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Computer Algebra

This talk is an overview of some ideas in computer algebra relevant to
physics. There are three aims,

1 Discuss the concepts of computer algebra.

2 Outline the literature on summation methods.

3 Details of a modern example of summation relevant to particle
physics.

M Round (RISC) Symbolic Summation May, 2017 2 / 56



Computer Algebra
Roughly speaking computer algebra is about performing mathematics
using algorithms and returning proof certificates. Consider the following
example,

m∑
i=0

(−1)i
(
n

i

)
An easy way to evaluate the sum is to notice that,

T (i) = (−1)i+1

(
n − 1

i − 1

)
(−1)i

(
n

i

)
= T (i + 1)− T (i)

⇒
m∑
i=0

(−1)i
(
n

i

)
=

m∑
i=0

T (i + 1)− T (i)

= T (m + 1)− T (0) = (−1)m
(
n − 1

m

)
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Computer Algebra

The key statement in our proof is that,

(−1)i
(
n

i

)
= T (i + 1)− T (i),

which is easy to check using elementary arithmetic. As such, T (i)
represents a ‘proof certificate’. T (i) verifies the correctness of the solution
independent of how the T (i) was found. Essentially this is what (rigorous)
computer algebra is about; using algorithms, implemented on a computer,
to obtain expressions with some ‘magical’ property that makes an
interesting problem trivial. Our main concern will be with how a T (i) can
be found.
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Computer Algebra
There is another elementary point worth emphasising. A function, by its
nature, contains an infinite amount of information whereas a computer has
finite resources. Therefore one must distill the important properties of
objects into a finite amount of information; an algebra. If such a setting
can be found then there is a hope of obtaining algorithms that can be
implemented.
Our setting will be a field F — a place where one can add, multiply and
divide — and hypergeometric sequences taking value in that field,

∀i ∈ N ai ∈ F,
ai+1

ai
=

p(i)

q(i)
, p(i), q(i) ∈ F[i ].

An example hypergeometric sequence over Q[i , n] is,

ai = (−1)i
(
n

i

)
,

ai+1

ai
=

i − n

i + 1
.
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Gosper’s Algorithm

Gosper’s algorithm is an elementary algorithm that can simplify indefinite
sums of a hypergeometric sequence. The basic idea is to use the
hypergeometric property to reduce the summation problem to a linear
system which is solved using Gaussian elimination. Given a hypergeometric
summand t find, whenever possible, a hypergeometric T such that,

T (i + 1)− T (i) = t(i)

Let us just sketch how the algorithm works,

1 Write ai out as a product of functions with particular properties
(always possible, a mere re-writing).

2 By multiplying through by all denominators the problem of finding a
hypergeometric T becomes a relation of polynomials. Coefficients
comparison leads to a linear system solved by Gaussian elimination. If
the system admits no solution then there is no hypergeometric T .
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Gosper’s Algorithm
Let σ be the shift operator,

σ(i) = i + 1

then Gosper’s algorithm amounts to a method for solving the telescoping
equation,

σ(T )− T = t ⇒
m∑
i=0

t(i) = T (m + 1)− T (0).

for t the summand of the summation problem. This is our basic strategy
for summation problems; solve a telescoping equation so that the sum
becomes trivial to solve. (Telescoping was not invented by Gosper, it is a
long established technique.) Notice that the telescoping equation is the
discrete version of a differential equation,

dY

dx
= y ⇒

∫ b

a
y(x)dx = Y (b)− Y (a).
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Zeilberger’s Algorithm
Indefinite summation algorithms are not particularly useful, most difficult
problems are definite,

Sn =
n∑

i=0

t(n, i).

Summation as a topic in computer algebra began in earnest when
Zeilberger gave an algorithm for this problem, again for hypergeometric t.
Assume that the result Sn is hypergeometric then there are polynomials,

c0(n)Sn + c1(n)Sn+1 = 0

⇒
n∑

i=0

c0(n)t(n, i) +
n∑

i=0

c1(n)t(n + 1, i) = −c1(n)t(n + 1, n + 1)

Zeilberger’s idea was to call Gosper’s algorithm on,

c0(n)t(n, i) + c1(n)t(n + 1, i).
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Zeilberger’s Algorithm

So far nothing has been achieved; Sn is unknown and so the cj are too.
Zeilberger modified Gosper’s algorithm to keep track of internal results
and determine for what cj a hypergeometric solution can exist. Then
Zeilberger’s algorithm returns specific cj and a right-hand side f ,

c0(n)Sn + c1(n)Sn+1(n) = f (n).

It remains to solve for Sn using a recurrence solving technique. I will not
discuss that at all except to say M. Petkovsek is a leader in the area and
has provided algorithms that can be implemented.

M Round (RISC) Symbolic Summation May, 2017 9 / 56



Applications

Automated techniques like Zeilberger’s algorithm can be of use in particle
physics. It would represent another talk to examine how summation is
important for particle physics so let us just make a few observations.

1 Mellin-Barnes integrals are a standard technique for Feynman loop
integrals. Applying Cauchy’s residue theorem leads to sums over
poles, typically involving the Γ-function — which is hypergeometric.

2 Special functions such as Gauß’s hypergeometric function need to be
expanded in ε, the dim. reg. parameter leading to summation
problems.

3 Mellin space representations of polylogarithms lead to harmonic sums
(my focus).

4 Assorted series expansions and special function identities frequently
allow one to convert an integral to a sum.
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Applications
Heavy Flavour Wilson Coefficients

The summation problems of interest were found from 3-loop parton
distribution functions (PDFs) work,

d2σ

dxdy
=

2πα2

xyQ2

[
(1 + (1− y)2)F2(x)− y2FL(x)

]
,

to a product of the (unknown) PDF, fj , and a perturbative piece; the
Wilson coefficients,

Fi (x) =
∑
j

∫
dz

z
Ci ,j

(x
z

)
fj(z),

i ∈ {2, L} and j runs over all (anti-)quarks and the gluon.
Light flavour contributions are known to 3-loops, heavy contributions to
2-loops.

M Round (RISC) Symbolic Summation May, 2017 11 / 56



Applications
Heavy Flavour Wilson Coefficients

Recall that the PDF is introduced as a Mellin convolution,

Fi (x) =
∑
j

∫
dz

z
Ci ,j

(x
z

)
fj(z) =

∑
j

Ci ,j ∗ fj .

Thus by taking the Mellin transform,

M[g ](N) =

∫ 1

0
dxxN−1g(x) N ∈ Z+

things simplify greatly. In Mellin space Feynman diagrams contributing to
the Wilson coefficients Ci ,j become rational in the Mellin parameter N and
definite sums involving N. These sums are the primary motivation; to
simplify and treat them.
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Applications
Illustration (< 10 minutes of CPU time)

n+1∑
i=2

n+2−i∑
j=2

∞∑
a=0

∞∑
b=0

(n+2
i

)(n+2−i
j

)
(−1)i+jB[i , j ](j + i − 1)

(j + i + a + b)(i + j + a + b − 1)(j + b)(i + b)

=
2n3 + 5n2 + 4n − 2

n + 1
S2 +

[
5

2
S2 −

n2 + 2n + 2

n + 1

]
S2

1 − 2nS2,1

− 2n(n + 1)ζ3 − S3
1 +

1

4
S4

1 −
1

4
S2

2 + 2(n + 1)S3 −
1

2
S4 − 2S3,1

+ [4ζ3 + (2n − 1)S2 + 2S3 − 2(n + 1)− 4S2,1] S1 + 2S2,1,1

where Sa,...,b = Sa,...,b(n) & B[x , y ] = Γ[x ]Γ[y ]/Γ[x + y ] for convenience.
Notice that the dimensional regularisation parameter is essentially hidden
from the talk today. It can be handled with little additional work but it
plays no significant role from the computer algebra viewpoint so it’s largely
hidden today.
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Classical Multi-Summation
Consider the problem of simplifying a definite nested m-fold sum using a
summation algorithm,

S(N) =
N∑

i1=0

i1∑
i2=0

· · ·
im−1∑
im=0

f (i1, . . . im,N). (1)

For concreteness, focus on the scenario where the summand is
hypergeometric over a field F in all arguments,

f (i1, . . . im,N + 1)

f (i1, . . . im,N)
∈ F, (2)

and similar for the ij .
Generically one considers a single sum problem and recursively works
outwards. For example,

N∑
i=0

i∑
j=0

(
i
j

)
=

N∑
i=0

2i = 2n+1 − 1. (3)
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Classical Multi-Summation

Zoom to the innermost sum

F̂n =

∞ or LN∑
jN=βN

f (n, {i}, {j})

Fn =

L1(n)∑
i1=α1

· · ·
Lm(n,i1,...im)∑

im=αm

∞∑
j1=β1

· · ·
∞∑

jN=βN

f (n, {i}, {j})

Find a recurrence for the inner sum,
g0(n)F̂n + . . . + gr (n)F̂n+r = G (n)

Solve Recurrence and
substitute in solution
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Refined Multi-Summation

Zoom to the innermost sum

F̂n =

∞ or LN∑
jN=βN

f (n, {i}, {j})

Fn =

L1(n)∑
i1=α1

· · ·
Lm(n,i1,...im)∑

im=αm

∞∑
j1=β1

· · ·
∞∑

jN=βN

f (n, {i}, {j})

Find a system of recurrences for inner
sum, g0(n)F̂n + . . . + gr (n)F̂n+r = G (n)

Replace innermost sum
with the sequence and
its recurrences
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Telescoping

A standard approach to a single sum with hypergeometric summand is to
apply Gosper’s or Zeilberger’s algorithm depending on the problem. Both
algorithms exploit telescoping,

Telescoping (classical & Gosper)

Given a hypergeometric sequence f (i) find a hypergeometric g(i) such
that,

g(i + 1)− g(i) = f (i). (4)

Summing over the equation one obtains a simplification for the sum,

N∑
i=1

f (i) =
N∑
i=1

g(i + 1)−
N∑
i=1

g(i) = g(N + 1)− g(1). (5)

The two sums almost exactly cancel each other; the sum telescopes to its
first and last points.
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Telescoping

A better viewpoint — than thinking of terms cancelling terms — is to
think of a discrete version of integration,∫ b

a
f (x)dx = g(b)− g(a)⇔ g ′(x) = f (x), (6)

is schematically related to,

b∑
x=a

f (x) = g(b + 1)− g(a)⇔ g(x + 1)− g(x) = f (x). (7)

This will be a useful viewpoint for difference fields later in the talk.
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Telescoping
Continuing with the literature: for a definite sum one may use Zeilberger’s
algorithm which exploits creative telescoping,

Creative Telescoping (Zeilberger)

Given a bivariate hypergeometric sequence f (N, i) find cj(N) for
j = 0, . . . , d and g(N, i) such that,

g(N, i + 1)− g(N, i) = c0(N)f (N, i) + . . .+ cd(N)f (N + d , i). (8)

Summing over the equation one obtains a recurrence for the sum.

SN =
N∑
i=1

f (N, i), S̃N(a) =
a∑

i=1

f (N, i)⇒ S̃N+j(N) = SN −
N+j∑

i=N+1

f (N + j , i)

g(N, a + 1)− g(N, 1) = c0(N)S̃N(a) + . . .+ cd(N)S̃N+d(a) (9)

Colloquially, one finds a linear combination of shifted summands that
telescope.
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Inhomogeneous Holonomic Systems

Recall the definition of a holonomic sequence,

Holonomic sequence

A sequence an is holonomic if there exist polynomials
p0(x), . . . , pr (x) ∈ F[x ] p0, pd 6= 0 such that,

p0(n)an + . . .+ pd(n)an+d = 0, (10)

for all n ∈ N.

For refined holonomic summation a generalisation to a quite specific form
is needed.
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Refined Holonomic System
idea

Build a system from the left-hand sides of a set of holonomic recurrences
and allow the right-hand side of the system to be non-zero,

c
(0)
0 c

(0)
1 · · · c

(0)
d−1

c
(1)
0 c

(1)
1 · · · c

(1)
d−1

...
...

...

c
(l)
0 c

(l)
1 · · · c

(l)
d−1




a~n,i
a~n,i+1

...
a~n,i+d−1

+


c

(0)
d a~n,i+d

c
(1)
~n+~e1

a~n+~e1,i
...

c
(l)
~n+~el

a~n+~el ,i

 =


c

(0)
d+1

c
(l)
d+1
...

c
(l)
d+1


for ~el unit vectors. This will be referred to as a refined holonomic
system. Note that the system is of a special but in practice quite general
‘hook’ form. Secondly, the right-hand side must live where one may do
indefinite summation and solve the telescoping problem. This is not quite
a definition yet!
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Refined Telescoping (first look)

To illustrate what is going on consider the following sum,

N−10∑
i=0

2i∑
j=0

(−1)j
(

2i
j

)(
N
i

)
S1(j)2, S1(j) =

j∑
i=1

1

i
. (11)

Follow our approach and compute a recurrence for the inner most sum,

2i∑
j=0

(−1)j
(

2i
j

)
S1(j)2 (12)

The sum obeys a 2-dimensional ‘refined holonomic system’. The system is
too big to comprehend but let us inspect the form...
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Refined Telescoping (first look)

The pure recurrence is,

− (i + 3)(2i + 7)2(32768i7 + 446464i6 + 2537472i5 + 7786752i4 + 13909824i3 + 14432140i2 + 8028567i + 1839381)(i + 4)3iSUM[i + 4]

− 2(i + 3)(1048576i12 + 31850496i11 + 437846016i10 + 3599253504i9 + 19687041024i8 + 75404168576i7 + 207112294816i6

+ 410451840512i5 + 581501166626i4 + 573218302853i3 + 372317084504i2 + 142659302049i + 24299531628)iSUM[i + 3]

− 4(3145728i13 + 97910784i12 + 1390739456i11 + 11934441472i10 + 69013182464i9 + 283880729728i8 + 854133788960i7 + 1901980975328i6

+ 3131862368076i5 + 3762234911860i4 + 3200401706475i3 + 1822476616423i2 + 621321284001i + 95505715980)iSUM[i + 2]

− 8(2i + 3)2(1048576i11 + 27131904i10 + 313327616i9 + 2131001344i8 + 9480685568i7 + 28958782848i6 + 61938013728i5 + 92696785984i4

+ 95034551942i3 + 63466944897i2 + 24791126534i + 4276165552)iSUM[i + 1]

− 64(i + 1)2(2i + 1)2(2i + 3)2
(
32768i7 + 675840i6 + 5904384i5 + 28317952i4 + 80507712i3 + 135641932i2 + 125364847i + 49013368

)
iSUM[i ]

=
1

4
(−81920000i11 − 2115584000i10 − 24359116800i9 − 164964357120i8 − 729590438144i7 − 2210988677936i6 − 4680628058188i5

− 6914797926836i4 − 6977286281717i3 − 4572361070022i2 − 1747753406411i − 294389588076)

and the shift in N recurrence,

iSUM[1 + N, i ]− iSUM[i ] = 0.

In the refined approach we will try to control the order and objects
occurring in this system.
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Refined Telescoping (first look)

In the refined approach we generalise the input to be a refined holonomic
system and add an f ′,

Refined telescoping

Given a refined holonomic system for f (N, i) find cj(N) for j = 0, . . . , d , a
(possibly zero) f ′(n, i) and a g(N, i) such that,

g(N, i+1)−g(N, i)+f ′(N, i) = c0(N)f (N, i)+. . .+cd(N)f (N+d , i). (13)

Holonomic sequences imply we need no closed form for f — f is defined
by a recurrence. However a problem may be so hard (more later) that an
additional element of freedom f ′ is added to give flexibility in finding a
recurrence. Making sense of f ′ is the main topic of the talk.
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Refined Telescoping
Summing over the equation one obtains an ‘unsimplified’ recurrence for
the sum,

SN(a) =
a∑

i=1

f (N, i), (14)

g(N, a + 1)− g(N, 1) = c0(N)SN(a) + . . .+ cd(N)SN+d(a)−
a∑

i=1

f ′(N, i)

(15)

One may think of the new extension sum,

a∑
i=1

f ′(N, i), (16)

as a sub-problem to be solved by the same methods or left unsimplified.
This is the ‘price’ one pays for allowing an f ′. (f ′ is NOT a differential!!)
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Karr’s Difference Theory

To go further we need a proper formalism.

In 1981 Karr gave an indefinite nested sum representation which is an
analogue of the Risch algorithm. Karr provided a framework to represent
indefinite nested sums and products in difference fields built by a tower of
ΠΣ-extensions. These ideas were further developed, implemented and fully
understood by C Schneider (Schneider ’01 ’05 see RISC homepage).

Let us briefly review Karr’s theory; his main contribution is the ability to
allow field extensions like harmonic numbers and this is vital for particle
physics.
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Karr’s Difference Theory
We will not need a detailed understanding of Karr’s theory but a flavour of
his ideas will be insightful.

Difference field

A difference field (F, σ) is a field F and a field automorphism σ : F→ F .

The definition is analogous to a differential field. We noted,∫ b

a
f (x)dx = g(a)− g(b)⇔ ∂g(x) = f . (17)

and so with σ corresponding to the derivation of a differential field it is
natural that,

b∑
i=a

f (i) = g(b + 1)− g(a)⇔ σ(g)− g = f . (18)
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Karr’s Difference Theory
The field automorphism, or shift operator, σ encodes how objects behave
under x 7→ x + 1, a shift in an index. One may denote the index, σx , to be
clear what index is shifted. To add the harmonic numbers one constructs a
Σ-extension s1 by,

S1(i) =
i∑

j=1

1

j
⇒ σ(s1) = s1 +

1

i + 1
⇒ s1 ∼ S1(i) (19)

More generally one may add any indefinite nested sum,

i∑
j1=0

f1(j1)

j1∑
j2=0

f2(j2) · · ·
js−1∑
js=0

fs(js), (20)

by constructing a Σ-extension. One may also add Π-extensions,

σ(p1) = (i + 1)p1 ⇒ p1 ∼ i ! = Γ(i + 1) (21)

A ΠΣ-field is a tower of such extensions.
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Karr’s Difference Theory

Conceptually, one would like the shift operator only to affect (sequence)
indexed objects and so Karr’s construction allows extensions that leave the
constants,

constσ(F) = {x ∈ F|σ(x) = x} (22)

unaffected. These are the ΠΣ-extensions, see Schneider ’01 ’05 for a proper
treatment with algorithms etc. (Not important for the talk but a vital
concept that underlies algorithms.)
In the difference field one may perform algebraic computations then
translate the answer back to the sequence world to express results in terms
of sequences.
Today all we need is to recognise one can re-phrase into a ΠΣ-field then
(we assume!) algorithms exist.
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Refined Holonomic System
Definition

Build a system from the left-hand sides of a set of holonomic recurrences
and allow the right-hand side of the system to be non-zero,

c
(0)
0 c

(0)
1 · · · c

(0)
d−1

c
(1)
0 c

(1)
1 · · · c

(1)
d−1

...
...

...

c
(l)
0 c

(l)
1 · · · c

(l)
d−1




a~n,i
a~n,i+1

...
a~n,i+d−1

+


c

(0)
d a~n,i+d

c
(1)
~n+~e1

a~n+~e1,i
...

c
(l)
~n+~el

a~n+~el ,i

 =


c

(0)
d+1

c
(l)
d+1
...

c
(l)
d+1


where {c(j)

d+1} are elements of a ΠΣ-field. (This will be referred to as a
refined holonomic system.) For dimensional regularisation there is a field
extension F[ε] which makes little difference however the right-hand side
will only be required to a fixed order in ε so one can expand to save
computer resources.
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Karr’s Difference Theory
Creative telescoping with recurrences

For example, one can handle the following problem. Define a summand f
by a T -system: a refined holonomic system of a pure and shifted
recurrence and a summand,

T (N, i + d + 1) = a0(N)T (N, i) + . . .+ ad(N)T (N, i + d) + ad+1(N)

T (N + 1, i) = b0(N)T (N, I ) + . . .+ bd(N)T (N, i + d) + bd+1(N)

f (N, i) = h0(N, i)T (N, i) + . . .+ hd(N)T (N, i + d) + hd+1(N)

for h, a, b ∈ K(N)(i) and possibly non-zero hd+1, ad+1, bd+1 in a ΠΣ-field
F = K(N)(i)({pa})({sb}). These recurrences may be expressed in a
difference field then use algorithms to find a g ∈ F.
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Karr’s Difference Theory
Creative telescoping with recurrences

CT with recurrences

Given a T -system for f find a refined holonomic system (summand and
shifted recurrences),

g(N, i) = g0(N, i)T (N, i) + . . .+ gs(N, i)T (N, i + s) + gs+1(N, i) (23)

such that,

g(N, i + 1)− g(N, i) = c0(N)f (N, i) + . . .+ cd(N)f (N + d , i). (24)

Notice there are no initial conditions on T and so we are not solving a
specific problem but the general class of problems that satisfy these
recurrences.
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Karr’s Difference Theory
Creative telescoping with recurrences

If one sums over such a recurrence then one obtains ‘telescoping points’
which represent a significant overhead in computational problems,

a∑
i=1

[g(N, i + 1)− g(N, i)] = c0(N)SN(a) + . . .+ cd(N)SN+d(a),

= g0(N, a)T (N, a) + . . .+ gs(N, a)T (N, a + s) + gs+1(N,N)

− g0(N, 1)T (N, 1) + . . .+ gs(N, 1)T (N, 1 + s) + gs+1(N, 1) (25)

In a multi-sum problem a telescoping point like T (N, 1) can be quite an
involved summation problem. One would like to control recurrence order
to control the number of telescoping points that must be computed.
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Inhomogeneous Recurrences
Standard Step

To compute inhomogeneous recurrences (non-zero right-hand side) there
are two steps. First apply the classical holonomic approach,

(Specialised) Holonomic Approach

Given a T-system for f compute gs(N, i) ∈ F such that,

b0(N, i)gs(N, i) + . . .+bs(N, i)gs(N, i + s) = c1h1(N, i) + . . .+ cdhd(N, i),
(26)

where the {bk}, {hk} ∈ K(N)(i) are explicitly given (see earlier slides).

Solving this problem gives a solution space where each element contains a
gs and a set of {ck}. The lower order gk are found by back substitution of
the gs into the refined system.
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Inhomogeneous Recurrences
RHS Step

If the input recurrences are inhomogeneous then a gs+1 is needed,

Step 2

Solve for gs+1 and a set {c̃},

gs+1(N, i + 1)− gs+1(N, i) = c̃1h̃1 + . . .+ c̃d̃ h̃d̃ (27)

where {h̃} are easy to compute and live in F but depend on the solution
chosen from step 1. Similarly d̃ is the dimension of the solution space
computed in step 1.

One sees that if one chooses to compute several solutions to step 1 then d̃
grows making it easier to solve the problem. Let us adopt 3 paradigms of
solution for gs+1.
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Field Extensions
Indefinite Summation

Let us examine Σ-extensions for indefinite summation first. Classical
telescoping becomes:

Paradigm 1 (Karr ’81)

Let (F, σ) be a ΠΣ-field. Given a T-system return a gs+1 ∈ F such that,

σ(gs+1)− gs+1 = f , (28)

or return FAIL if no such gs+1 exists.

Using results in difference theory one may determine if a gs+1 exists and
find it when possible. Algorithms programmed in Sigma automate this
task (and the next paradigms). If a gs+1 exists then the summation
problem is solved by summing over the equation as normal. If no such
gs+1 exists then the problem can not be solved within the construction.
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Field Extensions
Indefinite Summation

Suppose no such gs+1 exists, then it must be that there exists a field
extension, in particular a Σ-extension (F[s], σ) of (F, σ) defined by,

σ(s) = s + f . (29)

This leads to a second option,

Paradigm 2

Let (F, σ) be a ΠΣ-field. Given a T-system return a gs+1 ∈ F such that,

σ(gs+1)− gs+1 = f , (30)

or if no such gs+1 exists introduce a field extension F[s] and return
gs+1 = s.

However the solution is crude; one merely enlarges the field to trivially
solve the problem. By allowing field extensions low order recurrences can
be delivered.
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Field Extensions
Refined Holonomic Summation

In the refined approach one tries to add more specific, and hopefully
intelligent, field extensions by exploiting d̃ > 1 solutions.
First construct a big field that contains the solution like in paradigm 2 but
with more care. Let (F, σ) be a ΠΣ-field then given f ∈ F find
‘appropriate’ Σ-extensions to build an (Fk , σ) such that there exists a gs+1

with,
σ(gs+1)− gs+1 + f ′ = f , f ′ ∈ Fk (31)

By ‘appropriate’ one can be context dependent. This is a strength of the
refined approach. One can choose a generic definition such as minimum
nested depth or one specific to experience or intuition about a problem.
For example one may want to minimise occurrence of a particular sum
object etc etc.
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Field Extensions
Refined Holonomic Summation

Let F = K(N)(i)(p1, . . . pa)(s1, . . . , sb) where the pi are product
extensions and the sj are sum extensions be the resulting field
σ(i) = i + 1, σ(N) = N. Then the refined problem becomes

Paradigm 3

Given a T-system for f find a gs+1 ∈ F and an

f ′ ∈ Fk = F(p1, . . . pa)(s1, . . . sk) ⊂ F, (32)

with 0 ≤ k ≤ b as small as possible such that,

σ(gs+1)− gs+1 + f ′ = f . (33)

If one can find such a g and f ′ then summing over (33) gives,

g(N + 1)− g(0) +
a∑

i=1

f ′(i) =
a∑

i=1

f (i) (34)

In comparison to paradigm 2 the right-hand side piece is now simpler
because f ′ ∈ Fj ⊂ F.
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Field Extensions
(Definite) Refined Holonomic Summation

Thus far only field extensions for indefinite summation have been
discussed. Going to definite summation introduces a sequence of cj(N) as
before. This leads to,

Definite Refined Summation

Given a T-system find a g ∈ F, cj(N) ∈ K(N) for j = 0, . . . , d and an,

f ′ ∈ Fk = F(p1, . . . , pa)(s1, . . . , sk) ⊂ F, (35)

such that,

σ(g)− g + f ′ =
∆∑

m=1

cm(N)fN+m, (36)

with k and d̃ as small as possible and fN+m denoting a sequence of objects
created from shifts in N of f into the difference field.
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Trading extensions

Suppose one picks a recurrence order d and there exists a g and cj . That
fixes a vector space constructed over the cj(N).

1 As one increases d in step 1 the vector space of solutions gets bigger
and the chances of finding an f ′ ∈ Fk increase, giving a refined
solution.

2 Assuming the sum is a holonomic sequence then there will exist a d
such that f ′ = 0. (paradigm 1).

3 If paradigm 1 does not hold then paradigm 2 must which defines
f ′ = s, where s was the maximal extension from before.

Thus one must find an f ′ and it may ‘sit between’ paradigms 1 & 2. In
this sense one can trade extensions for recurrence order.
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Refined Multi-Summation

Zoom to the innermost sum

F̂n =

∞ or LN∑
jN=βN

f (n, {i}, {j})

Fn =

L1(n)∑
i1=α1

· · ·
Lm(n,i1,...im)∑

im=αm

∞∑
j1=β1

· · ·
∞∑

jN=βN

f (n, {i}, {j})

Find a system of recurrences for inner
sum, g0(n)F̂n + . . . + gr (n)F̂n+r = G (n)

Replace innermost sum
with the sequence and
its recurrences
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Multi-sums

Now we can return to multi-sums using refined holonomic summation.

1 Given a multi-sum one may go to the inner most sum and compute a
recurrence using the the freedom of the refined approach to spread
the weight of the problem across both recurrence order and the
number of field extensions.

2 Without solving the resulting recurrence, one may directly proceed to
the next sum.

3 After working outwards one will deliver a recurrence for the entire
sum. The computation time and memory requirements can be
controlled by trading recurrences and field extensions.
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Worked Examples

A lot of ideas and theory has been covered! To illustrate the features it is
worth looking at some example multi-sums, summands defined by
recurrences and recurrences with ‘unsimplified’ sums in them.
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Worked Examples
Example 1 (Paradigm 1)

Consider the following definite nested multi-sum,

SN =
N−3∑
i=0

N−i−2∑
j=0

4i !(−1)j(N − i − 1)(1 + j)!

(1 + i + j)2(2 + i + j)2(i + j)!

(
N − i − 2

j

)
To find a recurrence for SN , first re-write the sum,

4
N−2∑
i1=0

i !(N − i − 1)ai ,N

ai ,N =
N−i−2∑
j=0

(−1)j(1 + j)!

(1 + i + j)2(2 + i + j)2(i + j)!

(
N − i − 2

j

)
now apply creative telescoping over holonomic sequences e.g. with Sigma.
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Worked Examples
Example 1 (Paradigm 1)

In[1]:= << ”Sigma.m”;

In[2]:= X1 =
(−1)j(1 + j)!

(1 + i + j)2(2 + i + j)2(i + j)!
Binomial[N− i− 2, j];

In[3]:= sum1 = SigmaSum[X1, {j, 0, N− i− 2}];
In[4]:= PRec = First[GenerateRecurrence[sum1, i]]/.SUM− > iSUM

Out[4]= (2+i+N+ iN)iSUM[i ]− (2+i − N)(1+i + N)iSUM[i + 1] =
1

(1+i2)i !

In[5]:= PRec = {PRec, iSUM[i]};
In[6]:= SRec = First[GenerateRecurrence[sum1, i, OneShiftIn− >

N]]/.SUM− > iSUM

Out[6]= −(1+i−N)(1+2i+iN)iSUM[i ]−(1+N)(1+i+i1N)iSUM[N+1, i ]=− 1

(1+N)i !

In[7]:= GenerateRecurrence[
N−2∑
i=0

4i!(N−i−1)iSUM[i], N, PRec, SRec]
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Worked Examples
Example 1 (Paradigm 1)

Sigma returns an unsimplified recurrence,

SUM(N) = −
4
∑N−3

i=1
1
i

(N + 1)(N + 2)
+

4iSUM[0]
(
N2 − N

)
(N + 1)(N + 2)

+
8(N − 2)

(
N3 − 3N − 1

)
iSUM[N − 3](N − 3)!

(N + 1)(N + 2) (N2 − 2N − 2)

+
4
(
N4 − 2N3 − 2N2 − 3N

)
(N + 1)(N + 2) (N2 − 2N − 2)

(37)

The telescoping points and may be calculated from the definition

iSUM[i ] =
N−i−2∑
j=0

(−1)j(1 + j)!

(1 + i + j)2(2 + i + j)2(i + j)!

(
N − i − 2

j

)
(38)

as separate summation problems. In addition one can recognise the
harmonic numbers in the result.
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Combining everything and some tidying up one obtains a final answer,

SN =
N5 − 2N4 + N3 − N − 2

(N − 1)2N2(2 + N)
− 2S1(N)

(1 + N)(2 + N)
.

More generally, one would like to balance the number of extensions sums
(next example) to calculate and the number of telescoping points to
calculate. In practical implementations the time to simplify a right-hand
side by computing these sums is typically greater than finding the
recurrence.
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Worked Examples
Example 2 (All Paradigms)

Finally an example where the refined approach can be neither paradigm 1
or 2. Consider the following sum,

N−10∑
i=0

2i∑
j=0

(−1)j
(

2i
j

)(
N
i

)
S1(j)2 (39)

Here holonomic summation techniques (paradigm 1) succeed for the inner
sum,

In[8]:= sum3 = SigmaSum[(−1)jBinomial[2i, j]Binomial[N, i]S[1, j]2, j, 0, 2i]
In[9]:= Prec3 = GenerateRecurrence[sum3, i, SimplifyByExt− > None];

(Using S for the Harmonic numbers is traditional in particle physics.)
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Worked Examples
Example 2 (All Paradigms)

The returned recurrence is inhomogeneous and with no field extensions.
Paradigm 2 is not needed because paradigm 1 succeeds. However the
resulting recurrence is 4th order and too big to show. One can find
something more compact by asking Sigma to use refined theory,

In[10]:= Prec3DN = GenerateRecurrence[sum3, i, SimplifyByExt− >
DepthNumber];

Sigma computes a 3rd order recurrence with two field-extensions,

s1 =
2i∑
j=0

(−1)j
(

2i
j

)2

1 + 2i − j
, s2 =

2i∑
j=0

(−1)j
(

2i
j

)2

2 + 2i − j
. (40)
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Worked Examples
Example 2 (All Paradigms)

The ‘price’ of using refined difference theory is that both extension sums
represent separate summation problems. One can find with Sigma for
example,

s1 =
(−1)i (2i)!

(1 + 2i)(i !)2
, s2 =

(−1)i (2i)!(1 + 4i + 2i2)

2(1 + i)2(1 + 2i)(i !)2
. (41)

One can substitute back into the recurrence and obtain something still
quite large,
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Worked Examples
Example 2 (All Paradigms)

2(i + 1)
(
32i3 + 116i2 + 130i + 43

)
iSUM(i + 1)(i − N + 1)

− 4(2i + 1)2(8i + 13)iSUM(i)(i − N)(i − N + 1)

− (i + 1)(8i + 5)(i + 2)3iSUM(i + 2)

= r(i ,N)

(
N

i

)
(42)

for r(i ,N) a large rational expression in i and N. Now we go to the outer
sum which requires a shifted recurrence,

In[11]:= Srec3 = GenerateRecurrence[sum3, i, OneShiftIn− > N]

Out[11]= (1 + N)iSUM[i ] + (−N + i − 1)iSUM[1 + N, i ] == 0
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Worked Examples
Example 2 (All Paradigms)

There are now quite a few options to compute the final recurrence.

1 Using the 4th order inner sum recurrence one can obtain a 10th order
recurrence with no extensions (paradigm 1) in 110s.

2 Or, using paradigm 2 via SimplifyByExt− >Full, a 4th order
recurrence with 8 extension sums in 64s.

3 Using the 3rd order recurrence paradigm 1 now finds an 8th order
recurrence in 38s.

4 Finally, using paradigm 2 via SimplifyByExt− >Full there is a 4th

order recurrence with 5 extension sums that an be found in 15s.

Using holonomic recurrences throughout generally leads to large
computation times (large linear systems) with lots of telescoping points
while the refined approach is usually more efficient for recurrences but with
the additional processing of extension sums.
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Worked Examples
Example 2 (All Paradigms)

The 5 extension sums found in the last configuration are,

N−10∑
i=0

(
N
i

)
1 + N − i

,

N−10∑
i=0

(
N
i

)
1 + 2i

,

N−10∑
i=0

(−1)i (2i)!

(1 + N − i)(i !)2

(
N
i

)
,

N−10∑
i=0

(−1)i i(2i)!

(1 + N − i)(2i − 1)(i !)2

(
N
i

)
,

N−10∑
i=0

(−1)i (2i)!

(2i + 1)(i !)2

(
N
i

)
. (43)

All of these sums are hypergeometric and so a parallel application of
Sigma or Zeilberger’s algorithm etc can simplify these sums.
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ρSum Implementation

An implementation of the refined approach using Sigma to find
recurrences has been produced known as ρSum. It involves choices of
paradigm type with various limits on time and recurrence order. The
implementation was tuned towards a specific problem in particle physics
that led to a specific class of sums. Intuition and experience of the
problem guided the way in which the code choosing between the various
types of recurrence to compute.
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Summary

1 The features of refined holonomic summation have been outlined as a
concept in difference field theory.

2 In particular on may trade field extensions and recurrence order.

3 For multi-summation problems one can exploit the freedom of
recurrences in problems where holonomic approaches are cumbersome.

4 Refined summation can be significantly faster and use less memory
than standard holonomic approaches.
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