Angular distributions of higher order splitting functions in vacuum and in dense QCD matter

Michael Fickinger,

Johannes-Gutenberg Universität, Mainz

In collaboration with Grigory Ovanesyan and Ivan Vitev arXiv:1304.3497

Theory Seminar, DESY Zeuthen, June 13th 2013

Outline

- Motivation
- Angular Distribution in Vacuum
- Angular Distribution in Medium
- Conclusion

MOTIVATION

Quark Gluon Plasma (QGP)

- phase of QCD, where quarks and gluons are deconfined
- connection to early universe (existed a few microseconds after the Big Bang)

Heavy-Ion Experiments

RHIC:

started 2000 p+p and Au+Au collisions at E_{NN} = 200 GeV

LHC:

started 2009 p+p and Pb+Pb collisions at E_{NN} = 2.76 TeV (5.5 TeV)

Jets in Heavy Ion Collisions

- short lifetime \sim 2-10 fm/c
- jets can be used to study the properties of QGP
- main effects of the medium on the jet: jet broadening, radiative energy loss
- kinematics: dijet events with high p_T jet (RHIC/LHC: p_T~O(10)/O(100) GeV)

medium modifies parton shower

Parton Showers

A parton shower is a Monte Carlo generator which allows to calculate exclusive cross sections . $\frac{1}{2}$ hard $\frac{1}{2}$ coll. shower

interaction

- adds collinear splittings and hadronization to calculations of hard processes, includes resummation of large Sudakov logarithms
- uses probabilistic picture of Altarelli-Parisi splitting functions to generate collinear radiation

 $\mathrm{d}\sigma = \Delta(\tau)P(\tau,z)$

 p_{\perp}

incorporates coherent branching into splitting functions

Marchesini, Webber

Coherent Branching

$$d\sigma_{n} = d\sigma_{n} \frac{d\omega}{\omega} \frac{d\Omega}{2\pi} \frac{\alpha_{S}}{2\pi} \sum_{i,j} C_{ij} W_{ij}$$

the antenna function
$$W_{ij} = \frac{\omega^{2} p_{i} \cdot p_{j}}{p_{i} \cdot q p_{j} \cdot q} = \frac{1 - \cos \theta_{ij}}{(1 - \cos \theta_{iq})(1 - \cos \theta_{jq})}$$

can be split $W_{ij} = W_{ij}^{[i]} + W_{ij}^{[j]}$

and integrating around the axis p_i leads to **angular ordering**

$$\int \frac{\mathrm{d}\phi_{iq}}{2\pi} W_{ij}^{[i]} = \frac{1}{1 - \cos\theta_{iq}} \Theta(\theta_{ij} - \theta_{iq})$$

<u>Note:</u> **angular ordering** is an effect due to soft physics but is usually incorporated into the collinear splitting functions

Soft Collinear Effective Theory (SCET)

Bauer, Fleming, Luke, Pirjol, Rothstein, Stewart

 $Qn^{\mu} + \mathcal{O}(\Lambda_{\text{OCD}})$

 $\Lambda_{
m QCD}$

 Describes light-like particles (collinear) interacting with a low energetic background (soft)

 describes same kinematic regime as parton shower

• Expansion in $\lambda \approx \sqrt{\frac{\Lambda_{QCD}}{Q}}$

 Power counting: soft:

collinear:

 $p_{\mu} = (p_{+}, p_{-}, p_{\perp}) \propto Q(\lambda^{2}, \lambda^{2}, \lambda^{2})$ $p_{\mu} = (p_{+}, p_{-}, p_{\perp}) \propto Q(\lambda^{2}, 1, \lambda)$

Parton Shower in Medium

very energetic jets compared to average energy of the medium

- hard interaction is not altered by medium
- jet hadronizes outside the medium

- hard coll. shower interaction medium interactions hadronization
- interactions with the medium effect the perpendicular momentum component of the collinear partons but not the longitudinal one
- few interactions with the medium

Goal

this work:

- study angular distributions of collinear radiation in vacuum
- calculate 3-splitting function in medium
- investigate if collinear radiation in medium exhibits angular ordering/anti-ordering

longterm:

• extend Monte Carlo event generator to be applicable to parton showers in medium

ANGULAR DISTRIBUTION IN VACUUM

Calculation in Vacuum

we want to study angular distributions of collinear splittings

three parton splitting functions

$$\begin{array}{l} q \to \bar{q}_1' + q_2' + q_3 \ , \ (\bar{q} \to \bar{q}_1' + q_2' + \bar{q}_3) \ , \\ q \to \bar{q}_1 + q_2 + q_3 \ , \ (\bar{q} \to \bar{q}_1 + q_2 + \bar{q}_3) \ , \\ \hline q \to g_1 + g_2 + q_3 \ , \ (\bar{q} \to g_1 + g_2 + \bar{q}_3) \ , \\ g \to g_1 + q_2 + \bar{q}_3 \ , \\ g \to g_1 + q_2 + q_3 \ . \end{array}$$

spin averaged matrix elements $\sum \left| \mathcal{M}_{n+2}^{(0)} \right|^2 = \frac{4g^4}{s_{123}^2} \langle \hat{P}_{q \to ggq} \rangle \sum \left| \mathcal{M}_n^{(0)} \right|^2$ where

$$s_{ij} \equiv (p_i + p_j)^2$$
 $z_i = \bar{n} \cdot p_i / \bar{n} \cdot (p_1 + p_2 + p_3) = \bar{n} \cdot p_i / \bar{n} \cdot p_0$

our calculation in SCET (μ_2, a_2, p_2) (μ_1, a_1, p_1) (μ_1, μ_1, μ_1) (μ_2, μ_2, μ_2) (μ_1, μ_1, μ_2) (μ_1, μ_2, μ_2) (μ_1, μ_2) (μ_2, μ_2) (μ_1, μ_2) $(\mu_1$

reproduces well know QCD result (for $\epsilon = 0$):

$$\langle \hat{P}_{g_1g_2q_3} \rangle = C_F^2 \langle \hat{P}_{g_1g_2q_3}^{(ab)} \rangle + C_F C_A \langle \hat{P}_{g_1g_2q_3}^{(nab)} \rangle$$
 Catani, Grazzini

$$\begin{split} \langle \hat{P}_{g_{1}g_{2}q_{3}}^{(\mathrm{ab})} \rangle &= \frac{s_{123}^{2}}{2s_{13}s_{23}} \frac{z_{3}(1+z_{3}^{2})}{z_{1}z_{2}} + \frac{s_{123}}{s_{13}} \frac{z_{3}(1-z_{1}) + (1-z_{2})^{3}}{z_{1}z_{2}} - \frac{s_{23}}{s_{13}} + (1\leftrightarrow2) \\ \langle \hat{P}_{g_{1}g_{2}q_{3}}^{(\mathrm{nab})} \rangle &= \frac{\left[2(z_{1}s_{23} - z_{2}s_{13}) + (z_{1} - z_{2})s_{12}\right]^{2}}{4(z_{1} + z_{2})^{2}s_{12}^{2}} + \frac{1}{4} + \frac{s_{123}^{2}}{2s_{12}s_{13}} \left(\frac{1+z_{3}^{2}}{z_{2}} + \frac{1+(1-z_{2})^{2}}{1-z_{3}}\right) - \frac{s_{123}^{2}}{4s_{13}s_{23}} \frac{z_{3}(1+z_{3}^{2})}{z_{1}z_{2}} + \frac{s_{123}}{2s_{12}} \left(\frac{z_{1}(2-2z_{1}+z_{1}^{2}) - z_{2}(6-6z_{2}+z_{2}^{2})}{z_{2}(1-z_{3})}\right) \\ &+ \frac{s_{123}}{2s_{13}} \left(\frac{(1-z_{2})^{3} + z_{3}^{2} - z_{2}}{z_{2}(1-z_{3})} - \frac{z_{3}(1-z_{1}) + (1-z_{2})^{3}}{z_{1}z_{2}}\right) + (1\leftrightarrow2). \end{split}$$

Coherent Branching in Vacuum

 $z_1 \ll z_2, z_3$

needed to define the order of the splittings

define angular anti-ordering

$$\int \frac{\mathrm{d}\phi_{iq}}{2\pi} X_{ij} = \frac{1}{1 - \cos\theta_{iq}} \Theta(\theta_{iq} - \theta_{ij})$$

$$\langle P_{q_0 \to g_1 g_2 q_3} \rangle = \frac{4C_F (1 - c_{23})}{z_1^2} z_2 (1 - z_2) \frac{1 - z_2 + z_2^2/2}{z_2} \left(C_F \left(W_{23}^{[3]} + X_{23} \right) + C_A \left(W_{23}^{[2]} \right) \right)$$

If gluon 1 is radiated at a large angle it sees only the charge of the parent quark since it cannot resolve the daughter partons

 \rightarrow the nonabilian part is angular ordered, the abilian part is not

Splitting function $q \rightarrow ggq$

Splitting function $q \rightarrow ggq$

 $= \frac{2T_R(1-c_{23})}{z_1^2} = \frac{2T_R(1-c_{23})}{z_1^2} z_2(1-z_2)(z_2^2+(1-z_2)^2) \left(C_F\left(W_{23}^{[2]}+W_{23}^{[3]}\right) + C_A\left(X_{23}\right)\right) + C_A\left(X_{23}\right) + C_$

 $P_{g_0 \to g_1 q_2 \bar{q}_3} = \frac{2T_R (1 - c_{23})}{z_1^2} z_2 (1 - z_2) (z_2^2 + (1 - z_2)^2) \left(C_F \left(W_{23}^{[2]} + W_{23}^{[3]} \right) + C_A (X_{23}) \right)$

- coll. enhancement
- angular ordering visible at large angles
- angular anti-ordering visible at small angles:
 - absolute value of nonabilian term
 - zero between 10° and 20°

all other graphs are neither angular ordered nor anti-ordered!

Cascade $\langle P_{q \to ggq}^{\text{casc}}[k_1, k_2, p] \rangle^{(0)} =$ $s_{123} \left(\frac{\langle P_{q \to gq}^{(0)}[k_2, p+k_1] \rangle \langle P_{q \to gq}^{(0)}[k_1, p] \rangle}{s_{13}} + \frac{\langle P_{q \to gq}^{(0)}[k_1, p+k_2] \rangle \langle P_{q \to gq}^{(0)}[k_2, p] \rangle}{s_{23}} \right)$ $+\frac{\langle P_{q\to gq}^{(0)}[k_1+k_2,p]\rangle\langle P_{g\to gg}^{(0)}[k_1,k_2]\rangle}{s_{12}}\right)$ Splitting function $q \rightarrow ggq$ approximation of the full 3-parton 10^{7} splitting using 2-parton splittings Full Cascade 10^{6} $(d\phi_1/2\pi) < P_{q \to ggq^2}$ $\langle P_{q_0 \to g_1 g_2 q_3}^{\text{cascade}} \rangle = (1 - c_{23}) \frac{4C_F}{z_1^2} z_2 (1 - z_2) \frac{1 - z_2 + z_2^2/2}{z_2}$ 10⁵ $\times \left(C_F \left(W_{23}^{[3]} + X_{23} \right) + C_A \left(W_{23}^{[2]} + X_{23} \right) \right)$ 10^{4} factor $(C_F + C_A)/C_F$ 10^{3} $\langle P_{q_0 \to g_1 g_2 q_3} \rangle = \frac{4C_F(1 - c_{23})}{z_1^2} z_2(1 - z_2) \frac{1 - z_2 + z_2^2/2}{z_2} \left(C_F\left(W_{23}^{[3]} + X_{23}\right) + C_A\left(W_{23}^{[2]}\right) \right)$ 10 20 30 40 50 60 70 $\theta_{01}[deg]$

ANGULAR DISTRIBUTION IN MEDIUM

Calculation in Medium

- SCET_G, extension of SCET which includes Ovanesyan, Vitev Glauber modes $p_G \sim Q(\lambda^2, \lambda^2, \lambda)$, in addition to collinear $p_C \sim Q(\lambda^2, 1, \lambda)$ and soft $p_S \sim Q(\lambda^2, \lambda^2, \lambda^2)$ modes
- medium is modeled with a finite number of scattering centers with static Debye-screened potential
 Gyulassy, Wang

$$H = \sum_{n=1}^{N} H(q; x_n) = 2\pi \delta(q^0) v(q) \sum_{n=1}^{N} e^{iqx_n} T^a(R) \otimes T^a(n)$$

$$v(q) = \frac{4\pi\alpha_s}{q_z^2 + \mathbf{q^2} + \mu^2}$$

medium parameters:

- Debye screening scale: $\mu = 0.75 \text{ GeV}$
- medium size: *L* = 5 *fm*
- gluon scattering length: $\lambda_q = 1 fm$

Calculation in Medium

- expansion in opacity (# of interactions): single born = one medium interaction double born = two medium interactions
- Important to include double born contact limit for first order in opacity
- average over scattering centers
- first order of opacity valid approximation at RHIC *Gyulassy, Levai, Vitev*

Gyulassy, Levai, Vitev

19 single born diagrams:

34 double born diagrams:

Splitting function $q \rightarrow ggq$

<u>scenario 1:</u> $E_0 = 100 \text{ GeV}$ $z_1 = 0.03$ $z_2 = 0.643$ $\theta_{02} = 10^\circ$ $\theta_{03} = 20^\circ$

 $\theta_{01}[deg]$

- coll. enhancement
- NO angular ordering
- jet broadening

Splitting function $q \rightarrow ggq$

- coll. enhancement
- NO angular ordering
- jet broadening
- NO angular antiordering
- large cancelations between single and double born contributions

Splitting function $q \rightarrow ggq$

<u>scenario 2:</u> $E_0 = 100 \text{ GeV}$ $z_1 = 0.03$ $z_2 = 0.282$ $\theta_{02} = 25^\circ$ $\theta_{03} = 10^\circ$

scenario1:

Splitting function $q \rightarrow ggq$

scenario 2:

Splitting function $q \rightarrow ggq$

Conclusion

- We calculated the q->qgg splitting function in medium
- We studied the angular distributions of collinear radiation in vacuum and dense QCD matter
- The full splitting functions are neither angular ordered nor anti-ordered
- The radiation in medium falls off less step with large angles than in vacuum

BACKUP SLIDES

$$\left\langle P_{q_0 \to \bar{q}'_1 q'_2 q_3} \right\rangle = \frac{C_F T_R \left(1 - c_{23}\right)}{z_1} \frac{\left(1 - z_2\right) \left(2\left(1 - z_2\right) + z_2^2\right)}{z_2} \left(W_{23}^{[2]} + X_{23}\right)$$

$$\langle P_{q_0 \to \bar{q}_1 q_2 q_3} \rangle = \frac{C_F (1 - c_{23})}{z_1} \Biggl[T_R \left(\frac{(1 - z_2)(1 + (1 - z_2)^2)}{z_2} \left(W_{23}^{[2]} + X_{23} \right) + \frac{z_2 (1 + z_2^2)}{(1 - z_2)} \left(W_{23}^{[3]} + X_{23} \right) \Biggr] + 2(C_F - C_A/2) X_{23} \Biggr]$$

$$\langle P_{g_0 \to g_1 g_2 g_3} \rangle = \frac{4C_A^2 (1 - c_{23})}{z_1^2} z_2 (1 - z_2) \left(\frac{z_2}{1 - z_2} + \frac{1 - z_2}{z_2} + z_2 (1 - z_2) \right) \left(W_{23}^{[2]} + W_{23}^{[3]} + X_{23} \right)$$