(\lambda_{B_X})$ Notation for $\lambda_A = 0$ by helicity conservation $\lambda_A = \sum_{i=1}^X \lambda_{B_i} + \overline{\lambda}_C$: $H_{\lambda_{B_1}\dots\lambda_{B_N},\lambda_C} \to H_{\lambda_{B_1}\dots\lambda_{B_N}}$

Weak decays induced by effective Hamiltonians

complete dim 6 basis for $|\Delta F| = 1$ transitions:

 $O_{S(P)} = \bar{s}_L b \,\bar{\ell}(\gamma_5) \ell \,, \quad O_{V(A)} = \bar{s}_L \gamma^\mu b \,\bar{\ell} \gamma_\mu(\gamma_5) \ell \,\,\left(\propto O_{9(10)}\right) \,,$ $O_T = \bar{s}_L \sigma^{\mu\nu} b \,\bar{\ell} \sigma_{\mu\nu} \ell \,, \quad O' = O|_{s_L \to s_R}$

"sequential" contributions with photons can be absorbed because S,P,V,A,T algebra closes. It follows $X \leq 2$. X: number of completeness relation insertions.

example1: S,P operators (X = 0): ansatz: $H_{S,P} = \gamma^*_{\alpha}(\lambda_C)\Gamma^{\alpha}$, $\lambda_C = 0$.

For lorentz vector Γ^{α} use available 4-momenta.

Endpoint kinematics in *A*-cms:

$$p_A = p_B + p_C, \ p_B = ((p_B)_0, 0, 0, 0), \ p_C = ((p_C)_0, 0, 0, 0)$$

At endpoint all 4-momenta are parallel, and since $p_C \cdot \gamma(\lambda_C) = 0$ the scalar product always vanishes.

 $H_{S,P}=0.$

example 2: V,A operators (X = 1): $H_{\lambda_B} = \gamma^*_{\alpha}(\lambda_C)\beta^*_{\mu}(\lambda_B)\Gamma^{\alpha\mu}$, $\lambda_C = \lambda_B$ Use polarization vectors of *B*-(pseudo-) particle: $\beta(0) = (0, 0, 0, (p_B)_0)/\sqrt{p_B^2}$, $\beta(t) = p_B/\sqrt{p_B^2}$, $\gamma(0) = (0, 0, 0, (p_C)_0)/\sqrt{p_C^2}$, $\gamma(\pm) = \beta(\mp) = (0, \mp 1, i, 0)/\sqrt{2}$

$$\beta(\lambda_B) \cdot \gamma(\lambda_C) = \begin{cases} 1 & \lambda_B = \bar{\lambda}_C = \pm \\ -1 & \lambda_B = \lambda_C = 0 \\ 0 & \text{otherwise} \end{cases}$$

 $\Gamma^{\alpha\mu} = c \cdot \beta^{\alpha} (\lambda_B = \lambda_C) \beta^{\mu} (\lambda_B)$ is non-zero unless $\lambda_B = t$, and $H_0 = -H_+ = -H_-, H_t = 0$; transversity basis $H_{\parallel(\perp)} \equiv \frac{1}{\sqrt{2}} (H_+ \pm H_-)$ $H_{\parallel} = -\sqrt{2}H_0, H_{\perp} = 0.$

for tensor amplitudes (X = 2), see arXiv:1312.1923 [hep-ph]

The endpoint relations ...

- are based on kinematics i.e. lorentz invariance only, hence independent of dynamics (approximation/BSM). (the ones we derived are for dim 6 basis.)

– hold exactly as long as decay is in endpoint configuration. For hadronic decays the relations are equally observable unless inelastic events are too frequent. E.g. $B \to V\Lambda\bar{\Lambda}, B \to Vp\bar{p}, B \to V\pi\pi$...

- in particular, hold beyond the low recoil OPE for $B \to K^{(*)}\ell^+\ell^-$ in 1/Q, $Q = \{m_b, \sqrt{p_B^2}\}$ Grinstein, Pirjol '04, Beylich, Buchalla, Feldmann'11

– are generalizable to other spins and to more multi-particle final states, e.g. $S \rightarrow \text{Spin 2} + \ell \ell$

 $H_{\overline{2}}$: $H_{\overline{1}}$: H_0 : H_1 : H_2 = 0 : 1 : $\frac{-2}{\sqrt{3}}$: 1 : 0.

The low recoil OPE

In SM+SM' basis (V,A operators and flipped ones only) the effective Wilson coefficients $C_{\pm}^{\text{eff}}(q^2) \equiv C^{\text{eff}}(q^2) \pm C^{\text{eff}'}(q^2)$ are independent of the polarization Bobeth,GH,van Dyk'12 (and as they should in agreement with endpoint relations)

 $B \to V\ell\ell : \quad H_{0,\parallel} = C_{-}^{\text{eff}}(q^2) f_{0,\parallel}(q^2) , \quad H_{\perp} = C_{+}^{\text{eff}}(q^2) f_{\perp}(q^2) ,$ $B \to P\ell\ell : \quad H = C_{+}^{\text{eff}}(q^2) f(q^2)$

 $f_i, i = 0, \bot, \parallel$ (*f*) : usual $B \to V$ ($B \to P$) form factors

Parameterize corrections to the lowest order OPE results as

 $f_{\lambda}(q^2) \to f_{\lambda}(q^2)(1 + \epsilon_{\lambda}(q^2))$, $\epsilon_{\lambda}(q^2) = \mathcal{O}(\alpha_s/m_b, [\mathcal{C}_7/\mathcal{C}_9]/m_b)|_{\lambda = 0, \pm 1}$ The endpoint relations imply degeneracy at endpoint

 $\epsilon_{\lambda}(q_{\max}^2) \equiv \epsilon$, $\lambda = 0, \pm 1, \|, \bot$ with the endpoint relations already enforced by $f_{\parallel}(q_{\max}^2) = \sqrt{2}f_0(q_{\max}^2)$, $f_{\perp}(q_{\max}^2) = 0$. "There are no true non-factorizable contributions ($1/m_b$, resonances,...) at zero recoil."

Full $B \to K^* (\to K\pi) \ell \ell$ angular distribution

 $d\Gamma^{4} \sim J dq^{2} d\cos \Theta_{l} d\cos \Theta_{K^{*}} d\Phi \operatorname{Krüger, Sehgal, Sinha, Sinha hep-ph/9907386}$ $J(q^{2}, \theta_{l}, \theta_{K^{*}}, \phi) = J_{1}^{s} \sin^{2} \theta_{K^{*}} + J_{1}^{c} \cos^{2} \theta_{K^{*}} + (J_{2}^{s} \sin^{2} \theta_{K^{*}} + J_{2}^{c} \cos^{2} \theta_{K^{*}}) \cos 2\theta_{l}$ $+ J_{3} \sin^{2} \theta_{K^{*}} \sin^{2} \theta_{l} \cos 2\phi + J_{4} \sin 2\theta_{K^{*}} \sin 2\theta_{l} \cos \phi + J_{5} \sin 2\theta_{K^{*}} \sin \theta_{l} \cos \phi$ $+ J_{6} \sin^{2} \theta_{K^{*}} \cos \theta_{l} + J_{7} \sin 2\theta_{K^{*}} \sin \theta_{l} \sin \phi$ $+ J_{8} \sin 2\theta_{K^{*}} \sin 2\theta_{l} \sin \phi + J_{9} \sin^{2} \theta_{K^{*}} \sin^{2} \theta_{l} \sin 2\phi, \qquad (2.3)$

 $J_i = J_i(q^2) = (H_j H_k^*)$ are bilinears of helicity/transversity amplitudes. Θ_l : angle between l^- and \overline{B} in dilepton CMS Θ_{K^*} : angle between K and \overline{B} in K^* -CMS Φ : angle between normals of the $K\pi$ and l^+l^- plane Endpoint relations imply that the J_i are not independent:

$$J_{2s}(q_{\max}^2) = -J_{2c}(q_{\max}^2)/2 , \quad J_{1s}(q_{\max}^2) - J_{2s}(q_{\max}^2)/3 = J_{1c}(q_{\max}^2) - J_{2c}(q_{\max}^2)/3 ,$$

$$J_{3}(q_{\max}^2) = -J_{4}(q_{\max}^2) , \qquad J_{2c}(q_{\max}^2) = J_{3}(q_{\max}^2) , \quad J_{5,6s,6c,7,8,9}(q_{\max}^2) = 0 .$$

From the endpoint relation we obtain (in full dim 6 basis) isotropic uniangular distributions

 $\frac{d^{2}\Gamma}{d\cos\Theta_{\ell}dq^{2}} \left/ \left(\frac{d\Gamma}{dq^{2}}\right) = \kappa\kappa_{\ell} \left(\left(J_{1s} + \frac{J_{1c}}{2}\right) + \left(J_{6s} + \frac{J_{6c}}{2}\right)\cos\Theta_{\ell} + \left(J_{2s} + \frac{J_{2c}}{2}\right)\cos2\Theta_{\ell} \right) \left/ \left(\frac{d\Gamma}{dq^{2}}\right) \rightarrow \frac{1}{2} \frac{d^{2}\Gamma}{d\cos\Theta_{K}dq^{2}} \right/ \left(\frac{d\Gamma}{dq^{2}}\right) = \kappa\kappa_{\ell} \frac{3}{2} \left(\left(J_{1s} - \frac{J_{2s}}{3}\right)\sin^{2}\Theta_{K} + \left(J_{1c} - \frac{J_{2c}}{3}\right)\cos^{2}\Theta_{K} \right) \left/ \left(\frac{d\Gamma}{dq^{2}}\right) \rightarrow \frac{1}{2}$

The uniangular distribution in φ is not isotropic in general.

 $\frac{d^2\Gamma}{d\varphi dq^2} / \left(\frac{d\Gamma}{dq^2}\right) = \frac{1}{2\pi} \left(1 + r_{\varphi} \cos 2\varphi\right), \quad r_{\varphi} \equiv \frac{-8J_{2s}}{9(J_{1s} - 1/3J_{2s})}$ This is to be expected since φ is the angle between the two decay planes which has no special rôle at the kinematic endpoint. In SM + SM' operator basis ($O_{V(A)}$ and primed only) one obtains $r_{\varphi}^{V,A} = -1/3 + \mathcal{O}(m_{\ell}^2/m_b^2)$.

 r_{φ} is modified i.e. sensitive to tensor contributions. see arXiv:1312.1923 [hep-ph] for formulae

(hold in full dim 6 basis)

longitudinal K^* polarization fraction: $F_L(q_{\max}^2) = \kappa \kappa_\ell \left(J_{1c} - \frac{1}{3} J_{2c} \right) / \left(\frac{d\Gamma}{dq^2} \right) = \frac{1}{3}$ forward-backward asymmetry $A_{\rm FB}(q_{\rm max}^2) = \kappa \kappa_{\ell} \left(J_{6s} + \frac{J_{6c}}{2} \right) / \left(\frac{d\Gamma}{dq^2} \right) = 0$ transverse asymmetry $A_{T}^{(2)}(q_{max}^{2}) = J_{3}/(2J_{2s}) = -1$ CP-(A)symmetries $A_{5.6.7.8.9}^{(D)}(q_{\text{max}}^2) = 0$, $S_{5,6,7,8,9}(q_{\text{max}}^2) = 0$ $P_{5.6.8}'(q_{\rm max}^2) = 0, \qquad P_4'(q_{\rm max}^2) = \sqrt{2}$ low recoil observables: $|H_T^{(1)}(q_{\max}^2)| = 1, \quad H_T^{(1b)}(q_{\max}^2) = 1, \quad \frac{H_T^{(2)}(q_{\max}^2)}{H_{-}^{(3)}(q_{\max}^2)} = 1, \quad \frac{H_T^{(4)}(q_{\max}^2)}{H_{-}^{(5)}(q_{\max}^2)} = 1$ observables from Krüger, Matias '05, Bobeth, GH, Piranishvili '08, Altmannshofer et al '08, Descotes-Genon et al '12, Bobeth, GH, van

Dyk,10,12

Besides $B \to K^* \ell \ell$, the helicity relations apply to the rare decays

$$B \to \rho(\to \pi\pi)\ell^+\ell^-, \quad B_s \to \varphi(\to KK)\ell^+\ell^-, \quad B_s \to K^*(\to K\pi)\ell^+\ell^-,$$
$$B_c \to D_s^*(\to D_s\pi^0)\ell^+\ell^-, \quad B_c \to D^*(\to D\pi)\ell^+\ell^-,$$
$$D \to \rho(\to \pi\pi)\ell^+\ell^-, \quad D_s \to K^*(\to K\pi)\ell^+\ell^-,$$

as well as lepton flavor violating ones $S \to V\ell^+\ell'^-$, where $\ell \neq \ell'$, dineutrino-modes and charged current decays $S \to V(\to P_1P_2)\ell\nu$:

$$B \to D^* (\to D\pi) \ell \nu, \quad B_s \to D_s^* (\to D_s \pi^0) \ell \nu, \quad B_s \to K^* (\to K\pi) \ell \nu, \quad B \to \rho (\to \pi\pi) \ell \nu,$$
$$B_c \to \psi (3770) (\to DD) \ell \nu, \quad B_c \to D^* (\to D\pi) \ell \nu,$$
$$D \to \rho (\to \pi\pi) \ell \nu, \quad D_{(s)} \to K^* (\to K\pi) \ell \nu, \quad D_s \to \varphi (\to KK) \ell \nu.$$

 $\kappa = |\mathbf{p}_B| = |\mathbf{p}_C| = \sqrt{\frac{\lambda(p_A^2, p_B^2, p_C^2)}{4p_A^2}}$ measures the distance away from the kinematic endpoint $\kappa = 0$.

Exploit parity to expand helicity amplitudes in κ , using $C_{\pm} \equiv C \pm C'$

Higher order corrections are at (relative) $\mathcal{O}(\kappa^2)$, e.g. $H^x_{\parallel} = -\sqrt{2}H^x_0 = a^x_{\parallel} + \mathcal{O}(\kappa^2)$, $H^x_{\perp} = a^x_{\perp}\kappa + \mathcal{O}(\kappa^3)$, x = L, R $\kappa^2/q^2 \leq 0.06$ for $B \to K^*\ell\ell$ at low recoil.

	F_L	S_3	$^{a}P_{4}^{\prime}$	$^{b}P_{5}^{\prime}/A_{\mathrm{FB}}$	${}^{b}S_{8}/S_{9}$	$^{a}A_{\mathrm{FB}}$	P_5'	$^{a}S_{8}$	S_9
endp.	1/3	-1/3	$\sqrt{2}$	$\sqrt{2}$	-1/2	$\hat{R}\kappa$	$\sqrt{2}\hat{R}\kappa$	$1/3\hat{I}\kappa$	$-2/3\hat{I}\kappa$
$B \to K^*$	0.38 ± 0.04	-0.22 ± 0.09	$0.70^{+0.44}_{-0.52}$	1.63 ± 0.57	-0.5 ± 2.2	-0.36 ± 0.04	$-0.60^{+0.21}_{-0.18}$	-0.03 ± 0.12	$20.06^{+0.11}_{-0.10}$
$B_s \to \varphi$	$0.16^{+0.18}_{-0.12}$	$0.19\substack{+0.30 \\ -0.31}$	_	-	_	_	_	-	_

Table 1: Endpoint predictions vs. world average in the available endpoint-bin $q^2 \in [16, 19] \text{ GeV}^2$ (LHC-experiments) or otherwise $q^2 \in [16 \text{ GeV}^2, q_{\text{max}}^2]$. $S_3 = 1/2(1 - F_L)A_T^{(2)}$. $\hat{R} = R/|A|^2$, $\hat{I} = I/|A|^2$. For slope assume SM+SM' basis and $m_l = 0$.

$$\begin{split} |A|^2 &\equiv |a_{\parallel}^L|^2 + |a_{\parallel}^R|^2, R \equiv \mathsf{Re}[a_{\parallel}^L a_{\perp}^{L*} - a_{\parallel}^R a_{\perp}^{R*}], I \equiv \mathsf{Im}[a_{\parallel}^L a_{\perp}^{L*} + a_{\parallel}^R a_{\perp}^{R*}] \\ \mathsf{Fit:} \ \hat{R} &= (-0.67 \pm 0.07) \,\mathrm{GeV^{-1}}, \hat{I} = (-0.17 \pm 0.27) \,\mathrm{GeV^{-1}}, \\ \hat{I}/\hat{R} &= 0.25 \pm 0.40 \end{split}$$

SM: $\hat{R}_{SM} = (-0.73^{+0.12}_{-0.13}) \text{ GeV}^{-1}$ Bobeth,GH,van Dyk '12 $\hat{I}_{SM} \simeq 0$. SM +SM' fit agrees with SM. The endpoint predictions ($\kappa = 0$) are consistent within 2 σ with data in the endpoint bin.

$B \to K^{(*)} \ell^+ \ell^-$ decays receive contributions from $c\bar{c}$ -resonances

Ali,Ball,Handoko,GH '99, LHCB-PAPER-2013-039 How much are RATIOS affected? $H_i^V = F_i^V(q^2)(1 + L^{\text{fac},c}(q^2) + L_i^{\text{n-fac},c}(q^2) + ...), \quad H_i^A = F_i^A(q^2)(1 + ...), \quad i = \bot, \parallel, 0,$ Leading (factorizable) $c\bar{c}$ effects $L^{\text{fac},c}(q^2)$ drop out in observables of type $(H_i^L H_j^{L*} + H_i^R A_j^{R*})/(H_l^L H_k^{L*} + H_l^R H_k^{R*})$ such as $F_L, A_T^{(2)}$ and P'_4 .

$$F_{L} \equiv \frac{|H_{0}^{L}|^{2} + |H_{0}^{R}|^{2}}{\sum_{X=L,R} (|H_{0}^{X}|^{2} + |H_{\perp}^{X}|^{2} + |H_{\parallel}^{X}|^{2})},$$
(1)

$$A_{T}^{(2)} \equiv \frac{|H_{\perp}^{L}|^{2} + |H_{\perp}^{R}|^{2} - (|H_{\parallel}^{L}|^{2} + |H_{\parallel}^{R}|^{2})}{|H_{\perp}^{L}|^{2} + |H_{\perp}^{R}|^{2} + |H_{\parallel}^{L}|^{2} + |H_{\parallel}^{R}|^{2}},$$
(2)

$$P_{4}^{\prime} \equiv \frac{\sqrt{2} \operatorname{Re}(H_{0}^{L} H_{\parallel}^{L*} + H_{0}^{R} H_{\parallel}^{R*})}{\sqrt{(|H_{\perp}^{L}|^{2} + |H_{\perp}^{R}|^{2} + |H_{\parallel}^{L}|^{2} + |H_{\parallel}^{R}|^{2})(|H_{0}^{L}|^{2} + |H_{0}^{R}|^{2})},$$
(3)

boxes: $B \to K^* \ell^+ \ell^-$ data off $c\bar{c}$, points: $B \to K^* \ell^+ \ell^-$ data on $c\bar{c}$ bands: leading OPE within the SM basis Hambrock,GH, Schacht,Zwicky'13

Overall consistency with data suggest non-factorizable $c\bar{c}$ -effects subdominant in ratios at low recoil.

Near endpoint predictions $S \rightarrow V_1 V_2$

introduce $u \equiv ((m_{V_1} + m_{V_2})/m_S)^2$; "endpoint": u = 1

$B \to V_1 V_2$	$B^0 \to D_s^{*+} D^{*-}$	$B^0 \to J/\Psi K^{*0}$	$B^0 \to D^{*+}D^{*-}$	$B^0 \to D_s^{*+} \rho^-$	$B^0 \to \rho^+ \rho^-$
u	0.61	0.58	0.57	0.28	0.09
F_L (PDG)	0.52 ± 0.06	0.570 ± 0.008	0.624 ± 0.031	0.84 ± 0.03	0.977 ± 0.026

Table 2: Examples that illustrate $F_L|_{u=1} = 1/3$ and $F_L|_{u\to 0} \to 1$.

red points: penguin decays ($B \rightarrow \varphi K^*, B_s \rightarrow \varphi \varphi$)

closer to endpoint in charm:

$D \to V_1 V_2$	$\rho \rho$	K^*K^*	$K^*\rho$	arphi ho	φK^*
$u(D_0, D_{\pm})$	0.68	0.92	0.80	0.92	_
$u(D_s)$	0.61	0.83	0.72	0.83	0.95

Table 3: *u*-values for $D \rightarrow V_1 V_2$ decays. The columns (rows) correspond to final (initial) states.

 κ -expansion for amplitude parameterizations and fits:

$$\begin{split} -\sqrt{2}H_0^x &= \sqrt{q_{\max}^2/q^2}(a_0^x + b_0^x \kappa^2 + \frac{c_0}{q^2} + ..)(1 + \sum_r \Delta_0^{(r)}(q^2)) \;, \quad x = L, R \;, \\ H_{\perp}^x &= \kappa(a_{\perp}^x + b_{\perp}^x \kappa^2 + \frac{c_{\perp}}{q^2} + ..)(1 + \sum_r \Delta_{\perp}^{(r)}(q^2)) \;, \\ H_{\parallel}^x &= (a_{\parallel}^x + b_{\parallel}^x \kappa^2 + \frac{c_{\parallel}}{q^2} + ..)(1 + \sum_r \Delta_{\parallel}^{(r)}(q^2)) \;, \end{split}$$

endpoint relations: $a_0^x = a_{\parallel}^x$, $c_0 = c_{\parallel}$, $\Delta_0^{(r)}(q_{\max}^2) = \Delta_{\parallel}^{(r)}(q_{\max}^2)$ $\Delta_0^{(r)}(q^2) \neq \Delta_{\parallel}^{(r)}(q^2)$ if non-factorizable

- There is plenty to be gained with high statistics flavor data: Besides more precise measurements the backgrounds can be controlled better (exp +th). Eg, form factor ratios can be extracted and compared with non-pertubative predictions.
- Exact endpoint relations fix distributions of many decay modes without* dynamical assumptions.

* if indeed in endpoint configuration and visible if inelasticities not overwhelming.

• Useful to control backgrounds (th and exp) and guide experimental analyses.

breakdown data 2013: $F_L(q_{\text{max}}^2) = 1/3$, $A_T^{(2)}(q_{\text{max}}^2) = -1$, $P_4'(q_{\text{max}}^2) = \sqrt{2}$

	BaBar	CDF			LHCb	ATLAS	CMS	
q^2	F_L	F_L	$A_T^{(2)}$	F_L	$A_T^{(2)}$	$^{a}P_{4}^{\prime}$	F_L	F_L
[14.18, 16]	$0.43^{+0.13}_{-0.16}$	$0.40^{+0.12}_{-0.12}$	$0.11\substack{+0.65 \\ -0.65}$	$0.33^{+0.08}_{-0.08}$	$0.07^{+0.26}_{-0.28}$	$-0.18\substack{+0.54 \\ -0.70}$	$0.28^{+0.16}_{-0.16}$	$0.53_{-0.12}^{+0.12}$
[16, 19.xx]	$0.55\substack{+0.15 \\ -0.17}$	$0.19^{+0.14}_{-0.13}$	$-0.57\substack{+0.60 \\ -0.57}$	$0.38\substack{+0.09 \\ -0.08}$	$-0.71\substack{+0.36 \\ -0.26}$	$0.70\substack{+0.44 \\ -0.52}$	$0.35\substack{+0.08 \\ -0.08}$	$0.44\substack{+0.08 \\ -0.08}$

- BSM can be searched for e.g. with i) angular distribution $d\Gamma/d\varphi$ ii) slope/ κ -expansion ($A_{\rm FB}, P'_5, ...$).
- $c\bar{c}$ -resonance contributions: i) non-factorizable ones vanish at endpoint ii) factorizable ones drop out in certain ratios at low recoil \rightarrow form factor extractions (SM basis) work Hambrock, GH '12, Hambrock,

GH, Schacht, Zwicky '13

blue points: lattice Wingate et al '13, blue shaded: LEL (input at $q^2 = 0$), red: LCSR

iii) low recoil data suggest non-fac $c\bar{c}$ effects subdominant in ratios.

• P'_4 escapes explanation within factorizaton Altmannshofer, Straub '13, Hambrock, GH,

Schacht, Zwicky '13, Beaujean, Bobeth, vanDyk '13, Descotes-Genon, Matias, Virto '13

Summary

- Current rare decay data are in agreement with the SM, although there are interesting puzzles related to the B → K*µµ angular distribution, which may point to "NP". (New Physics, Non-Perturbative Physics).
- There is much more data to come. In the near future, for instance LHCb's 3 fb⁻¹ data.

STAY TUNED